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It is known that every chordal graph G = (V,E) has a spanning tree T such that, for
every vertex v € V, eccr(v) <eccg(v) + 2 holds (here eccg(v) := max{dg(v,u) :u € V}
is the eccentricity of v in G). We show that such a spanning tree can be computed in
linear time for every chordal graph. As a byproduct, we get that the eccentricities of all
vertices of a chordal graph G can be computed in linear time with an additive one-sided

error of at most 2, i.e., after a linear time preprocessing, for every vertex v of G, one can
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compute in O(1) time an estimate e(v) of its eccentricity eccg(v) such that eccg(v) <
e(v) <eccg(v)+2.

© 2019 Elsevier B.V. All rights reserved.

Introduction. All graphs G = (V, E) in this note are con-
nected, finite, unweighted, undirected, loopless and with-
out multiple edges. The length of a path from a vertex v to
a vertex u is the number of edges in the path. The dis-
tance dg(u, v) between vertices u and v is the length of
a shortest path connecting u and v in G. The eccentricity
of a vertex v, denoted by eccg(v), is the largest distance
from that vertex v to any other vertex, i.e., eccg(v) =
maxyey dg(v, u). A graph G is called chordal if all its in-
duced cycles have length 3.

Eccentricity k-approximating spanning trees were intro-
duced by Prisner in [12]. A spanning tree T of a graph
G is called an eccentricity k-approximating spanning tree if
for every vertex v of G, ecct(v) <eccg(v) + k holds [12].
Prisner demonstrated in [12], that every chordal graph has
an eccentricity 2-approximating spanning tree and that the
bound 2 is sharp. Later this result was extended in [7]
to a larger family of graphs which includes among others
all chordal graphs. Any such graph admits an eccentricity
2-approximating spanning tree. Unfortunately, both papers
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need O(nm) time to construct such a spanning tree for
an n-vertex, m-edge chordal graph, making this a more
existential-type result than a result useful for efficient ap-
proximation of all eccentricities. In fact, in O (nm) time, all
exact vertex eccentricities can be computed in any graph.
Moreover, a recent paper [9] demonstrated that in any
graph an eccentricity k-approximating spanning tree with
minimum k can be found in O (nm) time.

In this note, using two ingredients known from litera-
ture and one new ingredient, we show that an eccentricity
2-approximating spanning tree of any chordal graph can
be computed in linear time. This allows computation of
eccentricities of all vertices of a chordal graph G with an
additive one-sided error of at most 2 in total linear time.
In particular, we get that after a linear time preprocess-
ing, for every vertex v of G, one can compute in O(1)
time an estimate é(v) of its eccentricity eccg(v) such that
eccg(v) <e(v) <eccg(v) + 2.

Recently, in [4], it was shown that every graph with
8-thin geodesic triangles admits an eccentricity (28)-ap-
proximating spanning tree constructible in O (§|E|) time.
As in chordal graphs all geodesic triangles are 2-thin [4],
an immediate consequence of that result is that an eccen-
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tricity 4-approximating spanning tree of a chordal graph
is constructible in linear time. Here, we improve the error
from 4 to optimal 2.

In what follows we will need a few more notions
and notations. The radius rad(G) of a graph G is the
minimum eccentricity of a vertex in G, ie. rad(G) =
minycy maxyey dg (v, u). A vertex ¢ with eccg(c) =rad(G)
is called a central vertex of G. The center C(G) ={ceV:
eccg(c) =rad(G)} of a graph G is the set of all its central
vertices. The diameter diam(G) of a graph G is the largest
distance between a pair of vertices in G, i.e., diam(G) =
maxy vev dg (U, v) = maxyey eccg(v). A pair of vertices
u, v of G with diam(G) =d¢(u, v) is called a diametral pair
and any shortest path between u and v is called a diame-
tral path of G. Two vertices u, v of G are called mutually
distant vertices if d¢ (u, v) = eccg(v) = eccg(u). Denote also
by F(v) ={ueV :dg(v,u) =eccg(v)} the set of all ver-
tices of G that are most distant from v. For a vertex v € V
and a subset S C V, let dg(v,S) = min{dg(v,u) :u € S}.
Furthermore, for a vertex v and a path P of G, denote by
dg (v, P) the distance between v and a closest to v vertex
from P.

The disk D,(s) of a graph G centered at vertex s € V
and with radius r is the set of all vertices with distance
at most r from s (i.e.,, D;(s) ={v € V :dg(v,s) <r}). For
any two vertices u, v of G, I(u,v) ={zeV :d(u,v) =
d(u,z) +d(z,v)} is the (metric) interval between u and
v, i.e., all vertices that lay on shortest paths between u
and v. The set Sp(x,y) ={z e I(x,y) :d(z,x) =k} is called
a slice of the interval from x to y. Denote by P(x,y) =
(x=vp,V1,..., Vk_1, Vk = y) a path connecting vertices x
and y.

