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Abstract. KEEN waves are nonlinear, non-stationary, self-organized asymptotic states in Vlasov plasmas
outside the scope or purview of linear theory constructs such as electron plasma waves or ion acoustic
waves. Nonlinear stationary mode theories such as those leading to BGK modes also do not apply. The
range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of
the ponderomotive force used to drive them. Smaller amplitude drives create highly localized structures
attempting to coalesce into KEEN waves. These cases have much more chaotic and intricate time histories
than strongly driven ones. The narrow range in which one must maintain adequate velocity resolution in
the weakly driven cases challenges fixed grid numerical schemes. What is missing there is the capability of
resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase
space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform
cubic splines in velocity that tackles this problem head on. An additional feature of our approach is the
use of a new high-order time-splitting scheme which allows much longer simulations per computational
effort. This is needed for low amplitude runs which take a long time to set up KEEN waves, if they are able
to do so at all. The new code’s performance is compared to uniform grid simulations and the advantages
quantified. The birth pains associated with KEEN waves which are weakly driven is captured in these
simulations. These techniques allow the efficient simulation of KEEN waves in multiple dimensions which
will be tackled next as well as generalizations to Vlasov-Maxwell codes which are essential to understanding
the impact of KEEN waves in practice.

PACS. PACS-key 52.65.Ff Plasma simulation: Fokker-Planck and Vlasov equation

1 Introduction

Kinetic Electrostatic Electron Nonlinear (KEEN) Waves
were discovered in 2002 while trying to decipher the valid-
ity of claims made about electron acoustic waves EAWs
and their relationship to electron plasma waves (EPW)
in the nonlinear, kinetic evolution of the Stimulated Ra-
man Scattering (SRS) instability [14,15]. Since then, much
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work has been done to decipher the physics of KEEN
waves. Unlike EPWs, or EAWs, KEEN waves do not exist
on a dispersion curve predicted by an infinitesimal ampli-
tude limit calculation where the distribution function has
been assumed to be flat (with zero derivative) at the phase
velocity of the wave. This assumption or generically im-
posed constraint ensures the existence of stationary struc-
tures for EPWs and EAWs. Instead, KEEN waves can be
excited or driven by the ponderomotive force generated
by the optical mixing of a pair of laser beams [1]. These
two crossing laser beams drive a wave at their difference
frequency and wavenumber. By changing the frequencies
and wave numbers of the two laser beams in a given den-
sity and temperature plasma, we can drive KEEN waves
anywhere in Brillouin (ω, k) space. Linear wave analysis of
the Vlasov-Poisson system of equations, shows that for a
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Maxwellian plasma, for instance, resonant waves can only
live on dispersion curves, which are familiar from plasma
physics textbooks and are related to Landau’s original
work on Landau or collisionless damping of EPWs [11].

Outside these curves of measure zero in the (ω, k) plane,
no (not heavily damped) waves were deemed possible,
thus defining a spectral gap in plasma theory. But nonlin-
ear stationary states were known to exist, referred to as
BGK modes [4]. This is predicated on one’s ability to cob-
ble a distribution function in phase space that would ac-
commodate such states. These stationary modes (in some
Galilean frame of reference and constituting a function of
the canonically conjugate variable to time, namely, en-
ergy) require strong distribution function modification.
Thus, they beg the question of how they would come about
starting with a Maxwellian. Or, whether some other states
would predominate much before these stationary states
were ever settled into. The discovery of KEEN waves [1]
answers these questions in favor of the latter. Since KEEN
waves can occur anywhere in the (ω, k) plane and not just
on the EPW and EAW dispersion curves, KEEN waves
remove the delicate nature of linear, resonant modes.

We now know that EAWs and BGK modes, which do
have an infinitesimal amplitude limit, are not the only
type of nonlinear structure to be expected in a time depen-
dent setting. KEEN waves demonstrate that the require-
ment of stationarity can be dropped in favor of much richer
structures and that non stationary, constantly evolving
and adapting phase space structures are in fact ubiqui-
tous. The basic physics is that a multi-harmonic phase-
locked electric field structure is created, even though only
one harmonic was driven, which can trap, untrap and re-
trap particles whose orbits are near the non-stationary
separatrix. These lost particles are not retrapped exactly
where they were lost but elsewhere in the troughs of the
field after crossing many crests in either direction. This is
the origin of the persistent non-stationarity. While KEEN
waves are harder to excite and self-organize, they are very
robust to perturbations while delicate resonant modes have
the opposite property, namely, easy to excite but easily
detuned or disturbed by perturbations.

