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Abstract. The purpose of this work is to design simulation tools for magne-

tised plasmas in the ITER project framework. The specific issue we consider
is the simulation of turbulent transport in the core of a Tokamak plasma, for

which a 5D gyrokinetic model is generally used, where the fast gyromotion of

the particles in the strong magnetic field is averaged in order to remove the
associated fast time-scale and to reduce the dimension of 6D phase space in-

volved in the full Vlasov model. Very accurate schemes and efficient parallel
algorithms are required to cope with these still very costly simulations. The

presence of a strong magnetic field constrains the time scales of the particle

motion along and accross the magnetic field line, the latter being at least an
order of magnitude slower. This also has an impact on the spatial variations

of the observables. Therefore, the efficiency of the algorithm can be improved

considerably by aligning the mesh with the magnetic field lines. For this reason,
we study the behavior of semi-Lagrangian solvers in curvilinear coordinates.

Before tackling the full gyrokinetic model in a future work, we consider here

the reduced 2D Guiding-Center model. We introduce our numerical algorithm
and provide some numerical results showing its good properties.

1. Introduction. In a Tokamak the plasma is kept out of the vessel walls by a
magnetic field whose lines have a specific helicoidal geometry. Turbulence develops
in the plasma and leads to thermal transport which decreases the confinement ef-
ficiency. The characteristic mean free path is large, even compared with the vessel
size, therefore a kinetic description of particles is required, see Dimits [4]. There-
fore, one should use a 6D Vlasov-Poisson model for both ions and electrons to
properly describe the plasma evolution. However, the plasma flow in the presence
of a strong magnetic field has features that allow some physical assumptions to
reduce the model, in particular it is possible to average out the fast gyromotion
around the magnetic field lines see Brizard and Hahm [1]. As a consequence, the
6D Vlasov-Poisson model is approximated by a 5D gyrokinetic model by averaging
equations in such a way the 6D toroidal coordinates system (r, θ, φ, vr, vθ, vφ) be-
comes a 5D coordinates system (r, θ, φ, v‖, µ), with v‖ the component of the velocity

parallel to the field lines and µ = m v2⊥/2B the adiabatic invariant which depends
on the norm of the components perpendicular to the field lines of the velocity v2⊥, on
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the magnetic field magnitude B and on the particles mass m. Moreover, the elec-
trons are assumed to be at thermal equilibrium. The 6D two species Vlasov-Poisson
system then reduces to the 5D gyrokinetic model which is Vlasov like equation for
ions guiding-center motion:

∂f̄µ
∂t

+
dX

dt
· ∇X f̄µ +

dv‖

dt
∂v‖ f̄µ = 0, (1)

where f̄µ(X, v‖) is the ion distribution function with X = (r, θ, φ), velocity dX/dt
and acceleration dv‖/dt define the guiding-center trajectories.
If ∇(X,v‖) · (dX/dt, dv‖/dt)t = 0 then the model is termed as conservative and can
be written in an equivalent conservative form:

∂f̄µ
∂t

+∇X ·
(
dX

dt
f̄µ

)
+ ∂v‖

(
dv‖

dt
f̄µ

)
= 0. (2)

This equation for ions is coupled with a quasi-neutrality equation for the electric
potential Φ(R) on particles position, with R = X−ρL (with ρL the Larmor radius):

− 1

Bωi
∇⊥ · (ne∇⊥Φ) +

e

κTe
(Φ− < Φ >θ,φ) =

∫
J0(f̄µ)dµdv‖ − ne, (3)

where J0 is the gyroaverage operator, ne is an equilibrium electron density, Te the
electron temperature, e the electron charge, κ the Boltzmann constant for electrons
and ωi the cyclotron frequency for ions. The operator ∇⊥ denotes the gradient in
the directions perpendicular to the magnetic field lines.

