
ON PROTECTION IN OPERATING SYSTEMS*

by

Michael A. Harrison
Walter L. Ruzzo

University of California at Berkeley

and

Jeffrey D. Ullman +
Princeton University

Abstract

A model of protection mechanisms in computing systems is present-
ed and its appropriateness is demonstrated. The "safety" problem
for protection systems under our model is to determine in a given
situation whether a subject can acquire a particular right to an
object. In restricted cases, one can show that this problem is
decidable, i. e., there is an algorithm to determine whether a
system in a particular configuration is safe. In general, and
under surprisingly weak assumptions, one cannot decide if a si-
tuation is safe. Various implications of this fact are dis-
cussed.

KeYwords and Phrases: Protection, Protection system, Operating
system, Decidability, Turing machine.

C__R Category Numbers: 4.30, 4.31, 5.24

!~troductlon

One of the key aspects of modern com-
puting systems is the ability to allow
many users to share the same facilities.
These facilities may be memory, proces-
sors, data bases or software, such as com-
pilers or subroutines. When diverse users
share common items, one is naturally con-
cerned with protecting various objects
from damage or from missaproprlation by
unauthorized users. In recent years, a
great deal of attention has been focussed
on the problem. Papers [3-5,7-12,14] are
but a sample of the work that has been
done. In particular, Saltzer [14] has
formulated a hierarchy of protection lev-
els, and current systems are only halfway
up the hierarchy.

The schemes which have been proposed
to achieve these levels are quite diverse,
involving a mixture of hardware and
software. When such diversity exists, it
is often fruitful to abstract the essen-
tial features of such systems and to

create a formal model of protection .sys-
tems,

The first attempts at modeling pro-
tection systems, such as [3,5,9] were
really abstract formulations of the refer-
ence monitors and protected objects of
particular protection systems. It was
thus impossible to ask questions along the
lines of "which protection system best
suits my needs." A true model of protec-
tion systems was created in [7], which
could express a variety of policies and
which contained the "models" of [3,5,9] as
special cases. However, no attempt to
prove results was made in [7], and the
model was not completely formalized.

On the other hand, there have been
models in which attempts were made to
prove results [1,2,12]. In [I], which is
similar to [7] but independent of it,
theorems are proven. However, the model
is informal and it uses programs whose se-
mantics (particularly side effects, traps,
etc.) are not specified formally.

*Research sponsored by the National Science Foundation Grants GJ-474 and GJ-43332.
+Work done while on leave at the University of California, Berkeley.

14

In the present paper, we shall offer
a model of protection systems. The model
will be sufficiently formal that one can
rigorously prove meaningful theorems. On-
ly the protection aspects of the system
will be considered, so it will not be
necessary to deal with the semantics of
programs or with general models of compu-
tation. Our model is similar to that of
[5,9], where it was argued that the model
is capable of describing most protection
systems currently in use.

Section II describes the motivation
for looking at decidability issues in pro-
tection systems. Section III presents the
formal model with examples. In Section IV
we introduce the question of safety in
protection systems. Basically, safety
means that an unreliable subject cannot
pass a right to someone who did not al-
ready h a v e it. We then consider a res-
tricted family of protection systems and
show that safety is decidable for these
systems. In Section V we obtain a
surprising result, that there is no algo-
rithm which can decide the safety question
for arbitrary protection systems. The
proof uses simple ideas, so it can be ex-
tended directly to more elaborate protec-
tion models.

I_! Significance of the Results

To see what the significance for the
operating system designer of our results
might be, let us consider an analogy with
the known fact that ambiguity of a context
free grammar is undecidable (see [6],
e.g.). The implication of the latter un-
decidability result is that proving a par-
ticular grammar unambiguous might be hard,
although it is possible to write down a
particular grammar, for ALGOL say, and
prove that it is unambiguous. In analogy,
one might desire to show that in a partic-
ular protection system a particular situa-
tion is safe, in the sense that a certain

right cannot be given to an unreliable
subject. Our result on general undecida-
bility does not rule out the possibility
that one could decide safety for a partic-
ular situation in a particular protection
system. Indeed, we have not ruled out the
possibility of giving algorithms to decide
safety for all possible situations of a
given protection system, or even for whole
classes of systems. In fact we provide an
algorithm of this nature.

In analogy with context free gram-
mars, once again, if we grant that it is
desirable to be able to tell whether a
grammar is ambiguous, then it makes sense
to look for algorithms that decide the
question for large and useful classes of
grammars, even though we can never find
one algorithm to work for all grammars. A
good example of such an algorithm is the
LR(k) test (see [6], e.g.). There, one
tests a grammar for LR(k)-ness, and if
found to possess the property, we know the

grammar is unambiguous. If it is not
LR(k) for a fixed k, it still may be
unambiguous, but we are not sure. It is
quite fortunate that most programming
languages have LR(k) grammars, so we can
prove their grammars unambiguous.

