Exploring the departure of Autocorrelation Function from Normality and its consequences in MA(q) modeling

 

Submitted

M. Royer Carenzi and H. Hassani,

 

 

 

 

Supplementary 

 

 

R Code associated to the current paper 

 

 

R-functions useful to study the departure of ACF from normality in a MA(q) framework:

 

Plot of the ACF in order to identify a MA(q) process

 

Function_ acfMA.R

 

Example of acfMA use

 

 

Computation of the EACF in order to identify an ARMA(p,q) process

 

Function_eacfMA.R

 

Example of eacfMA use

 

 

Plot of the standardized cumulative sum of the ACF (SACF / )

 

Function_ SACF.R

 

Example of SACF use

 

 

 

 

 

Data and associated scripts:

 

Wind Speed in New York (from airquality data in datasets package)

 

Script_WindSpeed.R

 

 

Surface Temperature anomalies (1850-2020)

 

SST_Anomalies.csv

 

Script_SST_Anomalies.R

 

 

 

 

 

 

 

R Code associated to previous projects

 

Several functions, aimed to facilitate time series modeling, were developed in previous projects from M. Royer-Carenzi.

You can refer either to an English paper or to a French book, and to their associated web pages for R-codes and explanations :

 

 Identifying trend nature in time series using autocorrelation functions and

stationarity tests

International Journal of Economics and Econometrics, vol. 14, n°1 (2024) pp.1-22

M. Boutahar and M. Royer Carenzi

 

Diagnosis with Ljung-Box test for an estimated ARMA(p,q) model

 

Function_ tsdiag.LB.R

 

Example of tsdiag.LB use

 

Simplification of an ARMA(p,q) model

 

Function_ t_stat.R

 

Example of t_stat use

 

 

Méthodes en séries temporelles et applications avec R

Ellipses, Références Sciences (2019)

M. Boutahar and M. Royer Carenzi

 

Seasonality test  (Friedman test)

 

Function Season.test.R

 

Example of Season.test use