The self-adjusting multi-harmonic field structure can
trap enough of the particles to maintain itself in perpe-
tuity within the Vlasov-Poisson or Vlasov-Maxwell [17]
set of equations. With KEEN waves, deeply trapped par-
ticles remain trapped, but the separatrix regions harbor
far more complicated dynamics. The weaker the drive, the
more the entire fate of the mode is dictated by these sepa-
ratrix regions. The stronger the drive, the deeper the wells
and the less stringent is the loss mechanism on the overall
sustainability of the mode. But as the drive is diminished,
the dynamics becomes more complicated, chaos dominates
and small vortices do not have the ability to merge and
form a KEEN wave. The process takes longer and longer
and may become disrupted by other physical processes
such as collisions or side-losses which are not included in
this 1D × 1D Vlasov-Poisson model.

We have observed KEEN waves in the laboratory driven
exactly as stated above, via the ponderomotive force ema-

nating from the optical mixing of two laser beams. For de-
tails of those experiments conducted on the Trident laser
system at Los Alamos, see [10].

Here we wish to study the transition region between
a well formed KEEN wave and more fledgling scenarios
by varying the drive time of the ponderomotive force,
externally-imposed, and following the long time evolution
of the structures that remain and persist long after the
drive is turned off (and the system acquires a Hamiltonian
nature). Two crucial new elements are introduced to make
these studies possible. First a new code is used which does
not use a fixed velocity grid Vlasov solver. Instead, a two
grid system is adopted. Fine scale resolution is imposed
within the region in velocity around the phase velocity of
the driven wave where the vortical structures are formed,
surrounded by a coarser scale external region. The exter-
nal region reacts to KEEN waves by absorbing its wake
and this must be computed correctly in order to gather
the correct overall charge density to be used on the right
hand side of the Poisson equation. The variable grid tech-
nique allows the relevant v-space region to shrink with-
out requiring massive fine scale resolution throughout the
entire velocity range. Just the perturbed region is finely
resolved, no matter how small it gets. Secondly, since long
time evolution is what is of most interest, it was desirable
to have a way to speed up the calculations without los-
ing accuracy, especially when faced with chaotic dynamics
that has to be tracked with low amplitude drive. The mu-
tual attraction and commingling of many vorticlets at low
amplitude drive can cause one to question the accuracy
and fidelity of low-order, long time simulations. The usual
modern answer when facing such circumstances is to ap-
peal to symplectic and higher order integration schemes.
Clever tricks are deployed to simplify the higher order
splitting tasks [6] which allow to implement a sixth order
in time, operator splitting scheme.

Armed with these two new techniques, we have simu-
lated weak drive amplitude KEEN wave generation with
a sequence of drive durations that extend from no KEEN
wave formation to healthy KEEN wave formation. Intu-
itively we know that it is the amount of energy that is
directly coupled into the KEEN wave that will dictate its
final size or strength. But the scaling with drive time is
not linear. There is in fact a saturation of that directly
driven mode that sets in. The driven mode at its max-
imum amplitude will collapse and channel its energy to
higher order modes, starting with the second harmonic.
This is repeated between the second and the third har-
monics and so on. Meanwhile, the drive is shut off and
the modes rearrange themselves and adjust to a trapped-
untrapped and retrapped distribution of particles that re-
store energy back into the field the lower few harmonics
that constitute the essential elements of a KEEN wave.
An important question is how long must the drive be, for
a certain amplitude drive, so that trapping sets in for large
scale vortices that do not disintegrate after the drive is off
but which can maintain the KEEN wave.