These equations are of a simple form, but they have to be solved very efficiently
because of the 5D space and the large characteristic time scales considered. Particles
velocity in the direction parallel to the magnetic field lines is much higher than in
the perpendicular directions. Particles motion is then strongly anisotropic. In the
GYSELA code, the mesh is currently structured and based on toroidal coordinates.
This is not well adapted to the flow because of the magnetic field lines curvature.
Therefore, we want to use curvilinear coordinates in such a way that mesh lines
are aligned with the magnetic field lines, in order to better capture the anisotropy
of the system and avoid numerical diffusion in the perpendicular directions, see
Brizard and Hahm [1] for the foundations of this work. This adapted discretization
of the gyrokinetic model should permit to strongly reduce the number of cells in
the direction parallel to the magnetic field lines.

As a first step towards the discretization of the gyrokinetic model in arbitrary
curvilinear coordinates, we shall consider a related reduced model the so-called
Guiding-Center model, which is a 2D Vlasov like equation coupled with a Poisson
equation: {

∂f

∂t
+ E⊥ · ∇Xf = 0,

−∆Φ = f.
(4)

where f(x, y) is the particles distribution function with X = (x, y), the differential
equation dX/dt = E⊥ = (Ey,−Ex)t defines the trajectories with E = (Ex, Ey)t =
−∇XΦ and Φ(x, y) the electric potential. The model is conservative since∇X ·E⊥ =
0.
This simple model contains some important features of the gyrokinetic model and
has turbulent unstable modes with growth rates that can be computed analytically.
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To enforce strict mass conservation in the system, we are going to discretize the
Guiding-Center model in its conservative form. It also allows a proper mass con-
serving directional splitting, which is very convenient for designing a parallel MPI
algorithm and for dealing with curvilinear coordinates without having to handle the
multi-dimensional aligned mesh geometry. This is possible because the divergence
of the advection field is zero:

∇X · (E⊥) = ∂xEy − ∂yEx = −∂x∂yΦ + ∂x∂yΦ = 0.

Therefore, the system (4) is strictly equivalent to the following:

∂f

∂t
+∇X · (E⊥f) = 0,

−∆Φ = f.
(5)

This conservative system will be discretized using a conservative semi-Lagrangian
scheme, the Parabolic Spline Method (PSM, see Zerroukat et al [11] [12] and Crou-
seilles, Mehrenberger, Sonnendrücker [2]) scheme. It is a fourth order scheme which
is equivalent for linear advection to the Backward Semi-Lagrangian Scheme (BSL,
see Cheng and Knorr [3] and Sonnendrücker et al [10]) with a cubic B-splines in-
terpolation operator, but in a conservative form. The Vlasov equation will be
discretized using a directional splitting solving d (dimension of space) 1D conser-
vative equations with the PSM scheme. This allows to handle easily on structured
grids any curvilinear coordinates system. The Poisson equation will be solved on a
cartesian grid and the electric potential is remapped on the curvilinear mesh. This
choice is made in order to decouple the development of a method using curvilinear
coordinates for the Vlasov equation (1) and for the quasi-neutrality equation (3),
the latter being more complex to handle in arbitrary curvilinear coordinates.
The outline of the paper is as follows: First we shall review the PSM scheme in our
context. The following section is dedicated to writing usual differential operators
and finally the Vlasov equation in curvilinear coordinates. Then the issue of dis-
cretizing periodic domains using a non periodic coordinate system will be addressed.
And at last some numerical results will be presented.

2. The conservative Parabolic Spline Method (PSM) for Vlasov equa-
tions. The PSM scheme bears many similarities with the BSL one (see [3][10]), as
it is also based on characteristic curves of the flow and on a cubic spline recon-
struction of the distribution function. These schemes are indeed exactly the same
for linear advection. However, the PSM scheme is based on the conservative form
of Vlasov equations and provides a perfect mass conservation when dealing with
non-linear advection, which the BSL scheme does not.
Let us consider a Vlasov equation in its conservative form:

∂f

∂t
+∇x · (a f) = 0, (6)

with f(x, t) a scalar function, position x ∈ Rd and a(x, t) ∈ Rd the advection field.
The mass m conservation in a Lagrangian volume reads:

m =

∫
V oln+1

f(x, tn+1) dΩ =

∫
V oln

f(x, tn) dΩ, (7)

with the characteristic curves X defined as
dX(x, t)

dt
= a(x, t) and xn = X(xn, tn),

and the volume V oln = {X(xn+1, tn) such that X(xn+1, tn+1) ∈ V oln+1} defines



4 BRAEUNIG, CROUSEILLES, MEHRENBERGER AND SONNENDRÜCKER

the Lagrangian motion of V oln by the field a(x, t).

