
Parallelization of an Adaptive Vlasov Solver

Olivier Hoenen1, Michel Mehrenberger2, and Éric Violard1

1 Université Louis Pasteur, Laboratoire LSIIT, Groupe ICPS,
Boulevard Sébastien Brant, F-67400 Illkirch, France

{hoenen,violard}@icps.u-strasbg.fr
2 Université Louis Pasteur, Laboratoire IRMA,

7 rue René Descartes, F-67084 Strasbourg, France
mehrenbe@math.u-strasbg.fr

Abstract. This paper presents an efficient parallel implementation of
a Vlasov solver. Our implementation is based on an adaptive numerical
scheme of resolution. The underlying numerical method uses a dyadic
mesh which is particularly well suited to manage data locality. We have
developed an adapted data distribution pattern based on a division of
the computational domain into regions and integrated a load balancing
mechanism which periodically redefines regions to follow the evolution
of the adaptive mesh. Experimental results show the good efficiency of
our code and confirm the adequacy of our implementation choices. This
work is a part of the CALVI project1.

1 Introduction

The Vlasov equation (see e.g. [9] for its mathematical expression) describes the
evolution of a system of particles under the effects of self-consistent electro-
magnetic fields. Most Vlasov solvers in use today are based on the Particle In
Cell method which consists in solving the Vlasov equation with a gridless particle
method coupled with a grid based field solver (see e.g. [2]). For some problems
in plasma physics or beam physics, particle methods are too noisy and it is of
advantage to solve the Vlasov equation on a grid of phase space, i.e., the position
and velocity space (x, v) ∈ R

d ×R
d, d = 1, .., 3. This has proven very efficient on

uniform meshes in the two-dimensional phase space (for d = 1). However when
the dimensionality increases the number of points on a uniform grid becomes
too important for being performed on a single computer. So some parallelized
versions had been developed (see e.g. [10], for 4D phase space Vlasov simulations)
and it is essential to regain optimality by keeping only the ‘necessary’ grid points.
Such adaptive methods have recently been developed, like in [8],[5],[3] where
the authors use moving distribution function grids, interpolatory wavelets of
Deslaurier and Dubuc or hierarchical biquadratic finite elements. We refer also
to [4] for a summary of many Vlasov solvers.

1 CALVI is a french INRIA project devoted to the numerical simulation of problems
in Plasma Physics and beams propagation.

D. Kranzlmüller et al. (Eds.): EuroPVM/MPI 2004, LNCS 3241, pp. 430–435, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Parallelization of an Adaptive Vlasov Solver 431

In this project, we had in mind to implement an efficient parallelized version
of an adaptive Vlasov solver. So we have developed a code based on [3], where
the underlying partitions of dyadic tensor-product cells offered a simple way to
distribute data. After describing the numerical method in the adaptive context,
we present a parallelization of this method and its mechanism of load balancing,
and exhibit numerical results.

2 An Adaptive Resolution Scheme
for the Vlasov Equation

Here is a brief description of the numerical method of resolution. We refer the
reader to [1] for a more detailed presentation. For sake of conciseness, we give the
scheme for a 2-dimensional phase space, but it generalizes to higher dimensions.

The numerical solution at time tn = n∆t is represented by the approximate
fn(a) of the solution at every nodes a of a dyadic adaptive mesh Mn. A dyadic
adaptive mesh forms a possibly non-uniform partition of the phase space: con-
sidering the unit square [0, 1]2 as the computational domain, each cell of the
mesh identifies an elementary surface [k 2−j , (k + 1) 2−j] × [l 2−j, (l + 1) 2−j],
where k, l ∈ N, and j ∈ N is the level of the cell. We have j0 ≤ j ≤ J , where
j0 and J stand for the coarsest and finest level of discretization. Each of the
cell has 9 uniformly distributed nodes. Then, going to the next time step tn+1

consists in three steps:

1. Prediction of Mn+1: for each cell α ∈ Mn, denoting j its level, compute
its center cα and the forward advected point A(cα) by following the charac-
teristics of the Vlasov equation (see [1] for more details about characteristics
and advection operator A). Then add to Mn+1 the unique cell ᾱ of level j
which fits at that place in Mn+1 and all the necessary cells so that Mn+1 is
a dyadic adaptive mesh. Last, if j < J , refine ᾱ of one level, that is, replace
it by the 4 cells of level j+1 which cover the same surface.