It would be nice if we could provide
for protection systems an algorithm which
decided safety for a wide class of sys-
tems, especially if it included all or
most of the systems that people seriously
contemplate. Unfortunately, our one
result along these lines involves a class
of systems called "mono-operational,"
which are not terribly realistic. Our at-
tempts to extend these results have not
succeeded, and the problem of giving a de-
cision algorithm for a class of protection
systems as useful as the LR(k) class is to
grammar theory appears very hard.

;II A Formal Model o._~ Protection Systems

We are about to introduce a formal
protection system model. Because protec-
tion is but one small part of a modern
computing system, our model will be quite
primitive. No general purpose computation
is included, as we are only concerned with
protection - that is, who has what access
to which objects.

Definition: A protection system consists
of the following parts.

(I) A finite set of generic rlghts R =

r 1 , . - . , r n •

(2) A finite set of initial subjects S
O O and a finite set of initial objects o'

where S o ~ O o.

(3) A finite set of commands C of the form
~(X1,...,Xk) where ~ is a name and
XI,...,X ~ are formal parameters which
ddnote oSjects.

(4) An interpretatioo I for commands, so
that I maps C into sequences of primitive
operations. The primitive operations are:

enter r into (s,o)
delete r from (s,o)
create subject s
create object o
destroy subject s
destroy object o

where r is a generic right, s is a ~ubJect
name, and o is an object name.

(5) Conditions for commands. A condition
C is a map from the set of commands into a
finite set of rights. A right is a triple
(r,s,o), where r 4 R, and s and o are for-
mal parameters which are subjects and ob-
jects, respectively. Note the distinction
betwee6 a "right" and a "generic right." A
"right" is the privilege that a given sub-
ject s has to exercise generic right r on
object o.

15

Before proceeding, let us interpret
the parts of a protection system. In
practice, typical subjects might be
processes [3] and typical objects (other
than those objects which are subjects)
might be files• A common generic right is
read, i.e., a process has the right to
read a certain file. The commands men-
tioned in item (3) above are meant to be
formal procedures. Since we wish to model
only protection aspects of a sytem, we
wish to avoid embedding into the model un-
restricted computing power. The command
procedures are therefore interpreted (item
4, above) to be sequences of specific,
primitive operations. To understand the
meanings of the primitive operations, ima-
gine a matrix whose rows represent sub-
Jects and whose columns represent objects•
The (s,o) entry is the set of rights which
subject s may exercise over object o. For
example, the first primitive operation:

enter r into (s,o)

enters r into the matrix at positon (s,o),
if it is not already there.

It is best to think of item (5), the
"conditions," in the following way. Asso-
ciate with every command a finite set of
conditions (or predicates) of the form:

r I ~ (Sl,O I)

r m 4 (Sm,Om)

The intention is that if each of the
m conditions is satisfied, then the com-
mand may be executed. If one or more
fail, then the command is not executed.

Next we define a configuration, or
instantaneous description of a protection
system.

D@flnltlon: A configuration of a protec-
tion system is a triple (S,O,P), where S
is the set of current subjects, 0 is the
set of current objects, S ~ O, and P is an
access matrix, with a row for every sub-

subJect s

objects

subjects

ject in S and a column for every object in
O. P[s,o] is a subset of R, the generic
rights• P[s,o] gives the rights to object
o possessed by subject s• The access ma-
trix can be pictured as in Figure I• Note
that row s of the matrix in Figure I is
like a "capability list" [3] for subject
s, while column o is similar to an "access
list" for object o.

Example !: Let us consider what is perhaps
the simplest discipline under which shar-
ing is possible. We assume that each sub-
ject is a process and that the objects
other than subjects are files• Each file
is owned by a process, and we shall model
this notion by saying that the owner of a
file has generic right own to that file.
The other generic rights are read, write
and execute, although the exact nature of
the generic rights other than own is unim-
portant here. • The actions affecting the
access matrix which processes may perform
are :

(I) Create a new file• The process creat-
ing the file has ownership of that file.
We represent this action by command
CREATE(s,o). The interpretation of CREATE
is the sequence of primitive operations:

create object o
enter own into (s,o)

There are no conditions for the CREATE
command•

(2) The owner of a file may confer any
right to that file, other than own, on any
subject (including the owner himself). We
thus have three commands CONFER_(s.,s~,o)
for r = read, write or execute, rwi~h ~in-
terpretations:

enter r into (s2,o)

each with the single condition:

own 4 (Sl,O)

(3) Similarly, we have three commands
REMOVEr(Sl,So,O) , which remove r from the
(s2,o) en~rY~0 f the access matrix, where r

0

~k

rights of subject
s to object o

Fig. I Access Matrix

16

= read, write or execute. The interpreta-
tion of REMOVE r is:

delete r from (Sl,O)

and the conditions are:

own 4 (st,o)
r 4 (S2,6)*

This completes the specification of
most of the example protection system. We
shall expand this example after learning
how such systems "compute."

To formally describe the effects of
commands, we must give rules for changing
the state of the access matrix.

