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Abstract 

A model of protection mechanisms in computing systems is present- 
ed and its appropriateness is demonstrated. The "safety" problem 
for protection systems under our model is to determine in a given 
situation whether a subject can acquire a particular right to an 
object. In restricted cases, one can show that this problem is 
decidable, i. e., there is an algorithm to determine whether a 
system in a particular configuration is safe. In general, and 
under surprisingly weak assumptions, one cannot decide if a si- 
tuation is safe. Various implications of this fact are dis- 
cussed. 
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!~troductlon 

One of the key aspects of modern com- 
puting systems is the ability to allow 
many users to share the same facilities. 
These facilities may be memory, proces- 
sors, data bases or software, such as com- 
pilers or subroutines. When diverse users 
share common items, one is naturally con- 
cerned with protecting various objects 
from damage or from missaproprlation by 
unauthorized users. In recent years, a 
great deal of attention has been focussed 
on the problem. Papers [3-5,7-12,14] are 
but a sample of the work that has been 
done. In particular, Saltzer [14] has 
formulated a hierarchy of protection lev- 
els, and current systems are only halfway 
up the hierarchy. 

The schemes which have been proposed 
to achieve these levels are quite diverse, 
involving a mixture of hardware and 
software. When such diversity exists, it 
is often fruitful to abstract the essen- 
tial features of such systems and to 

create a formal model of protection .sys- 
tems, 

The first attempts at modeling pro- 
tection systems, such as [3,5,9] were 
really abstract formulations of the refer- 
ence monitors and protected objects of 
particular protection systems. It was 
thus impossible to ask questions along the 
lines of "which protection system best 
suits my needs." A true model of protec- 
tion systems was created in [7], which 
could express a variety of policies and 
which contained the "models" of [3,5,9] as 
special cases. However, no attempt to 
prove results was made in [7], and the 
model was not completely formalized. 

On the other hand, there have been 
models in which attempts were made to 
prove results [1,2,12]. In [I], which is 
similar to [7] but independent of it, 
theorems are proven. However, the model 
is informal and it uses programs whose se- 
mantics (particularly side effects, traps, 
etc.) are not specified formally. 

*Research sponsored by the National Science Foundation Grants GJ-474 and GJ-43332. 
+Work done while on leave at the University of California, Berkeley. 

14 



In the present paper, we shall offer 
a model of protection systems. The model 
will be sufficiently formal that one can 
rigorously prove meaningful theorems. On- 
ly the protection aspects of the system 
will be considered, so it will not be 
necessary to deal with the semantics of 
programs or with general models of compu- 
tation. Our model is similar to that of 
[5,9], where it was argued that the model 
is capable of describing most protection 
systems currently in use. 

Section II describes the motivation 
for looking at decidability issues in pro- 
tection systems. Section III presents the 
formal model with examples. In Section IV 
we introduce the question of safety in 
protection systems. Basically, safety 
means that an unreliable subject cannot 
pass a right to someone who did not al- 
ready h a v e  it. We then consider a res- 
tricted family of protection systems and 
show that safety is decidable for these 
systems. In Section V we obtain a 
surprising result, that there is no algo- 
rithm which can decide the safety question 
for arbitrary protection systems. The 
proof uses simple ideas, so it can be ex- 
tended directly to more elaborate protec- 
tion models. 

I_! Significance of the Results 

To see what the significance for the 
operating system designer of our results 
might be, let us consider an analogy with 
the known fact that ambiguity of a context 
free grammar is undecidable (see [6], 
e.g.). The implication of the latter un- 
decidability result is that proving a par- 
ticular grammar unambiguous might be hard, 
although it is possible to write down a 
particular grammar, for ALGOL say, and 
prove that it is unambiguous. In analogy, 
one might desire to show that in a partic- 
ular protection system a particular situa- 
tion is safe, in the sense that a certain 

right cannot be given to an unreliable 
subject. Our result on general undecida- 
bility does not rule out the possibility 
that one could decide safety for a partic- 
ular situation in a particular protection 
system. Indeed, we have not ruled out the 
possibility of giving algorithms to decide 
safety for all possible situations of a 
given protection system, or even for whole 
classes of systems. In fact we provide an 
algorithm of this nature. 

In analogy with context free gram- 
mars, once again, if we grant that it is 
desirable to be able to tell whether a 
grammar is ambiguous, then it makes sense 
to look for algorithms that decide the 
question for large and useful classes of 
grammars, even though we can never find 
one algorithm to work for all grammars. A 
good example of such an algorithm is the 
LR(k) test (see [6], e.g.). There, one 
tests a grammar for LR(k)-ness, and if 
found to possess the property, we know the 

grammar is unambiguous. If it is not 
LR(k) for a fixed k, it still may be 
unambiguous, but we are not sure. It is 
quite fortunate that most programming 
languages have LR(k) grammars, so we can 
prove their grammars unambiguous. 