2. Evaluation: for each node a of Mn+1, compute the backward advected
point A−1(a) and set fn+1(a) to fn(A−1(a)): the evaluation fn(c) of the
solution at any point c ∈ [0, 1]2 is obtained by searching the unique cell α of
the adaptive mesh Mn where the point is located, using the values at the
nodes of that cell and computing the local biquadratic interpolation on that
cell, say I(c, α, fn(c)).

3. Compression of Mn+1: from j = J − 1 to j0, replace 4 cells of level j+1
by a cell α of level j (do the converse of refining α) when the norm of the
differences fn+1(a) − I(a, α, fn(a)), for all node a of α, is small enough.

Some other methods represent the solution with less nodes and give a pro-
cedure to retrieve the other nodes by computation. This is done for example in
the numerical methods which use a wavelet decomposition framework [5] and
where the compression phase deletes nodes instead of cells. On the contrary, our
method keeps all the nodes, this may loose adaptivity but improve data local-
ity. Moreover, when the global movement of particles is known, our method can
easily be extended to the concept of moving grid presented in [8].

432 O. Hoenen, M. Mehrenberger, and É. Violard

3 Parallel Implementation

Extraction of Parallelism. The numerical method induces a data-parallel
algorithm by considering the adaptive mesh as a parallel data structure whose
elements are the cells of the mesh with their associated nodes and values. The
parallelization then relies on distributing these elements among processors.

Data Distribution. The computational domain is subdivided into regions. A
region is a surface of the computational domain which is defined by an union of
mesh cells. Regions are allocated to processors so that each processor owns and
computes the mesh cells and nodes which are included in its own region. As the
mesh adapts to the evolution in time of the physics, the number of cells within
a region change and it is then necessary to include a load balancing mechanism
which then consists in redefining regions for each processor.

Communications. We implement a specific communication scheme in order to
overlap communications with computations during the prediction and evaluation
phases: as the number and the source of messages is not known a priori, a special
end-of-send message is used to stop the initialization of receives. Moreover, in
order to minimize communications, we apply compression within the region limit
only. So the compression phase do not require any communication in our imple-
mentation. This is an approximation of the numerical method since we eliminate
less cells than in the original method, but it does not hazard convergence.

Data Structure. Each processor owns a local representation of the mesh. The
mesh is represented by two hash tables: the cell hash table stores a set of cells
which forms a partition of the whole computational domain and associates each
cell with its owner identity. The node hash table stores the value at each node
within the region. This representation allows cells and nodes to be accessed in
constant time while minimizing the memory usage.

Load Balancing. As said previously, our load balancing mechanism consists
in redefining regions. The new regions should have the following characteristics:
the number of cells in each region should be approximatively the same and each
region should have a “good shape” to improve the compression. Moreover, every
region should be connex in order to reduce the volume of communications. We
use the Hilbert’s curve [6] to achieve this last requirement.

We model the global load and its localization onto the computational domain
by a quad-tree [7] whose nodes are weighted by the number of leaves in the
subtree. Each leaf of this quad-tree identifies one cell of the mesh and the level
of a leaf in the tree is the level of the corresponding cell in the mesh.

We then build the new regions by partitioning the quad-tree. Each region is
the union of the cells corresponding to the leaves of each part of the quad-tree.

To obtain a good partition, we browse the quad-tree starting from its root
to its leaves, and try to make a cut as soon as possible. A part, say P , of the
partition is such that (1−λ)∗ I ≤ ‖P‖ ≤ (1+λ)∗ I, where ‖P‖ is the number of

Parallelization of an Adaptive Vlasov Solver 433

Table 1. Elapsed time (s) and speed-up on a HP cluster

procs J = 7 J = 8 J = 9

1 1089 1 1896 1 3202 1
2 543 2 937 2 1559 2
4 285 3.82 494 3.83 823 3.89
8 167 6.52 287 6.6 468 6.84
16 99 11 169 11.21 277 11.55

