Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An eccentricity 2-approximating spanning tree of a chordal graph is computable in linear time

Feodor F. Dragan

Algorithmic Research Laboratory, Department of Computer Science, Kent State University, Kent, OH, USA

ARTICLE INFO

Article history: Received 6 October 2018 Received in revised form 9 October 2019 Accepted 13 October 2019 Available online 24 October 2019 Communicated by Ryuhei Uehara

Keywords: Linear-time algorithm Chordal graphs Eccentricities Approximation Spanning trees

ABSTRACT

It is known that every chordal graph G = (V, E) has a spanning tree T such that, for every vertex $v \in V$, $ecc_T(v) \le ecc_G(v) + 2$ holds (here $ecc_G(v) := \max\{d_G(v, u) : u \in V\}$ is the eccentricity of v in G). We show that such a spanning tree can be computed in linear time for every chordal graph. As a byproduct, we get that the eccentricities of all vertices of a chordal graph G can be computed in linear time with an additive one-sided error of at most 2, i.e., after a linear time preprocessing, for every vertex v of G, one can compute in O(1) time an estimate $\hat{e}(v)$ of its eccentricity $ecc_G(v)$ such that $ecc_G(v) \le$ $\hat{e}(v) \le ecc_G(v) + 2$.

© 2019 Elsevier B.V. All rights reserved.

Introduction. All graphs G = (V, E) in this note are connected, finite, unweighted, undirected, loopless and without multiple edges. The *length of a path* from a vertex v to a vertex u is the number of edges in the path. The *distance* $d_G(u, v)$ between vertices u and v is the length of a shortest path connecting u and v in G. The *eccentricity* of a vertex v, denoted by $ecc_G(v)$, is the largest distance from that vertex v to any other vertex, i.e., $ecc_G(v) = \max_{u \in V} d_G(v, u)$. A graph G is called *chordal* if all its induced cycles have length 3.

Eccentricity *k*-approximating spanning trees were introduced by Prisner in [12]. A spanning tree *T* of a graph *G* is called an *eccentricity k-approximating spanning tree* if for every vertex *v* of *G*, $ecc_T(v) \le ecc_G(v) + k$ holds [12]. Prisner demonstrated in [12], that every chordal graph has an eccentricity 2-approximating spanning tree and that the bound 2 is sharp. Later this result was extended in [7] to a larger family of graphs which includes among others all chordal graphs. Any such graph admits an eccentricity 2-approximating spanning tree. Unfortunately, both papers

https://doi.org/10.1016/j.ipl.2019.105873 0020-0190/© 2019 Elsevier B.V. All rights reserved. need O(nm) time to construct such a spanning tree for an *n*-vertex, *m*-edge chordal graph, making this a more existential-type result than a result useful for efficient approximation of all eccentricities. In fact, in O(nm) time, all *exact* vertex eccentricities can be computed in any graph. Moreover, a recent paper [9] demonstrated that in any graph an eccentricity *k*-approximating spanning tree with minimum *k* can be found in O(nm) time.

In this note, using two ingredients known from literature and one new ingredient, we show that an eccentricity 2-approximating spanning tree of any chordal graph can be computed in linear time. This allows computation of eccentricities of all vertices of a chordal graph *G* with an additive one-sided error of at most 2 in total linear time. In particular, we get that after a linear time preprocessing, for every vertex *v* of *G*, one can compute in *O*(1) time an estimate $\hat{e}(v)$ of its eccentricity $ecc_G(v)$ such that $ecc_G(v) \leq \hat{e}(v) \leq ecc_G(v) + 2$.

Recently, in [4], it was shown that every graph with δ -thin geodesic triangles admits an eccentricity (2 δ)-approximating spanning tree constructible in $O(\delta|E|)$ time. As in chordal graphs all geodesic triangles are 2-thin [4], an immediate consequence of that result is that an eccen-

ELSEVIER

E-mail address: dragan@cs.kent.edu.

tricity 4-approximating spanning tree of a chordal graph is constructible in linear time. Here, we improve the error from 4 to optimal 2.