In this paper, we show a number of examples of KEEN
wave generation and evolution and compare uniform ve-
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locity grid simulations to multiple contiguous and variable
grid simulations, with the added feature of an easy to im-
plement sixth-order symplectic (split-step) integrator. We
will show that by taking too large a time step, such as a
a full plasma frequency inverse, errors do eventually accu-
mulate and contaminate the simulations. In our work to
date, we can not claim full convergence in ∆x, ∆v and ∆t
for long time simulations. But much more efficient simu-
lations are now possible without the waste of fine scale
resolution in velocity space in regions where there are no
significant disturbances (far from the phase velocity of the
driven KEEN wave). But full convergence in chaotic high
dimensional dynamics is not strictly expected except in
some statistical sense. More work will be done in this di-
rection in the near future.

The 1D×1D Vlasov-Poisson equation for f = f(t, x, v)
with an external driving electric field Eapp reads:

∂tf + v∂xf + (E − Eapp)∂vf = 0, ∂xE =

∫
R
fdv − 1.

Here Eapp(t, x) is of the form

Eapp(t, x) = Emaxka(t) sin(kx− ωt),

with

a(t) =
g(t)− g(t0)

1− g(t0)
,

g(t) = 0.5(tanh(
t− tL
twL

)− tanh(
t− tR
twR

)),

t0 = 0, tL = 69, twL = twR = 20, tR = 207 + Tdr,
k = 0.26, ω = 0.37. The initial condition is

f0(x, v) =
1√
2π

exp

(
−v

2

2

)
, (x, v) ∈ [0, 2π/k]× [−6, 6].

Two typical cases will be considered : the standard drive,
with Tdr = 100 and Emax = 0.2, and the small drive,
with Tdr = 200 and Emax = 0.00625. Final time is fixed
to T = 1000 in the standard case and T = 5000 in the
small drive case. Then, we will show some numerical re-
sults, by varying the drive time Tdr, for the small drive
amplitude Emax = 0.00625, in order to see the influence
on the formation of KEEN waves.
The simulation of KEEN waves is quite challenging: such
test case develops small localized structures at large fi-
nal time, which typically requires a high number of phase
space points and a small time step. Some recent works can
be found in [7,13,18]. Here, we continue the work initi-
ated in [13], where the standard case was simulated; there
a classical semi-Lagrangian method with high order La-
grange interpolation, or splines, with Strang splitting was
used. The influence of single/double precision was studied
and a delta-f method was introduced in order to improve
single precision results, which generally damage the nu-
merical results in such a test problem. The use of GPU has
permitted to run efficiently some quite refined simulations
(grid 2048× 2048 in double precision and 4096× 4096 in
double precision; time step until 0.01). However, as shown

on the numerical results, we were not able to get late time
convergence of the first Fourier modes of the charge den-
sity and the phase space plots look quite similar but can
be shifted and present some differences depending on the
numerical parameters that are used, at the final time. The
aim of this present paper is to study some improvements of
the semi-Lagrangian scheme [13] and to see the influence
of different numerical parameters for the standard case,
and also for a case of small drive amplitude. The simula-
tions require a high resolution around the phase velocity of
the drive wave, and this region becomes very small when
the drive amplitude is small. A lot of runs have been done,
by changing different numerical parameters. We try here
to report some of the most significant ones. This should
help designing in the future what numerical parameters
should be used, and it is a first step, for a parametric
study [3], which is here initiated, by looking at the influ-
ence of the duration of the drive in the small drive am-
plitude case. More elaborated physical diagnostics should
also be added. In Section 2, we will detail the main ingre-
dients of the numerical method, that is the conservative
non uniform cubic splines reconstruction and the high or-
der splitting in time. Section 3 is devoted to the numerical
results: first two canonical cases will be discussed in detail,
with small and standard amplitude drive; finally, numer-
ical simulations will be reported, varying the drive time,
for the small drive amplitude case.

2 Numerical method

Obtaining numerical convergence is quite hard, as we have
here no exact solution. What we can do is to run simu-
lations for different numerical parameters and then see if
the simulations are approaching together as we refine the
space/velocity/time grid. In order to succeed, up to a cer-
tain accuracy, in this task and to improve the former work
[13], we have used mainly three ingredients. The first one,
is the MPI parallelization of the code (previous versions
were OPENMP or GPU) which is developed within the
library Selalib [16], in order to improve the speed of the
simulation; optimizations may be performed, in order to
see what we could further gain. The second one is the use
of non uniform conservative cubic splines, in order to be
able to capture the vortices arising in a small region in
velocity. The third one is the use of high order splitting
in time [6], in order to be able to reduce the number of
iterations, and to see the influence of the time discretiza-
tion. In the sequel, we will detail the main features of the
developed numerical methods.