Definition: Let (S,O,P) and (S',O',P') be
configurations of a protection system, and
let c be a primitive operation. We say
that:

(s,o,P) :>c (s',o',P')

[read (S,O,P) yields (S',O',P') under c]
if either:

(I) c = enter r into (s,o) and S = S', 0 =
0", s 4 S, o 4 O, P'~s~,01] = P[s4,o4] ff
(s4,o 4) ~ (s,o)and . [S,6~ : P~S,6] U
{ r~ 6 r ,

(2) c = d e l e t e r f r o m (s , o) and S = S ' , 0
~f 0" , s ~ s, o ~ o, P ' [s ~ , o ~] = P i s s , o i l

(Sl,O I) ~ (s,o) and P [~,o] = P[s,6] "-
{r}.

(3) C = create subject s , s is a new
symbol not in O, S" = S U {s'}, O" = 0 U
{s'}, P[[s~o] = P[s,o] for all (s,o) in
SxO, P'[s ,o] = 6*w for all o 4 0", and
P[s,s'] = ~ for all s 4 S'.

(4) c = create object o', o" is a new sym-
bol not in O, S" = S, O" = 0 U {o'},
P'[s,o] = P[s,o] for all (s,o) in SxO and
P'[s,o'] : M for all s 4 S.

(5) c = destroy subject s , where s" 4 S,
S" = S {s'}, O" - " - = 0 {S }, and P'[s,o]
= P[s,o] for all (s,o) 4 S'xO'.

(6) c = destroy object o , where o 4 O-S,
~£ = S, O" - 0 {o'}, and P'[s,o] =

s,o] for all (s,o) ~ S•xO ".

The quantification in the
definition is quite important.
pie, a primitive operation

previous
For exam-

enter r into (s,o)

L

*This condition need not be present, since
delete r from (s~,o) will have no effect
if r is not there."

~*~ denotes the empty set.

requires that s be the name of a subject
which now exists, and similarly for o. If
these conditions are not satisfied, then
the command is not executed. The primi-
tive operation

create subject s "

requires that s" is not a current object
name. Thus there can never be duplicate
names of objects.

Next we see haw a protection system
executes a command.

pefinition: Let (S,O,P) and (S',O',P') be
configurations of a protection system.
Let C be a command. Then we say

if

(s,0,P) i--c(S',0",p')

(I) for each (r,s,o) 4 C(C), we have r 4
P[s,o] and

(2) if we let I(C) = c c , where the
c~'s are primitive operations, then there
e~ists m ~ O, and there exist configura-
tions (Si,Oi,Pi) such that:

(a) (s,0,P) = (So,0o,P o)

(b) (S 0 ,Pi_1) = (Si,Oi,Pi) for I >ci

(c) (Sm,Om,Pm) = (S',O',P')

We write (S,O,P)]-- (S',O°,P ") if
there is some command C such that (S,O,P)
!

i-- (S',O',P'). It is convenient to
write (S,O,P) I--* (S',O',P'), where I--*
is the reflexive and transitive closure of
' that is, ~ * represents zero or more
applications of I--.

There are a number of points involved
in our use of parameters which should be
emphasized. Note that every command (ex-
cept the empty one) has parameters. Each
command is given in terms of formal param-
eters. At execution time, the formal
parameters are replaced by actual parame-
ters which are object names. Although the
same symbols are often used in this expo-
sition for formal and actual parameters,
this should not cause confusion. The
"type checking" involved in determining
that a command may be executed takes place
with respect to actual parameters. For
example, consider the command C(sl,s2,o),
which consists of:

enter r I into (sl,s)
destroy subject ~ I
enter r 2 into (s2~o)

There Qan never be a pair of configura-
tions (S,O,P) and S',~°,P ") such that

(s,o,e) i-- (s',o',P')

17

under the command C(sl,sl,o) , since the
third primitive operdtidn enter r o into
(sl,s I) will occur at a point where ~ sub-
Jedt ~I does not exist.

Note that we do not place an g priori
bound on the number of subjects and ob-
Jects which may exist in these "computa-
tions." Such bounds lead to a trlviallza-
tion of this theory as it does with models
for digital computers.

~xample 2: Let us consider the protection
system whose commands were outlined in Ex-
ample I. Suppose initially there are two
processes Sam and Joe, and no files creat-
ed. Suppose that neither process has any
rights to itself or to the other process
(there is nothing in the model that prohi-
bits a process from having rights to it-
self). The initial access matrix is:

Sam Joe

Sam ~

Joe ~

Now, Sam creates two files named Code
and Data, and gives Joe the right to exe-
cute Code and Read Data. The sequence of
commands whereby this takes place is:

CREATE(Sam,Code)
CREATE(Sam,Data)
CONFERex e _ (Sam,Joe,Code)
CONFERrea~m,Joe,Data)

To see the effect of these commands
on configurations, note that the confi-
guration (S,O,P) can be represented by
drawing P, and labeling its rows by ele-
ments of S and its columns by elements of
O, as we have done for the initial confi-
guration. The first command,
CREATE(Sam,Code) may. certainly be executed
in the initial configuration, since CREATE
has no conditions. Its interpretation
consists of two primitive- operations,
create object Code and enter own into
(Sam,Code). Then, using the :> notation,
we may show the effect of the two primi-
tive operations as