It would be nice if we could provide 
for protection systems an algorithm which 
decided safety for a wide class of sys- 
tems, especially if it included all or 
most of the systems that people seriously 
contemplate. Unfortunately, our one 
result along these lines involves a class 
of systems called "mono-operational," 
which are not terribly realistic. Our at- 
tempts to extend these results have not 
succeeded, and the problem of giving a de- 
cision algorithm for a class of protection 
systems as useful as the LR(k) class is to 
grammar theory appears very hard. 

;II A Formal Model o._~ Protection Systems 

We are about to introduce a formal 
protection system model. Because protec- 
tion is but one small part of a modern 
computing system, our model will be quite 
primitive. No general purpose computation 
is included, as we are only concerned with 
protection - that is, who has what access 
to which objects. 

Definition: A protection system consists 
of the following parts. 

(I) A finite set of generic rlghts R = 

r 1 , . - . , r  n • 

(2) A finite set of initial subjects S 
O O and a finite set of initial objects o' 

where S o ~ O o. 

(3) A finite set of commands C of the form 
~(X1,...,Xk) where ~ is a name and 
XI,...,X ~ are formal parameters which 
ddnote oSjects. 

(4) An interpretatioo I for commands, so 
that I maps C into sequences of primitive 
operations. The primitive operations are: 

enter r into (s,o) 
delete r from (s,o) 
create subject s 
create object o 
destroy subject s 
destroy object o 

where r is a generic right, s is a ~ubJect 
name, and o is an object name. 

(5) Conditions for commands. A condition 
C is a map from the set of commands into a 
finite set of rights. A right is a triple 
(r,s,o), where r 4 R, and s and o are for- 
mal parameters which are subjects and ob- 
jects, respectively. Note the distinction 
betwee6 a "right" and a "generic right." A 
"right" is the privilege that a given sub- 
ject s has to exercise generic right r on 
object o. 

15 



Before proceeding, let us interpret 
the parts of a protection system. In 
practice, typical subjects might be 
processes [3] and typical objects (other 
than those objects which are subjects) 
might be files• A common generic right is 
read, i.e., a process has the right to 
read a certain file. The commands men- 
tioned in item (3) above are meant to be 
formal procedures. Since we wish to model 
only protection aspects of a sytem, we 
wish to avoid embedding into the model un- 
restricted computing power. The command 
procedures are therefore interpreted (item 
4, above) to be sequences of specific, 
primitive operations. To understand the 
meanings of the primitive operations, ima- 
gine a matrix whose rows represent sub- 
Jects and whose columns represent objects• 
The (s,o) entry is the set of rights which 
subject s may exercise over object o. For 
example, the first primitive operation: 

enter r into (s,o) 

enters r into the matrix at positon (s,o), 
if it is not already there. 

It is best to think of item (5), the 
"conditions," in the following way. Asso- 
ciate with every command a finite set of 
conditions (or predicates) of the form: 

r I ~ (Sl,O I) 

r m 4 (Sm,Om) 

The intention is that if each of the 
m conditions is satisfied, then the com- 
mand may be executed. If one or more 
fail, then the command is not executed. 

Next we define a configuration, or 
instantaneous description of a protection 
system. 

D@flnltlon: A configuration of a protec- 
tion system is a triple (S,O,P), where S 
is the set of current subjects, 0 is the 
set of current objects, S ~ O, and P is an 
access matrix, with a row for every sub- 

subJect s 

objects 

subjects 

ject in S and a column for every object in 
O. P[s,o] is a subset of R, the generic 
rights• P[s,o] gives the rights to object 
o possessed by subject s• The access ma- 
trix can be pictured as in Figure I• Note 
that row s of the matrix in Figure I is 
like a "capability list" [3] for subject 
s, while column o is similar to an "access 
list" for object o. 

Example !: Let us consider what is perhaps 
the simplest discipline under which shar- 
ing is possible. We assume that each sub- 
ject is a process and that the objects 
other than subjects are files• Each file 
is owned by a process, and we shall model 
this notion by saying that the owner of a 
file has generic right own to that file. 
The other generic rights are read, write 
and execute, although the exact nature of 
the generic rights other than own is unim- 
portant here. • The actions affecting the 
access matrix which processes may perform 
are : 

(I) Create a new file• The process creat- 
ing the file has ownership of that file. 
We represent this action by command 
CREATE(s,o). The interpretation of CREATE 
is the sequence of primitive operations: 

create object o 
enter own into (s,o) 

There are no conditions for the CREATE 
command• 

(2) The owner of a file may confer any 
right to that file, other than own, on any 
subject (including the owner himself). We 
thus have three commands CONFER_(s.,s~,o) 
for r = read, write or execute, rwi~h ~in- 
terpretations: 

enter r into (s2,o) 

each with the single condition: 

own 4 (Sl,O) 

(3) Similarly, we have three commands 
REMOVEr(Sl,So,O) , which remove r from the 
(s2,o) en~rY~0 f the access matrix, where r 

0 

~k 

rights of subject 
s to object o 

Fig. I Access Matrix 
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= read, write or execute. The interpreta- 
tion of REMOVE r is: 

delete r from (Sl,O) 

and the conditions are: 

own 4 (st,o) 
r 4 (S2,6)* 

This completes the specification of 
most of the example protection system. We 
shall expand this example after learning 
how such systems "compute." 