In what follows we will need a few more notions and notations. The radius rad(G) of a graph G is the minimum eccentricity of a vertex in G, i.e., rad(G) = $\min_{v \in V} \max_{u \in V} d_G(v, u)$. A vertex c with $ecc_G(c) = rad(G)$ is called a central vertex of G. The center $C(G) = \{c \in V : c \in V\}$ $ecc_G(c) = rad(G)$ of a graph G is the set of all its central vertices. The diameter diam(G) of a graph G is the largest distance between a pair of vertices in G, i.e., diam(G) = $\max_{u,v \in V} d_G(u,v) = \max_{v \in V} ecc_G(v)$. A pair of vertices u, v of G with $diam(G) = d_G(u, v)$ is called a *diametral pair* and any shortest path between u and v is called a *diame*tral path of G. Two vertices u, v of G are called mutually *distant vertices* if $d_G(u, v) = ecc_G(v) = ecc_G(u)$. Denote also by $F(v) = \{u \in V : d_G(v, u) = ecc_G(v)\}$ the set of all vertices of *G* that are most distant from *v*. For a vertex $v \in V$ and a subset $S \subseteq V$, let $d_G(v, S) = \min\{d_G(v, u) : u \in S\}$. Furthermore, for a vertex v and a path P of G, denote by $d_G(v, P)$ the distance between v and a closest to v vertex from P.

The disk $D_r(s)$ of a graph *G* centered at vertex $s \in V$ and with radius *r* is the set of all vertices with distance at most *r* from *s* (i.e., $D_r(s) = \{v \in V : d_G(v, s) \le r\}$). For any two vertices *u*, *v* of *G*, $I(u, v) = \{z \in V : d(u, v) =$ $d(u, z) + d(z, v)\}$ is the (metric) interval between *u* and *v*, i.e., all vertices that lay on shortest paths between *u* and *v*. The set $S_k(x, y) = \{z \in I(x, y) : d(z, x) = k\}$ is called a *slice* of the interval from *x* to *y*. Denote by P(x, y) = $(x = v_0, v_1, \dots, v_{k-1}, v_k = y)$ a path connecting vertices *x* and *y*.

Previously known facts. A linear time algorithm for finding a central vertex of an arbitrary chordal graph G that was presented in [3] is crucial to our linear time algorithm for constructing an eccentricity 2-approximating spanning tree for G. It was shown [3] that for every vertex s of a chordal graph G, every vertex $z \in F(s)$ has the eccentricity at least $max{2rad(G) - 3, diam(G) - 2}$, and the bound is sharp. Hence, z and $v \in F(z)$ or v and $u \in F(v)$ or u and $w \in F(u)$ are mutually distant vertices. The algorithm of [3] starts with finding in linear time such a pair x, y of mutually distant vertices. Then, it carefully picks in linear time a special vertex c in a middle slice $S_{\lfloor d(x,y)/2 \rfloor}(x,y)$ of the interval I(x, y). Finally, if c is not a central vertex of G, then [3] shows that the eccentricity of any vertex $t \in F(c)$ is larger than $d_G(x, y)$, and the process can be started again with a new improved pair of mutually distant vertices. Since there can only be at most two improvements on the initial distance $d_G(x, y)$ (from diam(G) - 2 to diam(G) - 1 and from diam(G) - 1 to diam(G)), the whole algorithm works in linear time. As a byproduct of this algorithm, we can claim the following additional property of the central vertex found by the algorithm of [3].

Fact 1 ([3]). A central vertex of a chordal graph that is also a middle vertex of a shortest path of length at least $\max\{2rad(G) - 3, diam(G) - 2\}$ can be found in linear time.

By a later result in [5,8], the number of improvements on the initial distance $d_G(x, y)$ in the algorithm of [3] can be reduced by one if, instead of any furthest vertex from *s*, the vertex *z* last visited by a *LBFS*(*s*) is used. A *Lexicographic-Breadth-First-Search*, *LBFS*(*s*), starting at vertex *s* is a refined variant of a *Breadth-First-Search*, *BFS*(*s*), with a strict tie-breaking rule (see [14]). It still runs in linear time for any graph [11].

