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Abstract. We study a new Hermite type interpolating operator
arising in a semi-lagrangian scheme for solving the Vlasov equation.
Numerical results on uniform and adaptive grid are shown and
compared with biquadratic interpolation introduced in [CamMe04]
in the case of a rotating Gaussian.

1. Introduction

Adaptive semi-lagrangian schemes for solving the Vlasov equation
in the phase space have recently been developped: wavelet techniques
[Gut-al04, Gut-al05], moving mesh method [Son-al04], hierarchical fi-
nite element decomposition [CamMe04, CamMe05]. One main advan-
tage of the latter method, is that the underlying dyadic partition of
cells allows an efficient parallelization. It has been implemented with a
biquadratic Lagrange interpolation. But the use of higher order meth-
ods is not straightforward in that context. The same problem in fact
occurs in the case of semi-Lagrangian schemes on unstructured grids.
One solution was there to use an Hermite type interpolation. We pro-
pose here to do the same in the adaptive context. Thanks to a well
chosen Hermite interpolation recently found [HonSc04], we thus obtain
a more accurate scheme.

The paper is organized as follows. Section 2 presents the two inter-
polating operators that we designed for our numerical scheme. First,
we recall the Lagrange operator and then we present the Hermite new
one. Section 3 briefly recalls our uniform and adaptive semi-lagrangian
schemes. Section 4 focusses on the crucial point of the computational
cost of the two operators and we give efficient algorithms to compute
the interpolated value as a sequence of assignments. Section 5 com-
pletes the definition of our adaptive scheme. It gives for each operators
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Figure 1. The 4 triangles of a cell α

a criteria for compressing cells of the dyadic mesh. Last, section 6
shows our experimental results before concluding.

2. Local interpolating operators

Notations. We use the square Ω = [0, 1[2 as a computational do-
main. It is decomposed into a partition M of square shaped cells
α = [k2−j, (k + 1)2−j[×[ℓ2−j , (ℓ + 1)2−j[, where k, ℓ and j are integers,
and j denotes the level of the cell.

For a point (x, v) ∈ Ω, we can thus define a unique cell αx,v ∈ M
such that (x, v) ∈ αx,v.

Given a cell α, we denote by (0, 0)α, (1, 0)α, (1, 1)α, (0, 1)α its four
corners, and more generally, (λ, µ)α will be the point whose local coor-
dinates in α are λ, µ ∈ [0, 1]2. Let T α

k , k = 0, . . . , 3 be the 4 triangles
obtained by subdivising the cell α with the diagonals (Fig.1).

For d ∈ N, we classically define

Qd = {
∑

ai,jx
ivj , i, j ≤ d}, Pd = {

∑

ai,jx
ivj, i + j ≤ d}.

Now, let f be a function defined on Ω prolongated on R
2 by zero (we

can similarly prolongate it by periodicity), and (x, v) ∈ Ω.

Biquadratic Lagrange interpolation. PLf(x, v) is defined as the
unique element of Q2 on the cell α = αx,v such that it coincides with
f on the 9 equireparted nodes:

PLf((p, q)α) = f((p, q)α) p, q = 0, 1/2, 1.

Hermite interpolation. Assuming that f is derivable on each cell α.
PHf(x, v) is then the unique C1 spline on the cell α = αx,v, P3 on
the triangles T α

k , k = 0, . . . 3 such that there is coincidence on the 12
degrees of freedom at the corners:

f(a), ∂xf(a), ∂vf(a), a = (p, q)α p = 0, 1, q = 0, 1.

and also on the 4 normal derivatives on the edges i.e.:

∂vf((1/2, 0)α), ∂xf((1, 1/2)α), ∂vf((1/2, 1)α), ∂xf((0, 1/2)α).
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3. A general iterative scheme

A semi-Lagrangian scheme takes the form of a succession of interpo-
lation and transport steps.