Sam Joe

Sam ~ d

Joe ~ d_

=

create object Code

Sam Joe Code

Sam !~ ~ =====================
' , - enter own into .(Sam,Code)

Joe i ~ ~ i

Sam Joe Code

Sam ~ ~ I {own}
I

Joe ~ ~

Thus, using the i-- notation for
commands we can say hhat:

complete

Sam Joe
A

Sam ~ '
J CREATE(Sam,Code)

Joe ~ ~ ~ ~

Sam Joe Code

Sam ~ d i {own}'
i

Joe i _L
=

The effect on the initial configura-
tion of the four commands listed above is:

Sam Joe

Sam g d
• b l

i s --

Joe g d

Sam Joe Code

Sam '~ I d {own}
L I

Joe ~ I d d
I__

Sam Joe Code Data

Sam i'~ I d {own} {own}

Joe ~ ~ d
I__

Sam Joe Code Data

Sam ~ d {own} {own}

Joe d d { e x e c u t e } d
!

Sam Joe

Sam

Joe

Sam

Joe

Code Data

{own} {own}

d { e x e c u t e } { r e a d }

We may thus say:

Sam Joe

18

Sam

Sam Joe Code Data

~ {own} {own}

Joe ~ ~ {execute} {read}

It should be clear that in protection
systems, the order in which commands are
executed is not prescribed in advance.
The nondeterminacy is important in model-
ing real systems in which accesses and
changes in privileges occur in an
unpredictable order.

We should note that our naming con-
vention for new objects has not been fully
specified. For example, in a ~rimitive
operation like create subject s, we did
not specify where s comes from. There are
obvious ways to formalize the generation
of new names, and we shall continue to ig-
nore this point, because the formalization
lends no new insight.

It is our contention that the model
we have presented has sufficient generali-
ty that it allows one to specify almost
all of the protection schemes that have
been proposed. Cf. [5] for many examples
of this flexibility. It is of interest to
note that it is immaterial whether
hardware or software is used to implement
the primitive operations of our model.
The important issue is what one can say
about systems we are able to model. We
shall develop the theory of protection
systems using our model in the next two
sections. We close this section with two
additional examples of the power of our
model to reflect common protection ideas.

~xample]: A mode of access called "in-
direct" is discussed in [5]. Subject s4
may access object o indirectly if there
some subject s~ with that access right to
o, and s~ has t~e "indirect" right to s o .
Formally~ we could model an indirect re~d
by postulating the generic rights read and
Iread, and a command IREAD(Sl,S2,O) with
interpretation:

enter read into (st,o)
delete read from (~I,O)

and with conditions:
read g (s ,o)
iread g (~I,S2)

It should be noted that the command
in Example 3 has both multiple conditions
and an interpretation consisting of more
than one primitive operation, the first
example we have seen of such a situation.
In fact, since the REMOVE commands of Ex-
ample I did not really need two condi-
tions, we have our first example where
multiple conditions are needed at all.

We should also point out that the in-
terpretation of IREAD in Example 3 should
not be taken to be null, even though the

interpretation actually chosen has no ef-
fect on the access matrix. The reason for
this will become clearer when we discuss
the safety issue in the next section. In-
tuitively, we want the interpretation of
IREAD to show that s I temporarily has the
read right to o, even though it must give
up the right.

Example ~: The UNIX operating system [13]
uses a simple protection mechanism, where
each file has one owner. The owner may
specify his own privileges (read, write
and execute) and the privileges of all
other users, as a group.* Thus the system
makes no distinction between subjects ex-
cept for the owner-nonowner distinction.

This situation cannot be modeled in
our formalism as easily as could the si-
tuations of the previous examples. It is
clear that the generic right own is impor-
tant, and that the rights of a subject s
to a file o which s owns could be placed
in the (s,o) entry of the access matrix.
However, when we create a file o, it is
not possible in our formalism to express a
command such as "give all subjects the
right to read o," since there is no
priori bound on the number of subjects.

The solution we propose actually re-
flects the software implementation of pro-
tection in UNIX quite well. We associate
the rights to a file o with the (o,o) en-
try in the access matrix. This decision
means that files must be treated as spe-
cial kinds of subjects, but there is no
logical reason why we cannot do so. Then
a subject s can read (or write or execute)
a file o if either:

(I) own is in (s,o), i.e., s owns o,
and the entry "owner can read" is in
(o,o), or

(2) the entry "anyone can read" is in
(o,o) .