Previously known facts. A linear time algorithm for find-
ing a central vertex of an arbitrary chordal graph G that
was presented in [3] is crucial to our linear time algorithm
for constructing an eccentricity 2-approximating spanning
tree for G. It was shown [3] that for every vertex s of a
chordal graph G, every vertex z € F(s) has the eccentric-
ity at least max{2rad(G) — 3, diam(G) — 2}, and the bound
is sharp. Hence, z and v € F(z) or v and u € F(v) or u
and w € F(u) are mutually distant vertices. The algorithm
of [3] starts with finding in linear time such a pair x, y of
mutually distant vertices. Then, it carefully picks in linear
time a special vertex ¢ in a middle slice S|g,y)/2j(X,¥)
of the interval I(x, y). Finally, if ¢ is not a central vertex
of G, then [3] shows that the eccentricity of any vertex
t € F(c) is larger than dg(x,y), and the process can be
started again with a new improved pair of mutually distant
vertices. Since there can only be at most two improve-
ments on the initial distance d¢(x, y) (from diam(G) —2 to
diam(G) — 1 and from diam(G) — 1 to diam(G)), the whole
algorithm works in linear time. As a byproduct of this al-
gorithm, we can claim the following additional property of
the central vertex found by the algorithm of [3].

Fact 1 ([3]). A central vertex of a chordal graph that is also a
middle vertex of a shortest path of length at least max{2rad(G)
— 3,diam(G) — 2} can be found in linear time.

By a later result in [5,8], the number of improvements
on the initial distance d¢(x,y) in the algorithm of [3]
can be reduced by one if, instead of any furthest vertex
from s, the vertex z last visited by a LBFS(s) is used. A
Lexicographic-Breadth-First-Search, LBFS(s), starting at ver-
tex s is a refined variant of a Breadth-First-Search, BFS(s),
with a strict tie-breaking rule (see [14]). It still runs in lin-
ear time for any graph [11].

Fact 2 ([5,8]). Let z be the vertex of a chordal graph G last vis-
ited by a LBFS. Then, eccg(z) > diam(G) — 1. Furthermore, if
diam(G) is even or ecc(z) is odd then eccg (z) = diam(G).

This strong fact may seem to suggest that the diame-
ter of a chordal graph might be computable in linear time
as well. However, that is very unlikely as an algorithm
that can distinguish between diameter 2 and 3 in a sparse
chordal graph in subquadratic time will refute the widely
believed Orthogonal Vectors Conjecture (see [5,13]).

Since for any chordal graph G, diam(G) > 2rad(G) — 2
holds [1,2], from Fact 2 we get that eccc(z) is not the di-
ameter diam(G) only if diam(G) = 2rad(G) — 1 =eccg(2) +
1. Note that, for any graph G, 2rad(G) > diam(G) holds.
Thus, regardless of ecc¢(z) is diam(G) or not, eccg(z) >
2rad(G) — 2 must hold. Thus, we have the following slight
improvement of Fact 1, which will be handy later.

Fact 3. A central vertex of a chordal graph that is also a middle
vertex of a shortest path P of length at least max{2rad(G) —
2,diam(G) — 1} can be found in linear time. Furthermore, if
diam(G) is even or the length of P is odd, then P is a diame-
tral path of G.

Fact 3 is the first ingredient to our main result. The
second ingredient is a nice property of the eccentricity
function in chordal graphs established in [7] (even for a
larger family of graphs).

Fact 4 ([7]). For every chordal graph G and any its vertex v, the
following formula is true:

dc (v, C(G)) +rad(G) — € <eccg(v)
<dg(v,C(G)) +rad(G),

where € < 1, if diam(G) = 2rad(G), and € = 0, otherwise.
We will need also the following auxiliary lemma.

Lemma 1 ([6,10]). If vertices a and b of a disk D, (u) of a chordal
graph are connected by a path P(a,b) outside of D;(u) [i.e.,
P(a,b) N Dy(u) = {a, b}], then a and b must be adjacent. In
particular, for every integer k and every pair of vertices x and y,
slice Sk(x, y) forms a clique.

One more ingredient and the main result. Our third ingre-
dient is that, in a chordal graph G, a middle vertex of a
shortest path of length at least 2rad(G) — 2 is within dis-
tance at most two from every central vertex of G.
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Fact 5. Let G be a chordal graph and c be a middle vertex of
a shortest path P of length at least 2rad(G) — 2 in G. Then,
C(G) € D3(c). Furthermore, if the length of P is 2rad(G) then
C(G) € D1(0).

Proof. Let P(x, y) be a shortest path between vertices x
and y, d¢(x,y) > 2rad(G) — 2, and c be the vertex of
P(x,y) at distance |d(x,y)/2] from x. Consider an arbi-
trary vertex v € C(G). We know that both dg(v,x) and
dg(v,y) are at most rad(G). Consider arbitrary shortest
paths P(v,x) and P(v,y) and denote by P(y,c) the sub-
path of P(x, y) between y and c.

If dg(x, y) = 2rad(G), then both c and v are in Sy4q(c) (%,
y) and, by Lemma 1, dg(c,v) < 1.