To formally describe the effects of 
commands, we must give rules for changing 
the state of the access matrix. 

Definition: Let (S,O,P) and (S',O',P') be 
configurations of a protection system, and 
let c be a primitive operation. We say 
that: 

(s,o,P) :>c (s',o',P') 

[read (S,O,P) yields (S',O',P') under c] 
if either: 

(I) c = enter r into (s,o) and S = S', 0 = 
0", s 4 S, o 4 O, P'~s~,01] = P[s4,o4] ff 
(s4,o 4) ~ (s,o)and . [S,6~ : P~S,6] U 
{ r~ 6 r ,  

( 2 )  c = d e l e t e  r f r o m  ( s , o )  and S = S ' ,  0 
~f 0" ,  s ~ s, o ~ o, P ' [ s ~ , o ~ ]  = P i s s , o i l  

(Sl,O I) ~ (s,o) and P [~,o] = P[s,6] "- 
{r}. 

(3) C = create subject s , s is a new 
symbol not in O, S" = S U {s'}, O" = 0 U 
{s'}, P[[s~o] = P[s,o] for all (s,o) in 
SxO, P'[s ,o] = 6*w for all o 4 0", and 
P[s,s'] = ~ for all s 4 S'. 

(4) c = create object o', o" is a new sym- 
bol not in O, S" = S, O" = 0 U {o'}, 
P'[s,o] = P[s,o] for all (s,o) in SxO and 
P'[s,o'] : M for all s 4 S. 

(5) c = destroy subject s , where s" 4 S, 
S" = S {s'}, O" - " - = 0 {S }, and P'[s,o] 
= P[s,o] for all (s,o) 4 S'xO'. 

(6) c = destroy object o , where o 4 O-S, 
~£ = S, O" - 0 {o'}, and P'[s,o] = 

s,o] for all (s,o) ~ S•xO ". 

The quantification in the 
definition is quite important. 
pie, a primitive operation 

previous 
For exam- 

enter r into (s,o) 

L 

*This condition need not be present, since 
delete r from (s~,o) will have no effect 
if r is not there." 

~*~ denotes the empty set. 

requires that s be the name of a subject 
which now exists, and similarly for o. If 
these conditions are not satisfied, then 
the command is not executed. The primi- 
tive operation 

create subject s "  

requires that s" is not a current object 
name. Thus there can never be duplicate 
names of objects. 

Next we see haw a protection system 
executes a command. 

pefinition: Let (S,O,P) and (S',O',P') be 
configurations of a protection system. 
Let C be a command. Then we say 

if 

(s,0,P) i--c(S',0",p') 

(I) for each (r,s,o) 4 C(C), we have r 4 
P[s,o] and 

(2) if we let I(C) = c .... c , where the 
c~'s are primitive operations, then there 
e~ists m ~ O, and there exist configura- 
tions (Si,Oi,Pi) such that: 

(a) (s,0,P) = (So,0o,P o) 

(b) (S 0 ,Pi_1 ) = (Si,Oi,Pi) for I >ci 

(c) (Sm,Om,Pm) = (S',O',P') 

We write (S,O,P) ]-- (S',O°,P ") if 
there is some command C such that (S,O,P) 
! 

i-- (S',O',P'). It is convenient to 
write (S,O,P) I--* (S',O',P'), where I--* 
is the reflexive and transitive closure of 
' that is, ~ * represents zero or more 
applications of I--. 

There are a number of points involved 
in our use of parameters which should be 
emphasized. Note that every command (ex- 
cept the empty one) has parameters. Each 
command is given in terms of formal param- 
eters. At execution time, the formal 
parameters are replaced by actual parame- 
ters which are object names. Although the 
same symbols are often used in this expo- 
sition for formal and actual parameters, 
this should not cause confusion. The 
"type checking" involved in determining 
that a command may be executed takes place 
with respect to actual parameters. For 
example, consider the command C(sl,s2,o), 
which consists of: 

enter r I into (sl,s) 
destroy subject ~ I 
enter r 2 into (s2~o) 

There Qan never be a pair of configura- 
tions (S,O,P) and S',~°,P ") such that 

(s,o,e) i-- (s',o',P') 
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under the command C(sl,sl,o) , since the 
third primitive operdtidn enter r o into 
(sl,s I) will occur at a point where ~ sub- 
Jedt ~I does not exist. 

Note that we do not place an g priori 
bound on the number of subjects and ob- 
Jects which may exist in these "computa- 
tions." Such bounds lead to a trlviallza- 
tion of this theory as it does with models 
for digital computers. 