This conservative formalism properly allows a directional splitting without loos-
ing the mass conservation, because each 1D step will be written in a conservative
form. From a numerical point of view, the 1D advection for each direction will be
approximated by the following 1D equation:∫ xn+1

i+1/2

xn+1
i−1/2

f(x, tn+1)dx =

∫ xn
i+1/2

xn
i−1/2

f(x, tn)dx, (8)

with xn+1
i+1/2 = X(xn+1

i+1/2, t
n+1) settled as the 1D mesh nodes and xni+1/2 = X(xn+1

i+1/2,

tn) the so called characteristic “foot” of xn+1
i+1/2. Let us define the average of f in

cell i at time tn+1:

f
n+1

i =
1

∆x

∫ xn+1
i+1/2

xn+1
i−1/2

f(x, tn+1)dx, (9)

and the primitive function

Fn(z) =

∫ z

x1/2

f(x, tn)dx, (10)

with x1/2 an arbitrary reference point of the domain and for instance the first node
of the grid {xi−1/2}i=1,N+1.

Therefore, we have to solve a nonlinear system to obtain X(xn+1
i+1/2, t

n) = xni+1/2

(which is similar with the BSL one) to obtain a solution of equation (8) that simply
writes:

X(xn+1
i+1/2, t

n+1)−X(xn+1
i+1/2, t

n)

∆t
= a

(
X
n+1/2
i+1/2 , t

n+1/2
)
, (11)

with

X
n+1/2
i+1/2 =

(
X(xn+1

i+1/2, t
n+1) +X(xn+1

i+1/2, t
n)
)
/2,

f
n+1

i ∆x = Fn(X(xn+1
i+1/2, t

n))− Fn(X(xn+1
i−1/2, t

n)),
(12)

with the time step ∆t = tn+1 − tn and the space step ∆x = xn+1
i+1/2 − x

n+1
i−1/2 .

The scheme consists of two steps:

• For a mesh node i + 1/2 whose location is xn+1
i+1/2 = X(xn+1

i+1/2, t
n+1), we

have to follow backward the characteristic curve to find the “foot” xni+1/2 =

X(xn+1
i+1/2, t

n).

• Computation of the primitive function at mesh nodes xn+1
i+1/2, which is a simple

addition as for any i ∈ [1, N ]:

Fn(xn+1
i+1/2)− Fn(x1/2) =

i∑
k=1

f
n

k∆x,

then interpolation (cubic spline) of the primitive function Fn(z) on the domain
with nodal values Fn(xn+1

i+1/2) to obtain its value at xni+1/2, which is not a mesh

node in general. Thus we have

f
n+1

i ∆x = Fn(xni+1/2)− Fn(xni−1/2).
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This scheme is fourth order in space. It is second order in time with a leap-
frog or predictor-corrector time integration scheme to compute the advection field
a(x, tn+/2) at time tn+1/2. This scheme is conservative as by integrating on the
whole domain:∫ xn+1

N+1/2

xn+1
1/2

f(x, tn+1)dx =

N∑
k=1

f
n+1

k ∆x = Fn(xnN+1/2)− Fn(xn1/2)

=

∫ xn
N+1/2

xn
1/2

f(x, tn)dx.

(13)

3. Vlasov equation in curvilinear coordinates.

3.1. Curvilinear coordinates. Let us consider a cartesian coordinates system
x = (x1, x2, x3) ∈ R3. A curvilinear coordinates system is defined with three func-
tions ξ1(x), ξ2(x), ξ3(x). The Jacobian of the transformation x 7→ ξ1(x), ξ2(x), ξ3(x)
is

J = det


∂ξ1
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ2
∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ3
∂x1

∂ξ3
∂x2

∂ξ3
∂x3

 = ∇ξ1 · (∇ξ2 ×∇ξ3).