2.1 The two-grid mesh in velocity

We have to generate a 1D velocity mesh that is fine in a
small region and coarse elsewhere, as activity in the dis-
tribution function is located in a small region in velocity,
depending on the drive amplitude. The strategy that is
adopted here is to define a coarse grid which has a refined
region. Such specific grid has the advantage of being very
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simple; also specific numerical methods may be designed
for such grids. Mesh spacing on coarse/fine grids are

∆vcoarse =
vmax − vmin

Ncoarse
, ∆vfine =

vmax − vmin

Nfine

and Nfine is an integer multiple of Ncoarse.
The refined zone is chosen with 0 ≤ i1 < i2 ≤ Ncoarse and
the total number of cells is

N = i1 +Nf +Ncoarse − i2, Nf =
Nfine

Ncoarse
(i2 − i1)

Nfi1 Ncoarse − i2

v0 = vmin vi1 vi1+Nf vN = vmax

In order to generate such mesh, we have chosen as input
parameters the total number of cells N , the region where
we want to refine vmin ≤ a < b ≤ vmax and an integer
ratio r 6= 1. From these values, we look for

i1, i2, Ncoarse

such that

vi1 ' a, vi1+Nf
' b, r =

Nfine

Ncoarse
.

For this, we detail the algorithm that we have chosen. We
first write

α =
a− vmin

vmax − vmin
, β =

b− vmin

vmax − vmin

and compute

N∗
coarse =

⌊
N

1 + (β − α)(r − 1)

⌋
, Nfine = rN∗

coarse,

together with

i∗1 = bαN∗
coarsec , ` =

⌊
N −N∗

coarse

r − 1

⌋
,

in order to obtain

Ncoarse = N − `(r − 1), i1 = bαNcoarsec , i2 = i1 + `.

Other strategies may be studied or be more efficient; we
could also try to change the grid in order to smooth the
change of mesh spacing, which here goes directly from
∆vcoarse to ∆vfine.

2.2 Conservative cubic splines on non uniform mesh

One popular semi-Lagrangian method for the numerical
resolution of the Vlasov-Poisson equation is to use dimen-
sional splitting [8] and cubic splines for the interpolation.
Here the mesh in velocity is not uniform and we can deal

with non uniform cubic splines. However, we lose the con-
servation of mass, when the mesh is non uniform and that
seriously affects the numerical results in this typical test
problems; see [13], where we see the effects of non conser-
vation of mass due to the use of single precision compu-
tations. Thus, instead of looking at the classical advective
form of the constant advection equation, we can consider
the conservative form [9]. That means that we reconstruct
the primitive function, using the same interpolation oper-
ator. We have to take care about the boundary conditions,
that are here considered periodic, and we will have also
to shift the unknowns to the middle of the velocity cells,
in this non uniform setting (this is not necessary, for the
uniform grid case). We now detail the different steps of
the algorithm.
Thanks to dimensional splitting, we are lead to solve

∂tu+ c∂vu = 0,

over a time step ∆t (or fraction of time step, as we will
see later), with unknowns

uj+1/2(t) =
1

vj+1 − vj

∫ vj+1

vj

u(v, t)dv, j = 0, . . . , N − 1.

That is, we are supposed to know

uold
j+1/2 ' uj+1/2(0), j = 0, . . . , N − 1,

and we want to compute

unew
j+1/2 ' uj+1/2(∆t), j = 0, . . . , N − 1.

Using the conservation of the volume, we have the relation∫ vj+1

vj

u(v,∆t)dv =

∫ vj+1−c∆t

vj−c∆t
u(v, 0)dv.

We first compute

Uj =

j−1∑
k=0

(uold
k+1/2 −M)(vk+1 − vk), j = 0, . . . , N,

with

M =

N−1∑
k=0

uold
k+1/2(vk+1 − vk).

Note that, by construction, we have UN = U0 = 0. We
then define the non-uniform cubic spline interpolation of
the primitive, that is the unique piecewise cubic polyno-
mial function Uh ∈ C2

per(v0, vN ) satisfying

Uh(vj) = Uj , Uh polynomial on [vj , vj+1], j = 0, . . . , N−1.