Fact 2 ([5,8]). Let z be the vertex of a chordal graph G last visited by a LBFS. Then, $ecc_G(z) \ge diam(G) - 1$. Furthermore, if diam(G) is even or $ecc_G(z)$ is odd then $ecc_G(z) = diam(G)$.

This strong fact may seem to suggest that the diameter of a chordal graph might be computable in linear time as well. However, that is very unlikely as an algorithm that can distinguish between diameter 2 and 3 in a sparse chordal graph in subquadratic time will refute the widely believed *Orthogonal Vectors Conjecture* (see [5,13]).

Since for any chordal graph *G*, $diam(G) \ge 2rad(G) - 2$ holds [1,2], from Fact 2 we get that $ecc_G(z)$ is not the diameter diam(G) only if $diam(G) = 2rad(G) - 1 = ecc_G(z) +$ 1. Note that, for any graph *G*, $2rad(G) \ge diam(G)$ holds. Thus, regardless of $ecc_G(z)$ is diam(G) or not, $ecc_G(z) \ge$ 2rad(G) - 2 must hold. Thus, we have the following slight improvement of Fact 1, which will be handy later.

Fact 3. A central vertex of a chordal graph that is also a middle vertex of a shortest path P of length at least $\max\{2rad(G) - 2, diam(G) - 1\}$ can be found in linear time. Furthermore, if diam(G) is even or the length of P is odd, then P is a diametral path of G.

Fact 3 is the first ingredient to our main result. The second ingredient is a nice property of the eccentricity function in chordal graphs established in [7] (even for a larger family of graphs).

Fact 4 ([7]). For every chordal graph G and any its vertex v, the following formula is true:

$$\begin{aligned} d_G(v, C(G)) + rad(G) - \epsilon &\leq ecc_G(v) \\ &\leq d_G(v, C(G)) + rad(G), \end{aligned}$$
where $\epsilon \leq 1$, if $diam(G) = 2rad(G)$, and $\epsilon = 0$, otherwise.

We will need also the following auxiliary lemma.

Lemma 1 ([6,10]). If vertices *a* and *b* of *a* disk $D_r(u)$ of *a* chordal graph are connected by a path P(a, b) outside of $D_r(u)$ [i.e., $P(a, b) \cap D_r(u) = \{a, b\}$], then *a* and *b* must be adjacent. In particular, for every integer *k* and every pair of vertices *x* and *y*, slice $S_k(x, y)$ forms a clique.

One more ingredient and the main result. Our third ingredient is that, in a chordal graph G, a middle vertex of a shortest path of length at least 2rad(G) - 2 is within distance at most two from every central vertex of G.

Fact 5. Let *G* be a chordal graph and *c* be a middle vertex of a shortest path *P* of length at least 2rad(G) - 2 in *G*. Then, $C(G) \subseteq D_2(c)$. Furthermore, if the length of *P* is 2rad(G) then $C(G) \subseteq D_1(c)$.

Proof. Let P(x, y) be a shortest path between vertices x and y, $d_G(x, y) \ge 2rad(G) - 2$, and c be the vertex of P(x, y) at distance $\lfloor d(x, y)/2 \rfloor$ from x. Consider an arbitrary vertex $v \in C(G)$. We know that both $d_G(v, x)$ and $d_G(v, y)$ are at most rad(G). Consider arbitrary shortest paths P(v, x) and P(v, y) and denote by P(y, c) the subpath of P(x, y) between y and c.

If $d_G(x, y) = 2rad(G)$, then both *c* and *v* are in $S_{rad(G)}(x, y)$ and, by Lemma 1, $d_G(c, v) \le 1$.