One can build two bases of R3 using ξ1(x), ξ2(x), ξ3(x):

(∇ξ1,∇ξ2,∇ξ3)

and

(∇ξ2 ×∇ξ3,∇ξ3 ×∇ξ1,∇ξ1 ×∇ξ2).

A given vector A ∈ R3 can be expressed at any point in each of these bases as
follows:

A = A1∇ξ1 +A2∇ξ2 +A3∇ξ3, (14)

A = A1∇ξ2 ×∇ξ3 +A2∇ξ3 ×∇ξ1 +A3∇ξ1 ×∇ξ2. (15)

Coordinates Ai (subscript index) are termed as covariant coordinates of A and co-
ordinates Ai (superscript index) are termed as contravariant coordinates of A in the
curvilinear coordinate system defined by ξ1(x), ξ2(x), ξ3(x). These two coordinates
systems are linked by the metric tensor which is a 3× 3 symmetric matrix written
G and defined by

G−1 =

∇ξ1 · ∇ξ1 ∇ξ1 · ∇ξ2 ∇ξ1 · ∇ξ3
∇ξ2 · ∇ξ1 ∇ξ2 · ∇ξ2 ∇ξ2 · ∇ξ3
∇ξ3 · ∇ξ1 ∇ξ3 · ∇ξ2 ∇ξ3 · ∇ξ3


A common convention is to write gij the elements of matrix G and gij those of the
inverse matrix G−1. Therefore we have

Ai =
∑
j

gijA
j and Ai =

∑
j

gijAi.

Remark 1. The determinant of the metric tensor is linked to the transformation
Jacobian J by detG−1 = J2. Let us write g = detG, thus we have J = 1/

√
g.
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Contravariant coordinates are obtained by the scalar product of (15) with ∇ξi:

JAi = A · ∇ξi, thus Ai =
√
gA · ∇ξi. (16)

Usual operators are then written in curvilinear coordinates as follow:

(∇Φ)i =

3∑
k=1

gik
∂

∂ξk
Φ, (17)

∇ ·A =
1
√
g

3∑
i=1

∂

∂ξi
(Ai), (18)

∆Φ =
1
√
g

3∑
i=1

3∑
k=1

∂

∂ξi
(
√
ggik

∂

∂ξk
Φ). (19)

3.2. Vlasov equation. Let us consider again the Vlasov equation in its conserva-
tive form in a cartesian coordinates system x = (x, y, z):

∂f

∂t
+∇x · (a f) = 0, (20)

with f(x, t) a scalar function, position x ∈ R3 and a(x, t) ∈ R3 the advection field.
Considering a curvilinear coordinates system ξ1(x), ξ2(x), ξ3(x) with its associated
Jacobian J = 1/

√
g, one can write the Vlasov equation in these curvilinear coordi-

nates:

∂f

∂t
+

1
√
g

3∑
i=1

∂

∂ξi
(ai f) = 0, (21)

with ai =
√
g a · ∇ξi.

Notice that the change of coordinates yields an equation of the same form as the
original Vlasov equation. Indeed, since the jacobian

√
g is not time dependent, the

Vlasov equation in curvilinear coordinates becomes:

∂f̃

∂t
+

3∑
i=1

∂

∂ξi
(ãi f̃) = 0, (22)

with f̃ =
√
g f and ãi = a · ∇ξi.

For instance, in the cylindrical coordinates system:

x = r cos θ,

y = r sin θ,

z = ζ,

the Vlasov equation writes:

∂f

∂t
+

1

r

(
∂r(ra

rf) + ∂θ(ra
θf) + ∂ζ(ra

ζf)
)

= 0, (23)

with the Jacobian
√
g = r and contravariant coordinates ar = a · ∇r = ax cos θ +

ay sin θ, aθ = (−ax sin θ + ay cos θ)/r and aζ = az.
An equivalent form can be written as follow:

∂f̃

∂t
+ ∂r(a

rf̃) + ∂θ(a
θf̃) + ∂ζ(a

ζ f̃) = 0, (24)

with f̃ = r f .



