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O. Introduction 

Let G be a real semi-simple Lie group, connected, with finite center, and K a 
maximal compact subgroup of G. In this paper, we study multipliers of the 
convolution algebra ~(G)(K) of smooth, compactly supported functions on G, 
which are left and right K-finite. By a multiplier we mean a linear en- 
domorphism commuting with the left and right actions of the algebra. Essen- 
tially we construct a subalgebra of the algebra of multipliers of ~(G)(K~ (Th. 3). 
This result was originally proved by Arthur (cf. [1], Theorem III.4.2), but his 
proof rests on a Paley-Wiener theorem for real semi-simple Lie groups, the 
proof of which is very difficult (cf. [1], Theorem III.4.1). Our construction of 
multipliers for ~(G)o:) is simple and elementary. Let us explain our argument 
in more detail. 

Let g be the Lie algebra of G, g = ~ O p  a Cartan decomposition of g with 
Cartan involution 0, gc the complexified Lie algebra of g. We set n = [ ( ~ i p ,  q 
=iu .  Then g e = u O q  is a Cartan decomposition of ge (viewed as a real Lie 
algebra). 

Let t~ be the Lie algebra of a maximally split 0-stable Cartan subgroup of 
G. Then D~=tr  where t,=b,n~, % = b c n p .  Moreover a=it4,G % is a 
Cartan subspace of q, and (br is a Caftan subalgebra of gr We denote by W e 
the Weyl group of the pair (gr (br which acts on a. 

Now we denote by Gr the connected, simply connected Lie group with Lie 
algebra 9r and by U the analytic subgroup of Gr with Lie algebra u. 

Let g(Gc/U)(resp, g'(U\GcJU)) be the space of smooth functions on Gc/U 
(resp. the space of compactly supported distributions on Gr biinvariant under 
U). 

From the spherical Paley-Wiener theorem (cf. [4]), for each z in g'(a) we 
(compactly supported, We-invariant distribution on a) there exists a unique 
in g'(U\GeJU) the spherical Fourier transform of which is equal to the usual 
Fourier transform of z, {. The right convolution by ~ determines a continuous 
endomorphism T~ of N(Gc/U) which commutes with the left translations by 
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elements of G c. We show in Theorem 1 that every such map is a right 
convolution by an element of ov'(U\GrJU), i.e. is one of the T~. Now, from the 
Flensted-Jensen correspondence between certain functions on dual symmetric 
spaces (cf. [2]), we know that there exists an injection ~/of ~(G)(K ) in g(Ge/U), 
with remarkable properties. It is easy to show that each T~ leaves stable the 
image of t/, hence T~"=q-lo T~o~/ is a well defined endomorphism of 9(G)~r). 
From the properties of q, it is easy to see that T~ commutes with the left and 
right actions of the enveloping algebra U(g) of g on N(G)~K). 

We show in Theorem 2 that this suffices to ensure that T~" is a multiplier 
for ~(G)~K). Finally, we have defined a map (z~T~) from oV'(a) we into the 
algebra of multipliers of the algebra ~(G)(K). Now we identify Z(g), the center 
of U(g), with S(a) we. Then we show in Theorem 3 that, for any element q~ of 
@(G)(K) and any principal series representation (re, H~) of G with infinitesimal 
character )~v(vea~), g(T~"~0)=f(v)n(q~). This concludes the comparison with the 
multipliers constructed by Arthur in [1], Th. III.4.2. Notice that this theorem is 
an analogue of a Bernstein's result for p-adic groups. 

In paragraph 1, we introduce the general conventions. 
In paragraph 2, we introduce the Flensted-Jensen correspondence and es- 

tablish some of its properties needed in the sequel. 
In paragraph 3, we study the Gr of N(GcJU) (Th. 1). 
In paragraph 4, we construct certain multipliers for the convolution algebra 

(G)(K) and establish some of their properties. 