Assume now that $d_G(x, y) = 2rad(G) - 1$. Then $d_G(x, c) = rad(G) - 1$ and $d_G(y, c) = rad(G)$. If also $d_G(x, v) = rad(G) - 1$, then both *c* and *v* are in $S_{rad(G)-1}(x, y)$ and, by Lemma 1, $d_G(c, v) \le 1$. So, let $d_G(x, v) = rad(G)$, and consider the vertex *t* on path P(x, v) adjacent to *v*. Vertices *t* and *c* belong to $D_{rad(G)-1}(x)$ and are connected by a path $\{t\} \cup P(v, y) \setminus \{y\} \cup P(y, c)$ outside of $D_{rad(G)-1}(x)$ (note that $d_G(x, P(v, y)) \ge rad(G)$ as $d_G(v, y) \le rad(G)$ and $d_G(x, y) = 2rad(G) - 1$). By Lemma 1, $d_G(c, t) \le 1$ and hence $d_G(c, v) \le 2$.

Finally, assume that $d_G(x, y) = 2rad(G) - 2$. Then $d_G(x, y) = 2rad(G) - 2$. $c) = rad(G) - 1 = d_G(y, c)$. If $d_G(x, v) \le rad(G) - 1$ and $d_G(y, v) \leq rad(G) - 1$, then both *c* and *v* are in $S_{rad(G)-1}(x, v)$ y) and, by Lemma 1, $d_G(c, v) \leq 1$. So, without loss of generality, let $d_G(x, v) = rad(G)$. Consider the vertex t on path P(x, v) adjacent to v. If $d_G(x, P(v, y)) \ge rad(G)$, then as before we get $d_G(c, t) \leq 1$ and hence $d_G(c, v) \leq 2$ (since vertices t and c belong to $D_{rad(G)-1}(x)$ and are connected by a path $\{t\} \cup P(v, y) \setminus \{y\} \cup P(y, c)$ outside of $D_{rad(G)-1}(x)$). If now $d_G(x, P(v, y)) \leq rad(G) - 1$, then to keep $d_G(x, y) = 2rad(G) - 2$, only the neighbor s of v on shortest path P(v, y) can be at distance rad(G) - 1 from x (all other vertices of P(v, y) must be at distance at least rad(G) from x). Necessarily, $d_G(s, y) = rad(G) - 1$. But now, both s and c belong to $S_{rad(G)-1}(x, y)$. By Lemma 1, $d_G(c, s) \leq 1$ and hence $d_G(c, v) \leq 2$. \Box

We are ready to prove our main result.

Theorem 1. An eccentricity 2-approximating spanning tree of a chordal graph *G* can be computed in linear time.

Proof. By Fact 3, a central vertex *c* of a chordal graph that is also a middle vertex of a shortest path *P* of length at least 2rad(G) - 2 can be found in linear time. Furthermore, if diam(G) = 2rad(G) then *P* is a diametral path of *G*. By Fact 5, $C(G) \subseteq D_2(c)$, and even $C(G) \subseteq D_1(c)$ if diam(G) = 2rad(G). We can show now that any shortest path tree *T* of *G* rooted at *c* is an eccentricity 2-approximating spanning tree of *G*.

Consider an arbitrary vertex v in G and let v' be a vertex of C(G) closets to v. By Fact 4, $ecc_G(v) \ge d_G(v, C(G)) + rad(G) - \epsilon = d_G(v, v') + rad(G) - \epsilon$, where $\epsilon \le 1$, if diam(G) = 2rad(G), and $\epsilon = 0$, otherwise. Since T is a shortest path tree and c is a central vertex of G, $ecc_T(v) \le 1$

 $d_T(v, c) + ecc_T(c) = d_G(v, c) + ecc_G(c) = d_G(v, c) + rad(G).$ Hence, by the triangle inequality,

$$ecc_{T}(v) - ecc_{G}(v) \leq d_{G}(v, c) + rad(G) - d_{G}(v, v')$$
$$- rad(G) + \epsilon$$
(1)
$$\leq d_{G}(c, v') + \epsilon$$
$$< 2.$$

Recall that if diam(G) < 2rad(G) then $d_G(c, v') \le 2$ and $\epsilon = 0$, and if diam(G) = 2rad(G) then $d_G(c, v') \le 1$ and $\epsilon \le 1$. \Box

Note that the eccentricities of all vertices in any tree T = (V, U) can be computed in O(|V|) total time. It is a folklore by now that for trees the following facts are true:

- (1) The center C(T) of any tree T consists of one vertex or two adjacent vertices.
- (2) The center C(T) and the radius rad(T) of any tree T can be found in linear time.
- (3) For every vertex $v \in V$, $ecc_T(v) = d_T(v, C(T)) + rad(T)$.