~xample 2: Let us consider the protection 
system whose commands were outlined in Ex- 
ample I. Suppose initially there are two 
processes Sam and Joe, and no files creat- 
ed. Suppose that neither process has any 
rights to itself or to the other process 
(there is nothing in the model that prohi- 
bits a process from having rights to it- 
self). The initial access matrix is: 

Sam Joe 

Sam ~ 

Joe  ~ 

Now, Sam creates two files named Code 
and Data, and gives Joe the right to exe- 
cute Code and Read Data. The sequence of 
commands whereby this takes place is: 

CREATE(Sam,Code) 
CREATE(Sam,Data) 
CONFERex e _ (Sam,Joe,Code) 
CONFERrea~m,Joe,Data) 

To see the effect of these commands 
on configurations, note that the confi- 
guration (S,O,P) can be represented by 
drawing P, and labeling its rows by ele- 
ments of S and its columns by elements of 
O, as we have done for the initial confi- 
guration. The first command, 
CREATE(Sam,Code) may. certainly be executed 
in the initial configuration, since CREATE 
has no conditions. Its interpretation 
consists of two primitive- operations, 
create object Code and enter own into 
(Sam,Code). Then, using the :> notation, 
we may show the effect of the two primi- 
tive operations as 

Sam Joe 

Sam ~ d 

Joe ~ d_ 

= = = = = = = = = = = = = = = = = = = = =  

create object Code 

Sam Joe Code 

Sam !~ ~ ===================== 
' , -  enter own into .(Sam,Code) 

Joe  i ~  ~ i 

Sam Joe Code 

Sam ~ ~ I {own} 
I 

Joe ~ ~ 

Thus, using the i-- notation for 
commands we can say hhat: 

complete 

Sam Joe 
A 

Sam ~ ' 
J CREATE(Sam,Code) 

Joe  ~ ~ ~ ~ 

Sam Joe Code 

Sam ~ d i {own}' 
i 

Joe i _L 
= 

The effect on the initial configura- 
tion of the four commands listed above is: 

Sam Joe 

Sam g d 
• b l 

i s -- 

Joe g d 

Sam Joe Code 

Sam '~ I d {own} 
L I 

Joe ~ I d d 
I__ 

Sam Joe Code Data 

Sam i'~ I d {own} {own} 

Joe ~ ~ d 
I__ 

Sam Joe Code Data 

Sam ~ d {own} {own} 

Joe d d { e x e c u t e }  d 
! 

Sam Joe 

Sam 

Joe 

Sam 

Joe 

Code Data 

{own} {own} 

d { e x e c u t e }  { r e a d }  

We may thus say: 

Sam Joe 
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Sam 

Sam Joe Code Data 

~ {own} {own} 

Joe ~ ~ {execute} {read} 

It should be clear that in protection 
systems, the order in which commands are 
executed is not prescribed in advance. 
The nondeterminacy is important in model- 
ing real systems in which accesses and 
changes in privileges occur in an 
unpredictable order. 

We should note that our naming con- 
vention for new objects has not been fully 
specified. For example, in a ~rimitive 
operation like create subject s, we did 
not specify where s comes from. There are 
obvious ways to formalize the generation 
of new names, and we shall continue to ig- 
nore this point, because the formalization 
lends no new insight. 

It is our contention that the model 
we have presented has sufficient generali- 
ty that it allows one to specify almost 
all of the protection schemes that have 
been proposed. Cf. [5] for many examples 
of this flexibility. It is of interest to 
note that it is immaterial whether 
hardware or software is used to implement 
the primitive operations of our model. 
The important issue is what one can say 
about systems we are able to model. We 
shall develop the theory of protection 
systems using our model in the next two 
sections. We close this section with two 
additional examples of the power of our 
model to reflect common protection ideas. 

~xample ]: A mode of access called "in- 
direct" is discussed in [5]. Subject s4 
may access object o indirectly if there 
some subject s~ with that access right to 
o, and s~ has t~e "indirect" right to s o . 
Formally~ we could model an indirect re~d 
by postulating the generic rights read and 
Iread, and a command IREAD(Sl,S2,O ) with 
interpretation: 

enter read into (st,o) 
delete read from (~I,O) 

and with conditions: 
read g (s ,o) 
iread g (~I,S2) 

It should be noted that the command 
in Example 3 has both multiple conditions 
and an interpretation consisting of more 
than one primitive operation, the first 
example we have seen of such a situation. 
In fact, since the REMOVE commands of Ex- 
ample I did not really need two condi- 
tions, we have our first example where 
multiple conditions are needed at all. 

We should also point out that the in- 
terpretation of IREAD in Example 3 should 
not be taken to be null, even though the 

interpretation actually chosen has no ef- 
fect on the access matrix. The reason for 
this will become clearer when we discuss 
the safety issue in the next section. In- 
tuitively, we want the interpretation of 
IREAD to show that s I temporarily has the 
read right to o, even though it must give 
up the right. 

Example ~: The UNIX operating system [13] 
uses a simple protection mechanism, where 
each file has one owner. The owner may 
specify his own privileges (read, write 
and execute) and the privileges of all 
other users, as a group.* Thus the system 
makes no distinction between subjects ex- 
cept for the owner-nonowner distinction. 

