| Les deux révisions précédentes Révision précédente Prochaine révision | Révision précédente | 
| publi [2020/07/02 10:08]  –  mca00a29 | publi [2025/10/07 16:26] (Version actuelle)  –  mca00a29 | 
|---|
| **//Publications// :** | **//Publications // :** | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
| - L. Cardoulis, M. Cristofol and M. Morancey "A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide" soumis à MCRF (2020) |  | 
|  |  | 
| - M. Cristofol, L. Shumin  and Y. Shang "Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part II: some inverse problems" soumis à MCRF (2020) | - M. Cristofol and A. Kawano  "Inverse problems for the diffusion equation with one time observation.", soumis à Nonlinear Analysis  (2025) | 
|  |  | 
|  |  | 
|  | **//Articles publiés dans des revues internationales à comité de lecture // :** | 
|  |  | 
|  | 39- - M. Cristofol and M. Yamamoto  "Inverse stable reconstruction of 3 coefficients for the heterogeneous Maxwell equations by finite number of partial interior observations",  Inverse Problems, 40,  (2024), 065014 (17pp) | 
|  |  | 
| **//Articles publiés dans des revues internationales à comité de lecture // :** | 38- L. Cardoulis and M. Cristofol  "An inverse problem for a generalized Fitzhug-Nagumo type system",   Applicable Analysis, Vol. 103, N°. 11, 1990–2002 (2023) | 
|  |  | 
|  | 37- M. Cristofol, S. Li  and Y. Shang "Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part II: some inverse problems" Mathematical Methods in the Applied Sciences, vol 46, issue 12, (2023) | 
|  |  | 
|  | 36 - L. Cardoulis, M. Cristofol and M. Morancey "A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide" , Mathematical Control and Related Fields, Vol 11 N°4, 965-985  (2021) | 
|  |  | 
| 35 - M. Cristofol and L. Roques "Simultaneous Determination of Two Coefficients in Itô Diffusion Processes: | 35 - M. Cristofol and L. Roques "Simultaneous Determination of Two Coefficients in Itô Diffusion Processes: | 
| Theoretical and Numerical Approaches" dans Inverse problems and related topics, 47–57, Springer Proc. Math. Stat., 310, Springer,  (2020). | Theoretical and Numerical Approaches" dans Inverse problems and related topics, 47–57, Springer Proc. Math. Stat., 310, Springer,  (2020). | 
|  |  | 
| 34 - M. Bellassoued, R. Brummelhuis, M. Cristofol and E. Soccorsi "Stable reconstruction of the volatility in a regime-switching local volatility model",  Mathematical Control and Related Fields, V10, N°1, 189-215 (2020). | 34 - M. Bellassoued, R. Brummelhuis, M. Cristofol and E. Soccorsi "Stable reconstruction of the volatility in a regime-switching local volatility model",  Mathematical Control and Related Fields, Vol10, N°1, 189-215 (2020). | 
|  |  | 
| 33 - L. Beilina, M. Cristofol and S. Li "Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem" dans Nonlinear and inverse problems in electromagnetics, 133–145, Springer Proc. Math. Stat., 243, Springer, Cham, (2018). | 33 - L. Beilina, M. Cristofol and S. Li "Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem" dans Nonlinear and inverse problems in electromagnetics, 133–145, Springer Proc. Math. Stat., 243, Springer, Cham, (2018). | 
|  |  | 
|  |  | 
|  | **// Direction d'ouvrages collectifs ://** | 
|  |  | 
|  | L. Beilina, Michel Cristofol, Maïtine Bergounioux, Anabela da Silva, Amelie Litman. Mathematical and Numerical Approaches for Multi-Wave Inverse Problems, Marseille, CIRM, France. 328, Springer, (2020), Springer proceedings in Mathematics & Statistics, 978-3-030-48633-4. ⟨10.1007/978-3-030-48634-1⟩. ⟨hal-02951593⟩ | 
|  |  | 
|  |  |