This can be done classically by solving a system which is
almost tridiagonal, for computing the spline coefficients or
the Hermite derivatives; see e.g. [5]. Note that the prim-
itive is periodic, thanks to the choice of the integration
constant M . Finally, we compute

Unew
j = Uh(vj − c∆t), j = 0, . . . , N − 1,
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and get the unknowns updated by

unew
j+1/2 =

Unew
j+1 − Unew

j

vj+1 − vj
+M, j = 0, . . . , N − 1.

Note that the method is conservative by construction, as
we get

N−1∑
j=0

unew
j+1/2(vj+1 − vj) = M.

Other strategies can be envisaged, by using the special
structure of the two-grid mesh [12], but are here not fur-
ther developed.

2.3 High order time splitting

We fix a time step ∆t and consider a list of coefficients
a1, . . . , as, with s ∈ N∗, together with a coefficient σinit ∈
{0, 1}.
For n ∈ N, we know

fni,j ' f(n∆t, xi, vj+1/2)

Index i will go from 0 to Nx − 1 and j from 0 to Nv − 1.
We fix t∗ → n∆t and σ → σinit, and start with f∗i,j → fni,j .
For each k = 1, . . . , s, we make the T σ advection over a
time step ∆τ → ak∆t and then update σ → 1− σ.
Here T 0 (advection in x) consists in solving over a substep
∆τ

∂tf(t, ·, vj+1/2) + vj∂xf(t, ·, vj+1/2) = 0,

to update f∗i,j . At the end, we update t∗ → t∗ + ak∆t.

T 1 (advection in v) consists in computing the electric field
E∗(xi) via the Poisson equation (see e.g. [13]) and solve
over a substep ∆τ

∂tf(t, xi, ·) + (E∗(xi)− Eapp(t∗, xi))∂vf(t, xi, ·) = 0,

to update f∗i,j . At the end of the substep s, we get fn+1
i,j →

f∗i,j .
Classical Strang splitting, that will be used here for com-
parison, corresponds to s = 3, a1 = 1/2, a2 = 1, a3 = 1/2
and σinit = 1.
We have developed new efficient high order schemes for
Vlasov-Poisson, see [6], exploiting the specific structure of
the Vlasov-Poisson system. The 6th order Vlasov-Poisson
splitting scheme, that is used in the numerical results, has
the following coefficients: s = 11,

a1 = 0.0490864609761162454914412
−2∆t2(0.0000697287150553050840999),

a2 = 0.1687359505634374224481957,
a3 = 0.2641776098889767002001462

−2∆t2(0.000625704827430047189169)
+4∆t4(−2.91660045768984781644 · 10−6),

a4 = 0.377851589220928303880766,
a5 = 0.1867359291349070543084126

−2∆t2(0.00221308512404532556163)
+4∆t4(0.0000304848026170003878868)
−8∆t6(4.98554938787506812159 · 10−7),

a6 = −0.0931750795687314526579244,

together with a6+i = a6−i, i = 1, . . . , 5 and σinit = 1.

3 Numerical results

In all the numerical results, we have used vmax = 6, La-
grange interpolation of degree 17 in x (see [13]) and by de-
fault Nx = 2048. In the v-direction, we use cubic splines,
that is conservative non uniform cubic splines; when the
mesh is uniform, this corresponds to classical cubic splines;
for the sake of simplicity, we have used the same code for
the uniform/non uniform mesh; this can affect speed com-
parisons, as we expect having faster codes for uniform cu-
bic splines. But as already said, we have not deeply looked
at optimizations (neither in the uniform nor in the non
uniform case). For non uniform mesh, we use an integer ra-
tio r = 32, a = 1.2, b = 1.6, for the small drive amplitude,
and a = 0.375, b = 2.25 for the standard case. Simulations
are run on Hydra (computing centre of the Max Planck
Society) and Helios Computational Simulation Centre, In-
ternational Fusion Energy Research Centre of the ITER
Broader Approach) supercomputers, with typical runs on
256 processors (16 nodes; each node having 16 threads).