This situation cannot be modeled in 
our formalism as easily as could the si- 
tuations of the previous examples. It is 
clear that the generic right own is impor- 
tant, and that the rights of a subject s 
to a file o which s owns could be placed 
in the (s,o) entry of the access matrix. 
However, when we create a file o, it is 
not possible in our formalism to express a 
command such as "give all subjects the 
right to read o," since there is no 
priori bound on the number of subjects. 

The solution we propose actually re- 
flects the software implementation of pro- 
tection in UNIX quite well. We associate 
the rights to a file o with the (o,o) en- 
try in the access matrix. This decision 
means that files must be treated as spe- 
cial kinds of subjects, but there is no 
logical reason why we cannot do so. Then 
a subject s can read (or write or execute) 
a file o if either: 

(I) own is in (s,o), i.e., s owns o, 
and the entry "owner can read" is in 
(o,o), or 

(2) the entry "anyone can read" is in 
(o,o) .  

Now we see one more problem. The 
conditions under which a read may occur is 
not the logical conjunction of rights, but 
rather the disjunction of two such con- 
juncts, namely 

(I) own 4 P[s,o] and oread g P[o,o] 
or 

(2) aread 4 P[o,o] 

where oread stands for "owner may read," 
and aread for "anyone may read." For sim- 
plicity we did not allow disjunctions in 
conditions. However, we ca~ simulate a 
condition consisting of several lists of 
rights, where all rights in some one llst 
must be satisfied in order for execution 
to be permissible. We simply use several 
commands whose interpretations are identi- 

I 

*We ignore the role of the "superuser" 
the following discussion. 

in 
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cal. That is, for each list of rights 
there will be one command with that list 
as its condition. Thus any set of com- 
mands with the more general, disjunctive 
kind of condition is equivalent to one in 
which all conditions are as we defined 
them originally. We shall, in this exam- 
ple, use commands with two lists of rights 
as a condition. 

We can now model these aspects of 
UNIX protection as follows. Since write 
and execute are bandied exactly as read, 
we shall treat only read. The set of gen- 
eric rights is thus own, oread, aread and 
read. The first three of these have al- 
ready been explained, read is symbolic 
only, and it will be entered temporarily 
into (s,o) by a READ command, representing 
the fact that s can actually read o. read 
will never appear in the access matrix 
between commands and in fact is not re- 
flected directly in the protection mechan- 
ism of UNIX. The list of commands is 
shown in Figure 2. 

I..~ Safety 

We shall now consider one important 
family of questions that could be asked 
about a protection system, those concern- 
ing safety. When we say a specific pro- 
tection system is "safe," we undoubtedly 
mean that access to files without the con- 
currence of the owner is impossible. How- 
ever, protection mechanisms are often used 
in such a way that the owner gives away 
certain rights to his objects. Example 4 
illustrates this phenomenon. In that 
sense, no protection system is "safe," so 
we must consider a weaker condition that 
says, in effect, that a partlcular system 
enables one to keep one s own objects 
"under control." 

Since we cannot expect that a given 
system will be safe in the strictest 
sense, we suggest that the minumum toler- 
able situation is that the user should be 
able to tell whether what he is about to 
do (give away a right, presumably) can 

lead to the further leakage of that right 
to truly unauthorized subjects. As we 
shall see, there are protection systems 
under our model for which even that pro- 
perty is too much to expect. That is, it 
is in general undecidable whether, given 
an initial access matrix, there is some 
sequence of commands in which a particular 
generic right is entered at some place in 
the matrix where it did not exist before. 

This' question, whether a generic 
right can be "leaked" is itself insuffi- 
ciently general. For example, suppose 
subject s plans to give subject s generic 
right r to object o. The natural question 
is whether the current access matrix, with 
r entered into (s',o), is such that gener- 
ic right r could subsequently be entered 
somewhere new. To avoid a trivial "un- 
safe" answer because s himself can confer 
generic right r, we should in most cir- 
cumstances delete s itself from the ma- 
trix. It might also make sense to delete 

from the matrix any other "reliable" sub- 
jects who could grant r, but whom s 
"trusts" will not do so. It is only by 
using the hypothetical safety test in this 
manner, with "reliable" subjects deleted, 
that the ability to test whether a right 
can be leaked has a useful meaning in 
terms of whether it is safe to grant a 
right to a subject 

Another common notion of the term 
"safety" is that one be assured it is im- 
possible to leak right r to a particular 
object o I . We can use our more general 
definition of safety to simulate this one. 
To test whether in some situation right r 
to object o, can be leaked, create two new 
generic rights, r" and r". Put r" in 
( 0 4 , 0 4 ) ,  but do nothing y e t  w i t h  r". Then 
add ~ new command DUMMY(s,o) with condi- 
tions: 

r" ~ (o,o) 
r 4 (s,o) 

and interpretation: 

(I) 
{ 

(a) 

(3) 

(4) 

command 

.CR.E.ATEFILE(sl,s 2) 

OREAD(Sl,S 2) 

AREAD(Sl,S 2) 

READ(sl,s 2) 

interpretation 

create subject s 
enter own Into (~2,s?) 

enter oread into (s2,s 2) 

enter aread into (s2,s 2) 

enter r e a d  into (~,s o) 
delete read from I,§2) 

condition 

own 4 (Sl,S 2) 

own 4 (Sl,S2) 

either 
own 4 (s ,s ) 
oread 2} 

or 
aread 4 (s2,s 2) 

Figure 2. UNIX type Protection Mechanism 
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enter r "  into (o,o) 

Then, since there is only one instance of 
generic right r', o must be o~ in command 
DUMMY. Thus, leaking r" to "anybody is 
equivalent to leaking generic right r to 
object 01 specifically. 