GUIDING-CENTER SIMULATIONS ON CURVILINEAR MESHES. 7

3.3. Periodic boundary conditions. One difficulty may arise, when considering
a mesh based on a curvilinear coordinates system, with periodic boundary condi-
tions in a cartesian direction. Each mesh line might not connect with itself but with
a neighbouring mesh line, see figure 1. This is a specific problem when using curvi-
linear coordinates: when defining the adapted mesh, we need to make sure that the
mesh is still conform. For instance, each node at the domain lower boundary should
have a corresponding node at the upper boundary, even if it does not reconnect on
the same mesh line.

This will be a restriction in the choice of the adapted mesh in a Tokamak ge-
ometry. The helicoidal geometry of magnetic field lines in the poloidal section of
the torus have a rotation rate q(r), the safety coefficient, which is not constant but
depends on the radial direction. It is not a rational number in general, thus field
lines might not reconnect by periodicity in the toroidal direction, so would neither
a mesh adapted to field lines. Two solutions will be investigated. First one is to
choose an adapted mesh with a rational safety coefficient qi close to each real mag-
netic field lines safety factor q(ri), in such a way the angle between mesh lines and
magnetic field lines will be as small as possible (figure 4 shows that the benefits of
adapting the mesh remains for small angles). Second one is suggested by X. Garbet
(CEA Cadarache [6]) is to use an adapted mesh with a non-constant space step in
the radial direction with mesh nodes ri positioned in such a way q(ri) is a rational
number. Thus a periodic condition would become possible to settle.

Figure 1. The domain is periodic in cartesian directions x and y.
Periodicity in y direction imposes a reconnection of different mesh
lines to obtain the proper periodic boundary condition.

3.4. Remap between curvilinear and cartesian meshes. In the context of
Vlasov-Poisson like models as the Guiding-Center model or the gyrokinetic model,
it can be convenient to compute the solution of the Vlasov equation using a curvi-
linear coordinates system and the solution of the Poisson equation on a cartesian
coordinates system. Any adapted mesh will particularly be adapted to the Poisson
equation, because it is roughly speaking an isotropic diffusion operator. Therefore,
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a cartesian mesh is the best and the simplest to design a Poisson solver. Moreover,
it would decouple the computer implementation of these two solvers.

For instance, let us consider the step of the solver algorithm when the Vlasov
solver needs as an input the electric potential Φ on the curvilinear mesh, whereas
this quantity is computed by the Poisson solver on the cartesian mesh. We then
need to remap Φ from the cartesian mesh to the curvilinear mesh. Let us consider
for instance a mesh with cell centred values, such that the electric potential Φ
values on the cartesian mesh are denoted Φx,y(i, j) at the point of coordinates
(x(i, j), y(i, j)) with (i, j) ∈ [1, Nx] × [1, Ny] and has its discrete values on the
curvilinear mesh denoted Φξ,η(p, q) at the point of coordinates (ξ(p, q), η(p, q)) with
(p, q) ∈ [1, Nx]× [1, Ny]. We assume there exists an invertible function f : R2 → R2

defining the curvilinear mesh from the cartesian mesh of the following form:

ξ = fξ(x, y) and η = fη(x, y).

By definition of the curvilinear mesh, for any logical position (i, j), the vector a(i, j)
from the corresponding physical position on the cartesian mesh of Φx,y(i, j) to the
one on the curvilinear mesh Φξ,η(i, j) is(

ax(i, j)
ay(i, j)

)
=

(
ξ(i, j)− x(i, j)
η(i, j)− y(i, j)

)
(25)

Therefore, we can use the same scheme used for the Vlasov equation, that per-
forms a virtual advection equation of the form:

∂Φ

∂t
+ U · ∇x,yΦ = 0, (26)

with the velocity U = a/∆t defined in such a way that, for any time step ∆t =
tn+1 − tn, we obtain by following the caracteristic curves:

Φξ,η(i, j) = Φn+1(ξ, η) = Φn(ξ − ax, η − ay) = Φn(x, y) = Φx,y(i, j),

with Φn(x, y) the electric potential at a virtual virtual time tn and dropping argu-
ments (i, j).