3.1 Convergence study for the small drive case

On Figure 1, δ-f = f − f0 distribution function is plotted
at times T = 500+ i500, i = 0, . . . , 9 and the 5 first ρ har-
monics, that is the absolute values of the Fourier modes
of ρ =

∫
R fdv, from mode k = 1 to mode k = 5. For this

simulation, a standard run is used with the following nu-
merical parameters: non uniform mesh, with Nv = 16384,
∆t = 0.5 and 6th order Vlasov-Poisson splitting scheme.
The run took 3453 seconds.
In order to study the convergence, we look at the diagnos-
tic of the 5 first ρ harmonics and make a comparison with
different numerical parameters. More precisely, we give
comparisons with refined runs using the classical method
(Figures 2,3) and the same method (Figures 4,5).
On Figure 2, we compare the standard run with a uniform
refined run: uniform mesh, with Nv = 262144, and other
same numerical parameters as the standard run. Note that
the result is very similar, as here Nfine = 258432, for the
standard run. The run took 54800 seconds, that is 16 times
more than the standard run.
On Figure 3, we compare the standard run with a Strang
refined run: Strang splitting, with ∆t = 0.0078125 and
other same numerical parameters as the standard run. The
run took 72015 seconds, that is 21 times more than the
standard run.
On Figure 4, we compare the standard run with a time
refined run: ∆t = 0.25, and other same numerical param-
eters as the standard run. The run took 6905 seconds, that
is 2 times more than the standard run, which is expected.
On Figure 5, we compare the standard run with a non
uniform refined run: Nv = 65536 and other same numer-
ical parameters as the standard run. The run took 12589
seconds, that is 3.6 times more than the standard run.
We have also checked (not shown here) that taking Nx =
1024 instead of Nx = 2048 leads to results that are in the
same range of convergence.
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With all this plots, we can appreciate, how well we are con-
verged with the standard run. Note that we gain here a
factor 300 ' 16×21, with respect to the classical method;
this factor may be decreased by considering optimized ver-
sions of the code, but should remain in the same order of
magnitude.

3.2 Convergence study for the standard case

In the standard case, we are not able to obtain such good
results, as the region of interest is bigger; we had also to
use much smaller time steps; using bigger time steps lead
to results that are qualitatively similar in the late time
T = 1000 but differ with shifts of the delta-f distribution
function and non match of the ρ harmonics, as already
shown in [13]; we can however expect a better behaviour,
if we fix the final time earlier, that is around T = 400, 600
where the KEEN wave is already formed.

On Figure 6, delta-f distribution function is plotted at
times T = 100 + i100, i = 0, . . . , 9 and the 5 first ρ har-
monics, that is the absolute values of the Fourier modes of
ρ, from mode k = 1 to mode k = 5. For this simulation, a
standard run is used with the following numerical param-
eters: non uniform mesh, with Nv = 16384, ∆t = 0.00625
and 6th order Vlasov-Poisson splitting scheme. The run
took about 11 hours, that is 39600 seconds.

On Figure 7, we compare (for checking the accuracy in
velocity) two runs with ∆t = 0.025, the first one with
Nv = 16384 and the second with Nv = 32768, and other
parameters are similar than the standard run. The first
run took 13799 seconds, and the second, 24959 seconds.

On Figure 8, we compare the standard run with a time
refined run: ∆t = 0.0015625, and other same numerical
parameters as the standard run. The run took 69540 sec-
onds on 1024 processors (64 nodes; each node having 16
threads).

On Figure 9, we compare the time refined run with a re-
fined run using Strang splitting : ∆t = 0.001171875, and
other same numerical parameters as the standard run.

On Figure 10, we compare the refined run using Strang
splitting with a less refined one: ∆t = 0.003125, and other
same numerical parameters as the refined run using Strang
splitting.

We see here that convergence in time is quite difficult to
achieve; a restart strategy should be added for having the
possibility to make longer runs (typically more than 24
hours).

We also remark that Strang splitting leads to results with
similar accuracy, for a given computational effort; how-
ever, if we look for a smaller final time, we can get better
results with the new 6th order scheme (results not shown),
taking larger time steps. A further study should be envis-
aged in order to better understand this phenomenon. For
the moment, we expect that the solution is not so smooth
and more complex in the standard case, as we can see it
on the distribution function snapshots.