We shall now give a formal definiton 
of the safety question for protection sys- 
tems. 

Definition: Given a protection system, we 
say command ~(XI,...,X ~) potentig!ly leaks 
(or Just ~eaks) generiU right r if its in- 
terpretation has a primitive operation of 
the form enter r into (s,o) for some s and 
o. 

Note that we detect a leak of r even 
if command ~ behaves llke the "neat bur- 
glar," who removes r from (s,o) at the 
conclusion of the burglary. Commands 
IREAD in Example 3 and READ in Example 4 
are typical of commands which~leak a right 
and then immediately remove it, leaving no 
"trace." In fact, we defined these com- 
mands purposely to symbolize the fact that 
the right was temporarily granted, even 
though no permanent change in the access 
matrix occurred. 

Definition: Given a particular protection 
system and right r, we say that initial 
configuration (S ,Oa,P~) is safe for r in 
this system if tMer~ dSes not exist confi- 
guration (S,O,P) such that: 

(So,Oo,P o) I--* (S,O,P) 

and there is a command ~(XI,...,X ~) whose 
conditions are satisfied'in (S,O,P), and 
for some actual parameters, ~ potentially 
leaks r via primitive operation enter r 
into (s,o), for some subject s and object 
o which exist at the execution time of the 
enter command, and for which r is not in 
P[s,o]. 

a m ~ ~ :  Let us reconsider the simple 
example of a command C(sl,s o o) which im- 
mediately preceeds Exampl~ 2~' Suppose C 
were the only command in the system. Then 
the system can be considered to leak r I' 
but this protection system is safe for ~I 
if the initial configuration has O : g. 

There is a special case for which we 
can show it is decidable whether a given 
right is potentially leaked in any given 
initial configuration. The result we are 
about to present is not significant in it- 
self, since most interesting examples do 
not meet the condition. However, it is 
suggestive of stronger results that might 
be proved - results which would enable the 
designer of a protection system to be sure 
that an algorithm to decide safety, in the 
sense we have used the term here, existed 
for his system. 

f ~ :  A protection system is 
m~no-.~.gp_i.~.~ if each command's in- 
terpretation is a single primitive opera- 
tion. 

Example 4, based on UNIX, is not 
mono-operational because the interpreta- 
tion of CREATE has length two. 

It turns out that we can decide safe- 
ty in mono~operational protection systems, 
and this fact is our flrsttheorem. 

Theorem ]: There is an algorithm which 
given a mono-operatlonal protection sys- 
tem, a generic right r and an initial con- 
figuration (S ,O ,P ) determines whether 
or not (S ,O ,9 )°is°safe for r in this 
protection s~st~m. 

Proof: Suppose we are given a sequence of 
configurations 

..i Qm 
Qoi"C1QIS--C2 I--Cm 

where Qa = (So,Co,P^), and command 
~(X1,...,z~) , which ~eaks r, has its con- 
dit~ons mac in Q_. Assume without loss of 
generality thatmthis sequence is as short 
as possible. Then we may make the follow- 
ing inferences. 

0bservation ~: For all i, 1<i<m, C~ is not 
destroy subject or destroy ~b~ect. 

Y roof: Suppose C~ is the first destroy 
command, which u we may suppose to be 
destroy subject s. Then we may remove 
command C. from the sequence. If s is 
ever created again, change the created ob- 
ject to a new name other than s. Since 
objects are created without any entries in 
their row and column of the access matrix, 
should the original sequence leak r, then 
the new one will as well. But the new se- 
quence is shorter than the old, a contrad- 
iction. 

Observation ~: There do not exist i and J, 
with i < J, such that both C i and C. are 
create subject commands, or both J are 
create object commands. 

Proof: Suppose for speciflcity that C~ is 
create subject s I and Cj is create su6Ject 

s^. We create a new shorter sequence of 
c~nfigurations leaking r, by identifying 
s I and s~, letting s~ play the role of 
b6th. That is, we delete C. from the se- 
quence of commands, and chan~e all subse- 
quent references to s 2 into references to 
s I. By Observation I, we may assume nei- 
ther s~ nor s~ are ever destroyed, so all 
references to ~hese sw~Jects ~fer to the 
ones created at the i ~ and j~ steps. 