1. Preliminaries and notations 

1.1. If E is a vector space over R or C, we denote by E* its algebraic dual. If 
E is a real vector space we denote by EQ: its complexification and by S(E) the 
symmetric algebra of E c which will be identified with the algebra of poly- 
nomial functions on E~:. Sometimes, in this paper, we will complexify vector 
spaces which are already defined over C, viewing them as real vector spaces. In 
particular, if E is a real vector space with an automorphism a, denoting by )f 
the conjugate of X in E c with respect to the real form E of E c and also by a 
the complexification of a, the complexification of the R-linear map from E~ 

into E c x  Er defined by X--*(X, a(X)) extends to an isomorphism of complex 
vector spaces from (Er e into E c x E e denoted by & 

1.2. If I is a real Lie algebra, we denote by U(1) the enveloping algebra of the 
complex Lie algebra Ir and by Z(I) the center of U(1). If I is already a complex 
Lie algebra, we regard it as a real one and use the same notation. In particular, 
if I is a real Lie algebra, with an automorphism a, the C-linear isomorphism 
from I e into Ir x I e is an isomorphism of Lie algebras which gives rise to an 
isomorphism of algebras denoted also by 6 from U(le) onto U(1)| U(I). 

1.3. If L is a group, we denote by Z(L) its center. If ~ is an L-module, we will 
denote by ~L) the space of L-finite vectors in L. If J /  is an Lx L-module, by 
abuse of notations we will often denote by ~'(L) the space of Lx L-finite vectors 
in Jg, instead of ~I~L • L)" 
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Now suppose that o~ is an L-module and 6 a finite dimensional simple L- 
module, then we denote by ~-6 the subspace of elements in o~L ) which generate 
an L-module isomorphic to a multiple of 6. ~ 6  is the isotypic component of 
of type ft. If J// is an Lx L-module and 6, 7 are finite dimensional simple 
representations of L, we denote by ~/~7 the isotypic component of J// of type 
6| 

1.4. We will say that a linear map from a topological vector space into another 
is a topological embedding if and only if it is injective, has a closed image and 
is bicontinuous on its image. From the closed graph theorem for Fr6chet 
spaces, an injective continuous linear map between Fr6chet spaces is a to- 
pological embedding iff it has a closed image. 

1.5. If X is a differentiable manifold, we denote by @(X) (resp. g(X), resp. 
g'(X)) the space of compactly supported smooth functions (resp. smooth func- 
tions, resp. compactly supported distributions) on X endowed with its usual 
(strong) topology. 

2. On the Flensted-Jensen correspondence between functions 
on dual semi-simple symmetric spaces 

2.1. Let G be a real semi-simple Lie group, connected, with finite center, g its 
Lie algebra, g=l~Gp a Cartan decomposition of g with Cartan involution 0. 
Let G C be the simply connected, connected Lie group with Lie algebra gr Let 
K be the analytic subgroup of G with Lie algebra [. Let K0, Kr U be the 
analytic subgroups of Gr with Lie algebras [, ~,  u = I O i p .  Notice that U is a 
maximal compact subgroup of Gr g r  is a Cartan decomposition of gc 
(where q=iu). Let % be a Cartan subspace in p, M e the centralizer of % in K 
and t o a Caftan subalgebra of the Lie algebra me of M e. Then a=itcG% is a 
Cartan subspace in q. Let t = i a ,  Ib=t@a, [,=t,(~%. Then b (resp. b,) is a 
Cartan subalgebra of the complex (resp. real) Lie algebra gr (resp. g). Let We 
be the Weyl group of the pair (gr b). It is also the Weyl group of the pair 
(g,I)o) ("complex" Weyl group of g). It acts on I), a. Notice that W C is the 
("small") Weyl group of G c. Let Ar (resp. A, H, T) be the analytic subgroup of 
G (resp. Ge) with Lie algebra % (resp. a, b, t) and P~=M~AeNr (resp. B=HN) 
a minimal parabolic subgroup of G with nilradical Nr (resp. a Borel subgroup 
of G e with nilradical N) such that the Lie algebra n ,  of Nr is contained in the 
Lie algebra n of N. We will denote by tl II the norm on q derived from the 
restriction of the Killing form of gr (regarded as a real Lie algebra) to q. This 
induces a norm on p which is the norm derived from the restriction of the 
Killing form of g to p (up to a multiplicative constant). 