Assume now that d¢(x, y) = 2rad(G) — 1. Then dg(x,
¢) =rad(G) — 1 and d¢(y,c) = rad(G). If also d¢g(x,v) =
rad(G) — 1, then both ¢ and v are in Syqq()—1(%, y) and,
by Lemma 1, dg(c,v) < 1. So, let d¢(x,v) = rad(G), and
consider the vertex t on path P(x,v) adjacent to v. Ver-
tices t and c belong to Dy4q(G)—1(x) and are connected by
a path {t}U P(v, y) \ {y} U P(y, ¢) outside of D4q(G)—1(X)
(note that d¢(x, P(v, y)) >rad(G) as dg(v, y) <rad(G) and
dg(x,y) = 2rad(G) — 1). By Lemma 1, dg(c,t) <1 and
hence dg(c, v) < 2.

Finally, assume that d¢ (x, y) = 2rad(G) — 2. Then d¢ (x,
¢) =rad(G) — 1 =dg(y,c). If dg(x,v) <rad(G) — 1 and
dg(y,v) <rad(G)—1, then both ¢ and v are in Sy4q(6)—1(X,
y) and, by Lemma 1, d¢(c,v) < 1. So, without loss of
generality, let dg(x,v) = rad(G). Consider the vertex t
on path P(x,v) adjacent to v. If dg(x, P(v, y)) > rad(G),
then as before we get dg(c,t) <1 and hence dg(c,v) <2
(since vertices t and c¢ belong to D;qq(G)—1(x) and are con-
nected by a path {t} U P(v,y) \ {y} U P(y,c) outside of
DradGy—1(x)). If now dg(x, P(v,y)) <rad(G) — 1, then to
keep d¢(x, y) = 2rad(G) — 2, only the neighbor s of v on
shortest path P(v, y) can be at distance rad(G) — 1 from
x (all other vertices of P(v,y) must be at distance at
least rad(G) from x). Necessarily, d¢ (s, y) =rad(G) — 1. But
now, both s and ¢ belong to Syu4c)—1(X, y). By Lemma 1,
dg(c,s) <1 and hence dg(c,v) <2. O

We are ready to prove our main result.

Theorem 1. An eccentricity 2-approximating spanning tree of a
chordal graph G can be computed in linear time.

Proof. By Fact 3, a central vertex c¢ of a chordal graph that
is also a middle vertex of a shortest path P of length at
least 2rad(G) — 2 can be found in linear time. Furthermore,
if diam(G) = 2rad(G) then P is a diametral path of G. By
Fact 5, C(G) € D5(c), and even C(G) C Dq(c) if diam(G) =
2rad(G). We can show now that any shortest path tree T
of G rooted at c is an eccentricity 2-approximating span-
ning tree of G.

Consider an arbitrary vertex v in G and let v/ be a ver-
tex of C(G) closets to v. By Fact 4, eccg(v) > dg (v, C(G))+
rad(G) — € = dg(v,Vv’) + rad(G) — €, where € < 1, if
diam(G) = 2rad(G), and € = 0, otherwise. Since T is a
shortest path tree and c is a central vertex of G, ecct(v) <

dr(v,c) +eccr(c) =dg(v,c) +eccg(c) =d¢ (v, c) + rad(G).
Hence, by the triangle inequality,

eccr(v) —eccg(v) <dg(v,c) +rad(G) —dg(v, V')
—rad(G) + € (1)
<dg(c,v) +e€
<2.

Recall that if diam(G) < 2rad(G) then dg(c,v') <2 and € =
0, and if diam(G) = 2rad(G) then dg(c,v') <1 and € <
1. O

Note that the eccentricities of all vertices in any tree
T = (V,U) can be computed in O(|V]) total time. It is a
folklore by now that for trees the following facts are true:

(1) The center C(T) of any tree T consists of one vertex
or two adjacent vertices.

(2) The center C(T) and the radius rad(T) of any tree T
can be found in linear time.

(3) For every vertex v € V, eccr(v) = dr(v,C(T)) +
rad(T).

Hence, using BFS(C(T)) on T one can compute dr(v,
C(T)) for all v € V in total O(|V|) time. Adding now
rad(T) to dr(v,C(T)), one gets eccr(v) for all v € V.
Consequently, by Theorem 1, we get the following addi-
tive approximations for the vertex eccentricities in chordal
graphs.

Corollary 1. Let G = (V, E) be a chordal graph. There is an al-
gorithm which in total linear (O (|E|)) time outputs for every
vertex v € V an estimate é(v) of its eccentricity eccg(v) such
that eccg(v) < é(v) <eccg(v) + 2.

Concluding remark. We demonstrated that an eccentric-
ity 2-approximating spanning tree of a chordal graph can
be computed in linear time. Can this result be extended
to a more general class of graphs described in [7] (they
all admit eccentricity 2-approximating spanning trees). The
main bottleneck there is whether a central vertex in such
a graph can be found in linear time. It is interesting also
whether a linear time algorithm exists which for every
chordal graph G computes estimates é(v), v € V, with
eccg(v) <eé(v) <eccg(v) +u for p <1.
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