Hence, using BFS(C(T)) on T one can compute $d_T(v, C(T))$ for all $v \in V$ in total O(|V|) time. Adding now rad(T) to $d_T(v, C(T))$, one gets $ecc_T(v)$ for all $v \in V$. Consequently, by Theorem 1, we get the following additive approximations for the vertex eccentricities in chordal graphs.

Corollary 1. Let G = (V, E) be a chordal graph. There is an algorithm which in total linear (O(|E|)) time outputs for every vertex $v \in V$ an estimate $\hat{e}(v)$ of its eccentricity $ecc_G(v)$ such that $ecc_G(v) \le \hat{e}(v) \le ecc_G(v) + 2$.

Concluding remark. We demonstrated that an eccentricity 2-approximating spanning tree of a chordal graph can be computed in linear time. Can this result be extended to a more general class of graphs described in [7] (they all admit eccentricity 2-approximating spanning trees). The main bottleneck there is whether a central vertex in such a graph can be found in linear time. It is interesting also whether a linear time algorithm exists which for every chordal graph *G* computes estimates $\hat{e}(v)$, $v \in V$, with $ecc_G(v) \leq \hat{e}(v) \leq ecc_G(v) + \mu$ for $\mu \leq 1$.

Declaration of competing interest

There are no conflicts of interest.

References

- G.J. Chang, G.L. Nemhauser, The k-domination and k-stability problems on sun-free chordal graphs, SIAM J. Algebraic Discrete Methods 5 (1984) 332–345.
- [2] V. Chepoi, Centers of triangulated graphs, Math. Notes 43 (1988) 143-151.
- [3] V.D. Chepoi, F.F. Dragan, A linear-time algorithm for finding a central vertex of a chordal graph, in: Jan van Leeuwen (Ed.), "Algorithms - ESA'94" Second Annual European Symposium, Utrecht, The Netherlands, September 1994, in: LNCS, vol. 855, Springer, 1994, pp. 159–170.

- [4] V. Chepoi, F.F. Dragan, M. Habib, Y. Vaxés, H. Alrasheed, Fast approximation of centrality and distances in hyperbolic graphs, CoRR, arXiv:1805.07232, 2018.
- [5] D.G. Corneil, F.F. Dragan, M. Habib, C. Paul, Diameter determination on restricted graph families, Discrete Appl. Math. 113 (2001) 143–166.
- [6] D.G. Corneil, F.F. Dragan, E. Köhler, On the power of BFS to determine a graph's diameter, Networks 42 (2003) 209–222.
- [7] F.F. Dragan, E. Köhler, H. Alrasheed, Eccentricity approximating trees, Discrete Appl. Math. 232 (2017) 142–156.
- [8] F.F. Dragan, F. Nicolai, A. Brandstädt, LexBFS-orderings and powers of graphs, in: Proceedings of the WG'96, in: Lecture Notes in Computer Science, vol. 1197, Springer, Berlin, 1997, pp. 166–180.

- [9] G. Ducoffe, Easy computation of eccentricity approximating trees, Discrete Appl. Math. 260 (2019) 267–271.
- [10] M. Farber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (1986) 433-444.
- [11] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
- [12] E. Prisner, Eccentricity-approximating trees in chordal graphs, Discrete Math. 220 (2000) 263–269.
- [13] L. Roditty, V. Vassilevska Williams, Fast approximation algorithms for the diameter and radius of sparse graphs, in: STOC 2013, 2013, pp. 515–524.
- [14] D. Rose, R.E. Tarjan, G. Lueker, Algorithmic aspects on vertex elimination on graphs, SIAM J. Comput. 5 (1976) 266–283.