3.3 Small drive amplitude and different drive times

Finally, we give numerical results, by making vary the
drive time Tdr, in the case of the small drive amplitude
adr = 0.00625. We take the same numerical parameters
than the standard run of the small drive amplitude case;
the only difference is that we take the final time T = 10000
and we change Tdr. On Figures 11 to 18 , delta-f distri-
bution function is plotted at times T = 1000 + i1000, i =
0, . . . , 9 and the 5 first ρ harmonics, that is the abso-
lute values of the Fourier modes of ρ, from mode k = 1
to mode k = 5. The values of Tdr change successively:
100, 125, 150, 175, 200, 250, 300, 400. We observe form-
ing and ill forming KEEN waves depending on the drive
time. This a preliminary parameter study; further inves-
tigations will be pursued [3].

4 Conclusion

Further cross validations should be pursued, by using other
non uniform methods, as developed in [18], for example.
New numerical experiments by changing the physical pa-
rameters can then be continued and important physical
diagnostics should be added and consolidated, for work-
ing with large meshes and huge number of processors; as
already said, the extension to 2D× 2D simulations is also
envisaged. Of course, such simulations open also the door
to design or test other new resolution techniques, that
would use less complexity with similar numerical accu-
racy. It is also important to extend these techniques to the
Vlasov-Maxwell setting and consider stimulated KEEN
wave scattering, SKEENS and its interaction with SRS as
well as to study KEEN-KEEN interactions and KEEN-
EPW interactions. The later requires fine mesh solutions
to encompass the entire region of velocity where the EPW
phase velocity is and the KEEN wave phase velocity. This
requires at least three times as wide a range in finely re-
solved v than was used in this paper.
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nendrücker, Long time evolution of KEEN waves excited
with low levels of ponderomotive drive, in preparation.

4. I. Bernstein, J. M. Greene, and M. Kruskal, Exact
nonlinear plasma oscillations, Phys. Rev. 108, 546, 1957.

5. M. Brunetti, V. Grandgirard, O. Sauter, J. Va-
clavik, L. Villard, A semi-Lagrangian code for nonlinear
global simulations of electrostatic drift-kinetic ITG modes,
Computer Physics Communications 163 (2004) pp. 1-21.

6. F. Casas, N. Crouseilles, E. Faou, M. Mehrenberger,
High-order splitting in time for the Vlasov-Poisson equation,
in preparation.

7. Y. Cheng, I. M. Gamba, P. J. Morrison, Study of
conservation and recurrence of Runge-Kutta discontinuous
Galerkin schemes for Vlasov-Poisson systems, J. Sci. Com-
put. 56 (2013), pp. 319-349.

8. C. Z. Cheng, G. Knorr, The integration of the Vlasov
equation in configuration space, J. Comput. Phys. 22 (1976),
pp. 330-351.

9. N. Crouseilles, M. Mehrenberger, E. Son-
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Fig. 1. Small drive amplitude case

Fig. 2. Small drive: uniform vs [non-uniform]

Fig. 3. Small drive: Strang vs [6th order scheme]

Fig. 4. Small drive: ∆t = 0.5 vs [∆t = 0.25]

Fig. 5. Small drive: Nv = 16384 vs [Nv = 65536]
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Fig. 6. Standard case

Fig. 7. Standard case: ∆t = 0.025, Nv = 16384, [32768]

Fig. 8. Standard case: ∆t = 0.00625 vs. [∆t = 0.0015625]

Fig. 9. Standard case: ∆t = 0.001171875, Strang,
vs. [∆t = 0.0015625, 6th order scheme]

Fig. 10. Standard case: Strang, ∆t = 0.003125, [0.001171875]
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Fig. 11. adr = 0.00625 and Tdr = 100 Fig. 12. adr = 0.00625 and Tdr = 125
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Fig. 13. adr = 0.00625 and Tdr = 150 Fig. 14. adr = 0.00625 and Tdr = 175
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Fig. 15. adr = 0.00625 and Tdr = 200 Fig. 16. adr = 0.00625 and Tdr = 250
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Fig. 17. adr = 0.00625 and Tdr = 300 Fig. 18. adr = 0.00625 and Tdr = 400