Table 2. Elapsed time (s) and speed-up on a SGI O3800

procs J = 6 J = 7 J = 8

1 1055 1 1827 1 3074 1
2 527 2 908 2 1514 2.03
4 275 3.83 475 3.84 797 3.86
8 155 6.8 274 6.66 459 6.70
16 89 11.85 161 11.34 268 11.47
32 57 18.5 105 17.4 177 17.37

 1

 2

 4

 8

 16

 1 2 4 8 16

Sp
ee

d-
up

Number of processors

J=7
J=8
J=9

Fig. 1. Speed-up of the parallel code on a HP cluster

leaves of the part, I equals to the total number of cells divided by the number
of processors, and λ ∈ [0, 1] is an error factor that permits a certain degree of
liberty for finding good parts.

We use this method at initialization, and a less expensive version to update
regions at runtime without penalizing performance.

4 Numerical Results

Our parallel code has been written in C++/MPI and tested (1) on a HP cluster,
composed of 30 identical Itanium bi-processors nodes running at 1.3Ghz, with

434 O. Hoenen, M. Mehrenberger, and É. Violard

Fig. 2. Evolution of the particle beam in the phase space

Fig. 3. Evolution of the dyadic mesh

8GBytes of main memory and interconnected through a switched 200MBytes/s
network and (2) on a SGI Origin 3800, composed of R14k processors running
at 500Mhz, with 512MBytes of memory per node. Our test case is a 30 sec
simulation (i.e. 160 iterations) of a semi-Gaussian beam in uniform applied elec-
tric field. The Vlasov equation is solved in a 2D phase space. We measured the
wall-clock time for different values of the mesh finest level (J) and j0 = 3. The
results are reported on table 1 and 2.

Figure 1 shows the graphical representation on a log scale of the speed-up on
the HP cluster. We observe that, for a fixed number of processors, the speed-up
is approximatively constant as the level of details (J) increases which is a quite
good property of our code. Table 1 and 2 show that the speed-up is approximately
the same for two different parallel architectures.

5 Conclusion and Future Work

In this paper, we presented an efficient parallel implementation of a Vlasov
solver using a numerical method based on a dyadic adaptive mesh. Numerical
results show the good efficiency of our code for the 2D case. We still have some
optimizations to implement – grouping multiple sends for example, and we are
currently working on extending the load balancing mechanism for greater dimen-
sions. Then, we plan to target the computational grid as execution environment,
which will imply new scheduling and data locality constraints to deal with.

Parallelization of an Adaptive Vlasov Solver 435

Fig. 4. Evolution of the regions for 8 processors

References

1. N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional
Vlasov-Poisson system , SIAM J. Numer. Anal., Vol 42, (2004), pp. 350-382.

2. C. K. Birdshall, A.B. Langdon, Plasmaphysics via computer simulation , McGraw-
Hill, 1985.

3. M. Campos-Pinto, M. Mehrenberger, Adaptive numerical resolution of the Vlasov
equation submitted in Numerical methods for hyperbolic and kinetic problems.

4. F. Filbet, Numerical Methods for the Vlasov equation ENUMATH’01 Proceedings.
5. M. Gutnic, Ioana Paun, E. Sonnendrücker, Vlasov simulations on an adaptive

phase-space grid to appear in Comput. Phys. Comm.
6. J. K. Lawder, P. J. H. King, Using Space-Filling Curves for Multi-dimensional

Indexing, Lecture Notes in Computer Science 1832 (2000).
7. A. Patra, J.T. Oden, Problem decomposition for adaptive hp finite element methods,

Computing Systems in Eng., 6 (1995).
8. E. Sonnendrücker, F.Filbet, A. Friedman, E. Oudet, J.L. Vay Vlasov simulation of

beams on a moving phase-space grid to appear in Comput. Phys. Comm.
9. E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo The Semi-Lagrangian

Method for the Numerical Resolution of Vlasov Equations. J. Comput. Phys.
149(1998), pp. 201-220.

10. E. Violard, F. Filbet Parallelization of a Vlasov Solver by Communication Over-
lapping, Proceedings PDPTA 2002 (2002).

	1 Introduction
	2 An Adaptive Resolution Scheme for the Vlasov Equation
	3 Parallel Implementation
	4 Numerical Results
	5 Conclusion and Future Work
	References