We define classically the characteristic curves:

Z(t; s, x, v) = (X(t; s, x, v), V (t; s, x, v)),

satisfying Z(s; s, x, v) = (x, v), and we consider a function f = f(t, x, v)
that we want to approximate, which is constant along these character-
istics:

f(t, x, v) = f(t, Z(t; t, x, v)) = f(s, Z(s; t, x, v)) = f0(Z(0; t, x, v)),

where f0 is a given initial condition defined in Ω and completed by zero
outside of Ω.

Let ∆t > 0 be the time step, and T n be the exact backward transport
operator at iteration step n which is defined by:

T n(x, v) = Z((n − 1)∆t; n∆t, x, v)

Since f is constant along the characteristics, we have

f((n + 1)∆t, x, v) = f(n∆t, T n+1(x, v)) = f0(Z(0; (n + 1)∆t, x, v)).

We focus here on the errors produced by the interpolating process
and we will consider that the exact transport operator (and thus also
the exact solution) is known. In the general case, we should use an
approximation of the exact transport operator.

The iterative scheme consists then in finding the degrees of freedom
at each iteration step n, which gives a representation fn, completed by
zero outside of Ω. We fix a resolution level J ∈ N

∗.

Uniform scheme. We consider the uniform grid MJ of 22J cells.

• (Iteration step n = 0) We compute the degrees of freedom from
f0, on the corresponding grid which gives a representation f 0

at iteration step 0.
• (Iteration step n + 1) For each point (x, v) corresponding to a

degree of freedom, we compute the backward advected point
a = T n+1(x, v). The new value is thus fn(a) (or d

dz
fn(a), with

z = x or v). We thus have a representation fn+1 at iteration
step n + 1.

Adaptive scheme. We will use a compression step (f̃ ,M̃) = C(f,M).
From a representation of a function f on a mesh M, we will derive a
new coarser representation f̃ on a mesh M̃. This can be done locally, by
comparing the representation of the current function on 4 ”daughters”
cells, with the interpolated function on the ”mother” cell, whose 4
”daughters” cells form a partition. If the two representation are not
far, we will keep the coarser representation on the mother cell. Specific
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tests, for the biquadratic Lagrange interpolation, and for the Hermite
interpolation will be specified.

We also define a prediction step M̃n = T n+1(Mn), from a mesh
Mn and the backward advection operator T n+1, we compute a new
mesh M̃n. This is performed by beginning with a coarse mesh and
recursively refining each cell of level j ≤ J , if the backward advected
center of the cell falls on a cell of Mn whose level is strictly smaller
than j.

The algorithm then reads:

• (Iteration step n = 0) From f 0
u obtained by the uniform algo-

rithm, we compress the solution and obtain (f 0,M0) = C(MJ , f 0
u).

• (Iteration step n + 1) We predict a first grid T n+1(Mn) from
Mn, compute fn+1

1 as in the uniform algorithm (replacing MJ

with T n+1(Mn)) and next compute the representation of f on
Mn+1, (fn+1,Mn+1) = C(T n+1(Mn), fn+1

1 ).

4. Fast formulae

Our formulae are defined on any square cell α = [a, a+h]× [b, b+h],
i.e., for a ≤ x ≤ a + h and b ≤ v ≤ b + h.

Biquadratic Lagrange interpolation. Given 9 numbers (gi,j)
2
i,j=0,

the function g(x, v) of degree ≤ 2 that satisfies

g(a + ih/2, b + jh/2) = gi,j, for i, j = 0, 1, 2,

is uniquely determined. We can compute it as follows. We first set
N = 1/h (which can be precomputed) and t0 = (x−a)N, t1 = 2t0−1,
which gives

h0 = g1,j + t1(g1,j − g0,j)

h1 = g1,j + t1(g2,j − g1,j)

gj = h0 + t0(h1 − h0), for j = 0, 1, 2.

We next set t0 = (v − b)N, t1 = 2t0 − 1, so that we have

h0 = g1 + t1(g1 − g0)

h1 = g1 + t1(g2 − g1)

g(x, v) = h0 + t0(h1 − h0).