Now we see one more problem. The
conditions under which a read may occur is
not the logical conjunction of rights, but
rather the disjunction of two such con-
juncts, namely

(I) own 4 P[s,o] and oread g P[o,o]
or

(2) aread 4 P[o,o]

where oread stands for "owner may read,"
and aread for "anyone may read." For sim-
plicity we did not allow disjunctions in
conditions. However, we ca~ simulate a
condition consisting of several lists of
rights, where all rights in some one llst
must be satisfied in order for execution
to be permissible. We simply use several
commands whose interpretations are identi-

I

*We ignore the role of the "superuser"
the following discussion.

in

19

cal. That is, for each list of rights
there will be one command with that list
as its condition. Thus any set of com-
mands with the more general, disjunctive
kind of condition is equivalent to one in
which all conditions are as we defined
them originally. We shall, in this exam-
ple, use commands with two lists of rights
as a condition.

We can now model these aspects of
UNIX protection as follows. Since write
and execute are bandied exactly as read,
we shall treat only read. The set of gen-
eric rights is thus own, oread, aread and
read. The first three of these have al-
ready been explained, read is symbolic
only, and it will be entered temporarily
into (s,o) by a READ command, representing
the fact that s can actually read o. read
will never appear in the access matrix
between commands and in fact is not re-
flected directly in the protection mechan-
ism of UNIX. The list of commands is
shown in Figure 2.

I..~ Safety

We shall now consider one important
family of questions that could be asked
about a protection system, those concern-
ing safety. When we say a specific pro-
tection system is "safe," we undoubtedly
mean that access to files without the con-
currence of the owner is impossible. How-
ever, protection mechanisms are often used
in such a way that the owner gives away
certain rights to his objects. Example 4
illustrates this phenomenon. In that
sense, no protection system is "safe," so
we must consider a weaker condition that
says, in effect, that a partlcular system
enables one to keep one s own objects
"under control."

Since we cannot expect that a given
system will be safe in the strictest
sense, we suggest that the minumum toler-
able situation is that the user should be
able to tell whether what he is about to
do (give away a right, presumably) can

lead to the further leakage of that right
to truly unauthorized subjects. As we
shall see, there are protection systems
under our model for which even that pro-
perty is too much to expect. That is, it
is in general undecidable whether, given
an initial access matrix, there is some
sequence of commands in which a particular
generic right is entered at some place in
the matrix where it did not exist before.

This' question, whether a generic
right can be "leaked" is itself insuffi-
ciently general. For example, suppose
subject s plans to give subject s generic
right r to object o. The natural question
is whether the current access matrix, with
r entered into (s',o), is such that gener-
ic right r could subsequently be entered
somewhere new. To avoid a trivial "un-
safe" answer because s himself can confer
generic right r, we should in most cir-
cumstances delete s itself from the ma-
trix. It might also make sense to delete

from the matrix any other "reliable" sub-
jects who could grant r, but whom s
"trusts" will not do so. It is only by
using the hypothetical safety test in this
manner, with "reliable" subjects deleted,
that the ability to test whether a right
can be leaked has a useful meaning in
terms of whether it is safe to grant a
right to a subject

Another common notion of the term
"safety" is that one be assured it is im-
possible to leak right r to a particular
object o I . We can use our more general
definition of safety to simulate this one.
To test whether in some situation right r
to object o, can be leaked, create two new
generic rights, r" and r". Put r" in
(0 4 , 0 4) , but do nothing y e t w i t h r". Then
add ~ new command DUMMY(s,o) with condi-
tions:

r" ~ (o,o)
r 4 (s,o)

and interpretation:

(I)
{

(a)

(3)

(4)

command

.CR.E.ATEFILE(sl,s 2)

OREAD(Sl,S 2)

AREAD(Sl,S 2)

READ(sl,s 2)

interpretation

create subject s
enter own Into (~2,s?)

enter oread into (s2,s 2)

enter aread into (s2,s 2)

enter r e a d into (~,s o)
delete read from I,§2)

condition

own 4 (Sl,S 2)

own 4 (Sl,S2)

either
own 4 (s ,s)
oread 2}

or
aread 4 (s2,s 2)

Figure 2. UNIX type Protection Mechanism

20

enter r " into (o,o)

Then, since there is only one instance of
generic right r', o must be o~ in command
DUMMY. Thus, leaking r" to "anybody is
equivalent to leaking generic right r to
object 01 specifically.

We shall now give a formal definiton
of the safety question for protection sys-
tems.

Definition: Given a protection system, we
say command ~(XI,...,X ~) potentig!ly leaks
(or Just ~eaks) generiU right r if its in-
terpretation has a primitive operation of
the form enter r into (s,o) for some s and
o.

Note that we detect a leak of r even
if command ~ behaves llke the "neat bur-
glar," who removes r from (s,o) at the
conclusion of the burglary. Commands
IREAD in Example 3 and READ in Example 4
are typical of commands which~leak a right
and then immediately remove it, leaving no
"trace." In fact, we defined these com-
mands purposely to symbolize the fact that
the right was temporarily granted, even
though no permanent change in the access
matrix occurred.