*Since the system is mono-operational, we 
can identify the command by the type of 
primitive operation and its interpreta- 
tion. 
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Formally, we create a new sequence of 
configurations: 

• .. I--Cj - Qj_I I-- Q°Z--CI I Cj+1 

Rj+II . . . . .  I-- C R m 
Cj+2 m 

where configuration R~ is obtained from Q~ 
by merging s I and s~T That is, if T~ an8 
P are the access matrices in R k and~ Qk' 
r~spectively, then Tk[S,O]= 

(I) Pk[S,O] if s ~ s I and o ~ s I 

(2) Pk[Sl,O] U Pk[S2,O] if s = s I and o 

s I • 

(3) Pk[S,Sl] U Pk[S,S2] if s ~ s I and o : 

s I • 

(4) Pk[S4,Sp] U ek[s2,s ] U Pk[S ,s ] U 
Pk[s2,s2] i~ s : o : s I] I I 

Thus assuming two create subject com- 
mands allows us to create a shorter se- 
quence showing Qo not to be safe for r, 
contrary to the hypothesis that 
Q_~-- Q11 .... I-- Q- was the shortest 
such sequence~ A s~milar argument rules 
out two create object commands. 

Observation 3: Qi ~ Qj if i ~ j. 

Proof: If Qi : Q~ and i < j, then 

Qol--C1 Qli--C2 un~afety for r .  
Observation ~: Let there be g generic 
rights in the protection system. Then* 

g(~Sol+1)(IOol+2) 
m < 4x2 

Proof: By Observation 3, all Qi's are dis- 
tinct. By Observation 2, at most one sub- 
ject and two objects (including the sub- 
ject) are created. Thus, each access ma- 
trix can be represented by determining 
whether the new subject and/or object has 
been created and by selecting one of the 
2 ° subsets of rights for each of the at 
most (IS l+1)(JO_I+2) entries. By Obser- 
vation IUthe names of subjects and objects 
do not change, so two access matrices with 
the same entries represent the same confi- 
guration. Thus there are are at most 

4x(2g)(ISoI+1)(~Oo I+2) 

configurations in the sequence 
Q_I-- Q.I ..... ~-- Qm' and the result 
f~llows~ 

An obvious decision algorithm for 
safety now presents itself. Consider all 

,A, stands for the number of members in 
set A. 

legal sequences of configurations satisfy- 
ing Observations I, 2 and 3. By Observa- 
tion 4 there are only a finite number of 
these. We inspect each configuration to 
see if" a leak may occur. We have thus 
completed the proof of the theorem. 

Undecidability of the Safety Problem 

We are now going to prove that the 
general safety problem is not decidable. 
We assume the reader is familiar with the 
notion of a Turing machine (see [6], 
e.g.). Each Turing machine T consists of 
a finite set of states K and a distinct 
finite set of tape symbols ~. One of the 
tape symbols is the blank B, which ini- 
tially appears on each cell of a tape 
which is infinite to the right only (that 
is, the tape cells are numbered 
1,2,...,i,...). There is a tape head 
which is always scanning (located at) some 
cell of the tape. 

The moves of T are specified by a 
function ~ from Kx~ to Kx~x{L,R}. If 

~(q,X) = (p,Y,R) for states p and q and 
tape symbols X and Y, then should the Tur- 
ing machine T find itself in state q, with 
its tape head scanning a cell holding sym- 
bol X, then T enters state p, erases X and 
prints Y on the tape cell scanned and 
moves its tape head one cell to the right. 
If ~(q,X) = (p,Y,L), the the same thing 
happens, but the tape head moves one cell 
left (but never off the left end of the 
tape at cell I). 

Initially, T is is state qQ the 
Snitial state, with its head at ~ell I. 
Each tape cell holds the blank. There is 
a particular state qf, known as the final 
state, and it is a fa~t that it is unde- 
cidable whether started as above, an arbi- 
trary Turing machine T will eventually 
enter state qf. 

Theorem 2: It is undecidable whether a 
given configuration of a given protection 
system is safe for a given generic right. 

proof: We shall show that safety is unde- 
cidable by showing that a protection sys- 
tem, as we have defined the term, can 
simulate the behavior of an arbitrary Tur- 
ing machine, with leakage of a right 
corresponding to the Turing machine enter- 
ing a final state, a condition we know to 
be undecidable. The set of generic rights 
of our protection system will include the 
states and tape symbols of the Turing 
machine. At any time, the Turing machine 
will nave some finite initial prefix of 
its tape cells, say 1,2,...k, which it has 
ever scanned. This situation will be 
represented by a sequence of k subjects, 
sl,sp,...,s~, such that s 4 "owns" s~ . for 
1~i<E. Thus we use the o~nershlp r~tion 
to order subjects into a linear list 
representing the tape of the Turing 
machine. Subject ~i represents cell i, 
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and the fact that cell i now holds tape 
symbol X is represented by giving sl gen- 
eric right X to itself. The fact that q 
is the current state andt~hat the tape 
head is scanning the J-- cell is 
represented by giving s~ generic right q 
to itself. Note that we Have assumed the 
st~es distinct from the tape symbols, so 
no confusion can result. 