This procedure thus needs only 10 assignments, 16 multiplications and
28 additions (or substractions).

Hermite interpolation. Given 16 numbers gi,j, g
x
i,j, g

v
i,j, i, j = 0, 1,

gx
0 , g

x
1 , g

v
0 and gv

1 , the C1cubic spline, P3 on the 4 triangles T α
0 , T α

1 , T α
2
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and T α
3 , satisfying

g(a + ih, b + jh) = gi,j,

∂xg(a + ih, b + jh) = gx
i,j,

∂vg(a + ih, b + jh) = gv
i,j, for i, j = 0, 1 and

∂xg(a + ih, b) = gx
i ,

∂vg(a, b + ih) = gv
i , for i = 0, 1,

is uniquely determined.
We can compute it as follows on the triangle T α

0 (formulae on the
other triangles can be similarly derived). By setting u = (x− a)N and
y = (v − b)N , we obtain

g(x, v) = g00 + (2u3 − 3u2)(g00 − g10) + (y3 − 3y2 + 3uy2)(g00 − g01)

+ (y3−3uy2)(g10 − g11)+h((2/3y3−2u2 −3/2y2 +u+3/2uy2 +u3)gu
00

+(−1/2y2+uy2+y−3uy+1/6y3+2u2y)gy
00+(2/3y3−2y2+4(−u2+u)y)gy

0

+(−2/3y3−u2 +3/2uy2+u3)gu
10 +(1/2y2−uy2−uy+1/6y3+2u2y)gy

10

+(4/3y3−2uy2)gu
1 +(−2/3y3+1/2uy2)gu

11+(5/6y3−uy2)gy
11−2/3y3gy

1

+ (2/3y3 + 1/2(−y2 + uy2))gu
01 + (5/6y3 − y2 + uy2)gy

01

+ (−4/3y3 + 2(y2 − uy2))gu
0 )

We used the ’optimize’ function of the ’codegen’ package of Maple to
lower the cost of these interpolation operators and implement them in
our code. We applied these optimizations in the practical case where
a, b = 0 and h is the size of a mesh cell.

For example, in our code, the cost of the computation of g(x, v) on
triangle T α

0 by the Hermite operator is 18 assignments, 49 multiplica-
tions and 53 additions. It is obtained by introducing some auxilary
variables as follows:

x1 = u2, x2 = uu1, v1 = y2, v2 = 3v1, v3 = uv2,

v4 = yv1, v5 = 2/3v4, v6 = 4/3v4, v7 = 5/6v4, v8 = uv1,

x3 = ux2, x4 = x3 + 3/2v8, v9 = 1/6v4 + 2x1y,

Moreover, for the Hermite operator, instead of computing g(x, v),
∂xg(x, v) and ∂vg(x, v) separately, we compute them together which
lowers the number of required elementary operations and reduces the
computation cost of a minimum of 10% for most processor architec-
tures.

5. Compression formulae

Hermite compression. In the case of the Hermite interpolation, the
compression test used for the 4 daughter cells of a given cell α of
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length h is:
dx

0 + dx
1 + dv

0 + dv
1 ≤ ε,

with dx
k =

∣

∣f((1/2, k)α) − f̃1/2k

∣

∣, where

f̃1/2k = ((f((0, k)α) + f((1, k)α))/2 + h/8(∂xf((0, k)α) + ∂xf((1, k)α)),

and dv
k =

∣

∣f((k, 1/2)α − f̃k1/2)
∣

∣, where

f̃1/2k = ((f((k, 0)α) + f((k, 1)α))/2 + h/8(∂vf((k, 0)α) + ∂vf((k, 1)α)),

for k = 0, 1. Note that the value f is the reconstructed value at the
middle of the edge, with the 1D Hermite interpolation operator.