Definition: Given a particular protection
system and right r, we say that initial
configuration (S ,Oa,P~) is safe for r in
this system if tMer~ dSes not exist confi-
guration (S,O,P) such that:

(So,Oo,P o) I--* (S,O,P)

and there is a command ~(XI,...,X ~) whose
conditions are satisfied'in (S,O,P), and
for some actual parameters, ~ potentially
leaks r via primitive operation enter r
into (s,o), for some subject s and object
o which exist at the execution time of the
enter command, and for which r is not in
P[s,o].

a m ~ ~ : Let us reconsider the simple
example of a command C(sl,s o o) which im-
mediately preceeds Exampl~ 2~' Suppose C
were the only command in the system. Then
the system can be considered to leak r I'
but this protection system is safe for ~I
if the initial configuration has O : g.

There is a special case for which we
can show it is decidable whether a given
right is potentially leaked in any given
initial configuration. The result we are
about to present is not significant in it-
self, since most interesting examples do
not meet the condition. However, it is
suggestive of stronger results that might
be proved - results which would enable the
designer of a protection system to be sure
that an algorithm to decide safety, in the
sense we have used the term here, existed
for his system.

f ~ : A protection system is
m~no-.~.gp_i.~.~ if each command's in-
terpretation is a single primitive opera-
tion.

Example 4, based on UNIX, is not
mono-operational because the interpreta-
tion of CREATE has length two.

It turns out that we can decide safe-
ty in mono~operational protection systems,
and this fact is our flrsttheorem.

Theorem]: There is an algorithm which
given a mono-operatlonal protection sys-
tem, a generic right r and an initial con-
figuration (S ,O ,P) determines whether
or not (S ,O ,9)°is°safe for r in this
protection s~st~m.

Proof: Suppose we are given a sequence of
configurations

..i Qm
Qoi"C1QIS--C2 I--Cm

where Qa = (So,Co,P^), and command
~(X1,...,z~) , which ~eaks r, has its con-
dit~ons mac in Q_. Assume without loss of
generality thatmthis sequence is as short
as possible. Then we may make the follow-
ing inferences.

0bservation ~: For all i, 1<i<m, C~ is not
destroy subject or destroy ~b~ect.

Y roof: Suppose C~ is the first destroy
command, which u we may suppose to be
destroy subject s. Then we may remove
command C. from the sequence. If s is
ever created again, change the created ob-
ject to a new name other than s. Since
objects are created without any entries in
their row and column of the access matrix,
should the original sequence leak r, then
the new one will as well. But the new se-
quence is shorter than the old, a contrad-
iction.

Observation ~: There do not exist i and J,
with i < J, such that both C i and C. are
create subject commands, or both J are
create object commands.

Proof: Suppose for speciflcity that C~ is
create subject s I and Cj is create su6Ject

s^. We create a new shorter sequence of
c~nfigurations leaking r, by identifying
s I and s~, letting s~ play the role of
b6th. That is, we delete C. from the se-
quence of commands, and chan~e all subse-
quent references to s 2 into references to
s I. By Observation I, we may assume nei-
ther s~ nor s~ are ever destroyed, so all
references to ~hese sw~Jects ~fer to the
ones created at the i ~ and j~ steps.

*Since the system is mono-operational, we
can identify the command by the type of
primitive operation and its interpreta-
tion.

21

Formally, we create a new sequence of
configurations:

• .. I--Cj - Qj_I I-- Q°Z--CI I Cj+1

Rj+II I-- C R m
Cj+2 m

where configuration R~ is obtained from Q~
by merging s I and s~T That is, if T~ an8
P are the access matrices in R k and~ Qk'
r~spectively, then Tk[S,O]=

(I) Pk[S,O] if s ~ s I and o ~ s I

(2) Pk[Sl,O] U Pk[S2,O] if s = s I and o

s I •

(3) Pk[S,Sl] U Pk[S,S2] if s ~ s I and o :

s I •

(4) Pk[S4,Sp] U ek[s2,s] U Pk[S ,s] U
Pk[s2,s2] i~ s : o : s I] I I

Thus assuming two create subject com-
mands allows us to create a shorter se-
quence showing Qo not to be safe for r,
contrary to the hypothesis that
Q_~-- Q11 I-- Q- was the shortest
such sequence~ A s~milar argument rules
out two create object commands.

Observation 3: Qi ~ Qj if i ~ j.

Proof: If Qi : Q~ and i < j, then

Qol--C1 Qli--C2 un~afety for r .
Observation ~: Let there be g generic
rights in the protection system. Then*

g(~Sol+1)(IOol+2)
m < 4x2

Proof: By Observation 3, all Qi's are dis-
tinct. By Observation 2, at most one sub-
ject and two objects (including the sub-
ject) are created. Thus, each access ma-
trix can be represented by determining
whether the new subject and/or object has
been created and by selecting one of the
2 ° subsets of rights for each of the at
most (IS l+1)(JO_I+2) entries. By Obser-
vation IUthe names of subjects and objects
do not change, so two access matrices with
the same entries represent the same confi-
guration. Thus there are are at most

4x(2g)(ISoI+1)(~Oo I+2)

configurations in the sequence
Q_I-- Q.I ~-- Qm' and the result
f~llows~

An obvious decision algorithm for
safety now presents itself. Consider all

,A, stands for the number of members in
set A.

legal sequences of configurations satisfy-
ing Observations I, 2 and 3. By Observa-
tion 4 there are only a finite number of
these. We inspect each configuration to
see if" a leak may occur. We have thus
completed the proof of the theorem.