The advection scheme is used with a “virtual” advection velocity in such a way
quantities on the Poisson solver mesh are remapped on the Vlasov solver mesh. The
same advection procedure is used to remap quantities on the Vlasov solver mesh to
the Poisson solver mesh, see figure 2. In the context of the PSM scheme in which the
distribution function is reconstructed by using cubic splines, this way of remapping
using the advection scheme itself is obviously of the same order of accuracy as the
scheme.

4. Numerical results.

4.1. Oblic advection. We consider an oblic advection of a 2D regular sinusoidal
function advected by a constant 2D advection field vector (ax = 1, ay = 4). The
initial function (see figure 3) has an obvious symmetry, considering apparent “dots”
whose axis is aligned with the advection direction. The domain dimensions are [0, 1]2

with a mesh of 80 × 80 cells. The domain is periodic in both cartesian directions
(x, y) and end time is calculated in such a way the final function is superimposed to
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Figure 2. Remap of Poisson variables from the cartesian mesh
to the curvilinear mesh and vice versa.

the initial one after travelling ten times through the domain. The oblic curvilinear
mesh is parametrized by α, defined by the inverse of the slope of mesh lines:

ξ1 = x− αy and ξ2 = y.

Figure 3. Initial function, advection field vector (ax = 1, ay = 4)
is aligned with dots but not aligned with mesh lines.

The issue for this benchmark is to evaluate the numerical error, function of the
angle between the advection direction and the mesh lines. Figure 4 shows that
when the angle between advection velocity and mesh lines is set to zero, the error
is minimum. When the angle is not zero, a transversal numerical error appears
because of advection velocity transversal to the mesh lines and increases as well
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Figure 4. L1 and L∞ relative error between end and initial time,
function of the angle between the advection velocity vector and the
mesh lines. Angle −20 corresponds to the cartesian mesh.

the angle increases. Notice that error curves are not symmetric with respect to the
angle value zero.

4.2. Unstable mode for the Guiding-Centre (GC) model. We use the re-
duced GC model described in the introduction with the following benchmark char-
acteristics:

• 2D periodic boundary conditions in cartesian directions (x, y),
• The curvilinear mesh is made of oblic lines defined by

ξ1 = x− αy and ξ2 = y,

• The unstable initial distribution function f is obtained by linear modal anal-
ysis.

Using Laplace and x Fourier transformations, eigenvalues ω for the GC model func-
tion of k (Fourier variable in x direction) may be determined through a dispersion
relation. The k mode growth rate is the imaginary part of ω, which has to be
positive to be an unstable mode, see Shoucri [9].
We use k = 1/2 which is an unstable mode and has an associated growth rate
Im(ω) = 1/2, considering domain dimensions (x, y) in [0, 2π/k] × [0, 2π] with a
mesh of 128× 128 cells and initial condition:

f(t = 0, x, y) = sin(y) + ε cos(k x).

We perform a qualitative comparison between PSM computations on cartesian
and curvilinear meshes of a periodic-periodic instability for the GC model for two
different times, one at the beginning of the nonlinear phase and the second at a late
time, when most of small structures have been dissipated. The numerical results
are very similar even for the late time for this complex and unstable flow.

The growth rate of the unstable mode is in good agreement in the linear phase
with the expected value Im(ω) = 1/2 for results on both meshes, see figure 6.
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Figure 5. Comparison of cartesian (left) and curvilinear (right)
computations with the PSM scheme at two different times.

Figure 6. Comparison of cartesian and curvilinear mode evolu-
tions versus time (plasma periods) and the theoretical growth rate
in the linear phase.

5. Conclusion. The conservative PSM method with 1D directional splitting has
been successfully extended for the Guiding-Center model on curvilinear coordinates,
with a good agreement between cartesian and curvilinear meshes computations.
Integration of the PSM method is in progress in the GYSELA code [7] [8]. The use
of curvilinear coordinates for the gyrokinetic model will follow this development.
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