Biquadratic Lagrange compression. For a given mother cell α, the
compression test used is

4
∑

p,q=0

∣

∣f((p/4, q/4)α) − f̃pq

∣

∣ ≤ ε,

where f̃pq is the value obtained by interpolation on the cell α, at the
point (p/4, q/4)α.

6. Numerical results

We take for initial data

f0(x, v) = exp(−0.07((40(x − 0.5) + 4.8)2 + (40(v − 0.5) + 4.8)2)),

and ∆t = 0.19635. The transport operator is here given by a rotation
of angle ∆t around the center (0.5, 0.5).

We implemented our schemes in C++ and carried out our code on
a Pentium4 processor cadenced at 3.06 GHz with 512Mo of RAM. We
considered our adaptive scheme for ǫ = 10−4, 10−5, 10−6, 10−7 and
10−8. The error is computed on a uniform grid of 256 × 256 points.

Figure 2 shows the average absolute error (norm L1) as a function
of the number of mesh cells for the different schemes after 99 iteration
steps. We observe that for any given error threshold, any ǫ and any
interpolation operator, the number of cells is always lower with the
adaptive scheme than with the uniform one. But that does not neces-
sarly mean that the execution time is always lower with the adaptive
scheme than with the uniform one as illustrated on Fig. 3.

Figure 3 plots the average absolute error as a function of the average
time to compute one step (in seconds). We notice that, for the Hermite
operator, the performance of the adaptive scheme is always better than
the performance of the uniform scheme. But this is not the case for
the Lagrange operator.

Figure 4 shows the error as a function of the number of steps for
each of the two operators. We observe that the Hermite operator for
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J = 9 and ε = 10−8 has a little better accuracy than the uniform
Lagrange operator for J = 10. Moreover we notice that the amplitude
of the error oscillation is lower for the Hermite operator than for the
Lagrange operator. The executive time is also better: 0.419 seconds
per iteration step with 86092 cells for the Hermite operator and 0.646
seconds with 1048576 cells for the uniform Lagrange operator.

7. Conclusion

In this paper, we defined an Hermite interpolating operator which
can be used in both our uniform and adaptive schemes for solving the
Vlasov equation. The experimental results show that this operator
presents great advantages in comparison with the Lagrange operator
which was originally used.

Our first goal was to demonstrate the feasibility of developing a
Vlasov solver based on the Hermite operator. Therefore we defined
it for a 2D phase space and considered a test case for which the ana-
lytic solution was known. Our next goal is to run more realistic test
cases and extend our approach to 4D.

In a physical test case, the backward operator is computed at each
step from the electric field. Since this computation cost is proportional
to the number of cells, it means that it is even more advantageous to
use the Hermite operator instead of the Lagrange one as the results in
this paper show it.

Further work includes parallelizing our sequential code. We plan
to reuse some parallelization techniques which resulted in good speed-
up onto distributed memory parallel machines for a similar numerical
scheme but Lagrange operator [Hoe-al04]. In particular, we designed
a specific data structure [HoeVi06] which is suitable to exploit data
locality coming from the local nature of these schemes and which can
be advantageously reused to design code for shared memory parallel
machines using OpenMP directives.
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Figure 2. Error/number of cells for Hermite (on the
top) and Lagrange (on the bottom). Each point on the
figure corresponds to a value of J between 7 and 11.
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Figure 3. Error/average time to compute one iteration
step (s) for Hermite (on the top) and Lagrange (on the
bottom). Each point on the figure corresponds to a value
of J between 7 and 11.
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Figure 4. Error in norm L1 (on the top), L2 (on the
middle), L∞ (on the bottom) for Hermite with J=9, La-
grange with J=10, ǫ = 10−8 and from 50 to 500 iteration
steps.
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Figure 5. Solution and error for ε = 10−6 and J = 7
after 900 steps in the Hermite case (the maximal error is
0.0223 in red).

Figure 6. Solution and error for ε = 10−6 and J = 7
after 900 steps in the Lagrange case (the maximal error
is 0.0055 in red).