Undecidability of the Safety Problem

We are now going to prove that the
general safety problem is not decidable.
We assume the reader is familiar with the
notion of a Turing machine (see [6],
e.g.). Each Turing machine T consists of
a finite set of states K and a distinct
finite set of tape symbols ~. One of the
tape symbols is the blank B, which ini-
tially appears on each cell of a tape
which is infinite to the right only (that
is, the tape cells are numbered
1,2,...,i,...). There is a tape head
which is always scanning (located at) some
cell of the tape.

The moves of T are specified by a
function ~ from Kx~ to Kx~x{L,R}. If

~(q,X) = (p,Y,R) for states p and q and
tape symbols X and Y, then should the Tur-
ing machine T find itself in state q, with
its tape head scanning a cell holding sym-
bol X, then T enters state p, erases X and
prints Y on the tape cell scanned and
moves its tape head one cell to the right.
If ~(q,X) = (p,Y,L), the the same thing
happens, but the tape head moves one cell
left (but never off the left end of the
tape at cell I).

Initially, T is is state qQ the
Snitial state, with its head at ~ell I.
Each tape cell holds the blank. There is
a particular state qf, known as the final
state, and it is a fa~t that it is unde-
cidable whether started as above, an arbi-
trary Turing machine T will eventually
enter state qf.

Theorem 2: It is undecidable whether a
given configuration of a given protection
system is safe for a given generic right.

proof: We shall show that safety is unde-
cidable by showing that a protection sys-
tem, as we have defined the term, can
simulate the behavior of an arbitrary Tur-
ing machine, with leakage of a right
corresponding to the Turing machine enter-
ing a final state, a condition we know to
be undecidable. The set of generic rights
of our protection system will include the
states and tape symbols of the Turing
machine. At any time, the Turing machine
will nave some finite initial prefix of
its tape cells, say 1,2,...k, which it has
ever scanned. This situation will be
represented by a sequence of k subjects,
sl,sp,...,s~, such that s 4 "owns" s~ . for
1~i<E. Thus we use the o~nershlp r~tion
to order subjects into a linear list
representing the tape of the Turing
machine. Subject ~i represents cell i,

22

and the fact that cell i now holds tape
symbol X is represented by giving sl gen-
eric right X to itself. The fact that q
is the current state andt~hat the tape
head is scanning the J-- cell is
represented by giving s~ generic right q
to itself. Note that we Have assumed the
st~es distinct from the tape symbols, so
no confusion can result.

There is a special generic right end,
which marks the last subject, s k. That
is, s k has generic right end to itself.
indicating that we have not yet created
the subject s. . which s, is to own. The
generic right ~ completes the set of
generic rights. An example showing how a
tape whose first four cells hold WXYZ,
wlth the tape head at the second cell and
the machine in state q, is shown in Figure
3.

s I

• s 2

s 3

s 4

s I s 2 s 3 s 4

{w} i {own}

{X,q}

Figure 3. Re

{ own }
i .

{Y} {own}

{Z,end}

)resenting a Tape

The moves of the Turing machine are
reflected in commands as follows. First,
if 6(q,X) = (p,Y,L), then there is m com-
mand Cqx(S,S') with conditions:

own ~ (s , s ')
q 4 (s',s')
X ~ (s',s')

That is, s and s" must represent two con-
secutive cells of the tape, with the
machine in state q, scanning the cell
represented by s', and with symbol X writ-
ten in s . The interpretation of command
Cqx is:

delete q from (s',s')
delete X from (s',s')
enter p into (s,s)
enter ¥ into (s°,s ")

For example, Figure 3 becomes Figure 4
when command Cqx is applied.

I f 6(q,X) : (p ,Y ,R) , tha t i s , the
tape head moves r i g h t , then we have two
commands, depending whether or not th¢
head passes the current end of the tape,
i.e., the end right. There is command
Cqx(S,S °) with conditions

s;

s 2

s 3

s 4

s I s 2

{own} (W,p}

{Y}

I
J_

s 3 s 4

,, , u11 i

(own}

i Y} (own}
[Z,end]

Figure 4. Representing a Move

own g (s0s')
q 4 (s,s)
X 4 (s,s)

and interpretation:

delete q from (s,s)
delete X from (s,s)
enter p into (s ,s)
enter Y into (s,s)

There is also a command Dqx(S,S') with
conditions:

end 4 (s,s)
q g (s,s)
X 4 (s,s)

and interpretation:

delete q from (s,s)
delete X from (s~s)
create subject s
enter B into (s°,s ")
enter p into (s°,s ")
enter Y into (s,s)
delete end from (s,s)
enter end into (s',s')

If we begin with the initial matrix
having one subject sl, with rights q~, B
(blank) and own to itself, then the access
matrix will always have exactly one gener-
ic right that is a state. This follows
because each command deletes a state known
by the conditions of that command to ex-
ist. Each command also enters one state
into the matrix. Also, no entry in the
access matrix can have more than one gen-
eric right that is a tape symbol by a
similar argument. Likewise, end appears
in only one entry Of the matrix, the diag-
onal entry for the last created subject.