There is a special generic right end, 
which marks the last subject, s k. That 
is, s k has generic right end to itself. 
indicating that we have not yet created 
the subject s. . which s, is to own. The 
generic right ~ completes the set of 
generic rights. An example showing how a 
tape whose first four cells hold WXYZ, 
wlth the tape head at the second cell and 
the machine in state q, is shown in Figure 
3. 

s I 

• s 2 

s 3 

s 4 

s I s 2 s 3 s 4 

{w} i {own} 

{X,q} 

Figure 3. Re 

{ own } 
i .  

{Y} {own} 

{Z,end} 

)resenting a Tape 

The moves of the Turing machine are 
reflected in commands as follows. First, 
if 6(q,X) = (p,Y,L), then there is m com- 
mand Cqx(S,S') with conditions: 

own ~ ( s , s ' )  
q 4 (s',s') 
X ~ (s',s') 

That is, s and s" must represent two con- 
secutive cells of the tape, with the 
machine in state q, scanning the cell 
represented by s', and with symbol X writ- 
ten in s . The interpretation of command 
Cqx is: 

delete q from (s',s') 
delete X from (s',s') 
enter p into (s,s) 
enter ¥ into (s°,s ") 

For example, Figure 3 becomes Figure 4 
when command Cqx is applied. 

I f  6(q,X) : (p ,Y ,R) ,  tha t  i s ,  the 
tape head moves r i g h t ,  then we have two 
commands, depending whether or not th¢ 
head passes the current end of the tape, 
i.e., the end right. There is command 
Cqx(S,S °) with conditions 

s; 

s 2 

s 3 

s 4 

s I s 2 

{own} (W,p} 

{Y} 

I 
J_ 

s 3 s 4 

,, , u11 i 

(own} 

i Y} (own} 
[Z,end] 

Figure 4. Representing a Move 

own g (s0s') 
q 4 (s,s) 
X 4 (s,s) 

and interpretation: 

delete q from (s,s) 
delete X from (s,s) 
enter p into (s ,s ) 
enter Y into (s,s) 

There is also a command Dqx(S,S') with 
conditions: 

end 4 (s,s) 
q g (s,s) 
X 4 (s,s) 

and interpretation: 

delete q from (s,s) 
delete X from (s~s) 
create subject s 
enter B into (s°,s ") 
enter p into (s°,s ") 
enter Y into (s,s) 
delete end from (s,s) 
enter end into (s',s') 

If we begin with the initial matrix 
having one subject sl, with rights q~, B 
(blank) and own to itself, then the access 
matrix will always have exactly one gener- 
ic right that is a state. This follows 
because each command deletes a state known 
by the conditions of that command to ex- 
ist. Each command also enters one state 
into the matrix. Also, no entry in the 
access matrix can have more than one gen- 
eric right that is a tape symbol by a 
similar argument. Likewise, end appears 
in only one entry Of the matrix, the diag- 
onal entry for the last created subject. 

Thus, in each configuration of the 
protection system reachable from the ini- 
tial configuration, there is at most one 
command applicable. That follows from the 
fact that the Turing machine has at most 
one applicable move. in any situation, and 
the fact that C . and D X can never be 
slmulaneously ~plicabl~. The protection 
system must therefore exactly simulate the 
Turlng machine using the representation we 
have described. If the Turlng machine 
enters state q~, then the protection sys- 
tem can leak generic right q~, otherwise, 
it is safe for qf. Since it is undecid- 
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able whether the Taring machine enters qe, 
it must be undecldable whether the proteC- 
tion system is safe for qf. 

We can prove a result similar to 
Theorem 2 which is in a sense a 
strengthening of it. By simulating a 
universal Turing machine on arbitrary in- 
put, we can exhibit a particular protec- 
tion system for which it is undecidable 
whether a given initial configuration is 
safe for a given right. Thus, although we 
can give different algorithms to decide 
safety for different classes of systems, 
we can never hope even to cover all sys- 
tems with a finite, or even infinite, col- 
lection of algorithms. 

V._! Conclusions and Open Questions 

A very simple model for protection 
systems has been presented in which most 
protection issues can be represented. In 
this model, it has been shown that no al- 
gorithm can decide the safety of an arbi- 
trary configuration of an arbitrary pro- 
tection system. To avoid misunderstanding 
of this result, we shall llst some impli- 
cations of the result explicitly. 

First, there is no hope of finding an 
algorithm which can certify the safety of 
an arbitrary configuration of an arbitrary 
protection system, or of all configura- 
tions for a given system. This result 
should not dampen the spirits of those 
working on operating systems verification. 
It only means they must consider restrict- 
ed cases (or individual cases), and un- 
doubtedly they have realized this already. 

In a similar vein, the positive 
result of Section IV should not be a cause 
for celebration. In particular, the 
result is of no use unless it can be 
strengthened along the lines of the models 
in [7]. 

Our model does provide an interesting 
framework for investigating these ques- 
tions. It offers a natural classification 
of certain features of protection systems. 
Which features cause a system to sllp over 
the line and have an undecldable safety 
problem? Are there natural restrictions 
to place on a protection system which make 
it have a solvable safety question? 
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