Thus, in each configuration of the
protection system reachable from the ini-
tial configuration, there is at most one
command applicable. That follows from the
fact that the Turing machine has at most
one applicable move. in any situation, and
the fact that C . and D X can never be
slmulaneously ~plicabl~. The protection
system must therefore exactly simulate the
Turlng machine using the representation we
have described. If the Turlng machine
enters state q~, then the protection sys-
tem can leak generic right q~, otherwise,
it is safe for qf. Since it is undecid-

23

able whether the Taring machine enters qe,
it must be undecldable whether the proteC-
tion system is safe for qf.

We can prove a result similar to
Theorem 2 which is in a sense a
strengthening of it. By simulating a
universal Turing machine on arbitrary in-
put, we can exhibit a particular protec-
tion system for which it is undecidable
whether a given initial configuration is
safe for a given right. Thus, although we
can give different algorithms to decide
safety for different classes of systems,
we can never hope even to cover all sys-
tems with a finite, or even infinite, col-
lection of algorithms.

V._! Conclusions and Open Questions

A very simple model for protection
systems has been presented in which most
protection issues can be represented. In
this model, it has been shown that no al-
gorithm can decide the safety of an arbi-
trary configuration of an arbitrary pro-
tection system. To avoid misunderstanding
of this result, we shall llst some impli-
cations of the result explicitly.

First, there is no hope of finding an
algorithm which can certify the safety of
an arbitrary configuration of an arbitrary
protection system, or of all configura-
tions for a given system. This result
should not dampen the spirits of those
working on operating systems verification.
It only means they must consider restrict-
ed cases (or individual cases), and un-
doubtedly they have realized this already.

In a similar vein, the positive
result of Section IV should not be a cause
for celebration. In particular, the
result is of no use unless it can be
strengthened along the lines of the models
in [7].

Our model does provide an interesting
framework for investigating these ques-
tions. It offers a natural classification
of certain features of protection systems.
Which features cause a system to sllp over
the line and have an undecldable safety
problem? Are there natural restrictions
to place on a protection system which make
it have a solvable safety question?

Acknowledgement

The authors thank one of the referees
for simplifying the proof of Theorem 2.

R_eferences

(I) G. R. Andrews, "COPS - A Protection
Mechanism for Computer Systems," Ph.D.
Thesis and Technical Report 74-07-12, Com-
puter Science Program, Univ. of Washing-
ton, Seattle, Wash., July, 1974.

(2) D. E. Bell and L. J. LaPadula, "Secure
Computer Systems, Vol. I. Mathematical
Foundations and Vol. II. A Mathematical
Model," MITRE Corp. Technical Report
MTR-2547, 1973.

(3) J. B. Dennis and E. C. Van Horn, "Pro-
gramming Semantics for Multiprogrammed
Computations," CAC____M, Vol. 9, pp 143-155,
1966.

(4) R. M. Graham, "Protection in an Infor-
mation Processing Utility," CAC___,M, Vol. 11,
PP. 365-369, 1968.

(5) G. S. Graham and P. J. Denning, "Pro-
tection - Principles and Practice," Proc.
J.9_~. SJCC, Vol. 40, pp. 417-429, AFIPS
Press, 1972.

(6) J. E. Hopcroft and J. D. Ullman,
Formal Languages and Their Relation t._~
Automata, Addison Wesley, 1969.

(7) A. K. Jones, "Protection in Programmed
Systems," Ph.D. Thesis, Department of Com-
puter Science, Carnegie-Mellon University,
Pittsburgh, Pa., June 1973.

(8) A. K. Jones and W. Wulf, "Towards the
Design of Secure Systems," in Protection
!.q Operating Systems, Colloques IRIA, Roc-
quencourt, France, pp. 121-136, 1974.

(9) B. W. Lampson, "Protection," Proc.
Fifth Princeton Symp. on Information
Sciences and Systems, Princ~on Universi-
ty, March 1971, pp. 437-443. Reprinted in
Operating Systems Review, Vol. 8, No.l,
pp. 18-24, January 1974.

(10) B. W. Lampson, "A Note on the Con-
finement Problem," CACM, Vol. 16, pp.
613-615, 1973.

(11) R. M. Needham, "Protection Systems
and Protection Implementations," Proc.
1972 F~CC, Vol. 41, pp. 571-578, AFIPS
Press, 1972.

(12) G. J. Popek, "Correctness in Access
Control," proc. ACM National Computer
Conference, pp. 236-241, 1974.

(13) D. M. Ritchie and K. Thompson, "The
UNIX Time Sharing System," ~ACM, Vol. 17,
PP. 365-375,1974.

(14) J. H. Saltzer, "Protection and the
Control of Information Sharing in MUL-
TICS," CACM, Vol. 17, pp. 388-402, 1974.

24