For r>0 ,  we set: 

B,= {Xea[ llXI] <r}, 

C,={Xeq][IXll~r}, 

D,={XeplIIXII~r}. 
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2.2. From 1.2, we have a canonical isomorphism 0 from U(g 0 onto 
U(g)| U(O ) derived from the Cartan involution 0 of ft. The inverse map will be 
denoted by t/ in the sequel. Denote by D(GcJU) the algebra of Gc-invariant 
differential operators on Gc/U. We have an isomorphism, denoted also by q, 
from Z(g) onto D(GeJU). Using the well known Harish-Chandra homomor- 
phism, we identify D(Ge/U) with S(a) wC. For all of this, see [2], w167 7. 

For v~a~:, we will denote by Zv the corresponding character of S(a) we, 
D(Ge/U ) and Z(g). 

2.3. Let (~ be the universal covering group of G, a n d / (  the analytic subgroup 
of G with Lie algebra L T h e n / (  is the iniversal covering group of K and K o. 
We denote by rc o the canonical projection of / s  on K 0 and by Z o the kernel of 
n o. Then Z o is central in G. We set 

ZI={(z,z)Iz~Zo} and K~=~ZxR/Z 1. 

From 1.2, we have a canonical isomorphism between (f x f)c and ([r162 
(associated to the identity automorphism of ~). So we have a natural one-one 
correspondence between finite dimensional representations of [ x ~ and fc- On 
the group level, this gives a natural one-one correspondence between finite 
dimensional representations of K~ and K c (cf. [2], proof of Theorem 2.3). 

On the level of functions, this gives a canonical linear bijection ~/0 between 
the space g(K~)~Kr~ of left K~-finite smooth functions on K~" and the space 
g(Ke)(Kr of left Ke-finite smooth functions on Ke (cf. [2], proof of Th. 2.3 and 
Th. 7.1). 

One can define r/o in the following way: Let q~ be in g(K~)o:r) and V be 
the finite dimensional K~'-submodule of g(K~)(Kr) generated by ~p. Let fie be 
the element of the dual V* of V defined by ( 6 e , r 1 6 2  for all r in V. By 
what has been said previously, we have also a canonical action of K C on V. 
Then we define (qo(Cp))(k)=(be, k-l~o) for all k in Kr Clearly t/o(q~ ) is in 
g(Ke)tK o.  It is easy to deduce from this definition that, if V 1 is a finite 
dimensional K~-submodule of 8(K~') and fie is again the restriction to I/1 of 
the Dirac measure at the origin, for all ~o in V~ and k in K e we have (r/o(~O))(k) 
=(6e, k-lq~) where V~ has been endowed with its natural structure of K e- 
module. 

2.4. Let us define: 

i: ~(d~)--..~(gxg)| (=~(gxgx~,)), 
by: 

Vrp~8((~), Vkl,k2~Z, VX~p, (iq~)(k~,k2,X)=qo(k~.expX.k2~). 

Then i is obviously continuous. From the Cartan decomposition, 
= / ( expp ,  it follows that i is injective. It is an easy consequence of [2] (w and 
Lemma 2.1) that i has a closed image. Therefore, from 1.4, i is a topological 
embedding. 

Moreover, Z o being central in G, for each function q~ on G, we have 
f(zgz-~) =f(g) for all g in G and z in Z o. This implies that the image of i is 
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contained in g ( K 1 ) Q g ( p ) ,  when we regard g(K~)  as a (closed) subspace of 
~(/~ • Therefore i is in fact a topological embedding: 

i: g((~)~g(K~')(~ g(p). 

Similarly, let us define: 

by: 
J: g(GdU)~g(Kr 8(p) ( = g ( K  c • p)) 

V~k~(G~/U), Vk6Kr VX~p, (l'(~,))(k,X)=~b(k(expX)U). 

The map J is obviously continuous. It follows from [2], Lemma 2.1, that j has 
a closed image. As Ge=Ke(expp)U, J is injective, hence it is a topological 
embedding (cf. 1.4). 

From the definitions we deduce easily: 

j (o v (Ge/U)(K~)) c ~ (Kc)(Kc) | 8 (p). 

Here g(t~)(k) is the subspace of left and right/~-finite elements in g(G). 

2.5. It follows from [-2], Theorem 2.3, Theorem 7.1, that there exists a unique 
linear map F/from g(G)~g) into g(GrJU)(~c ) such that the following diagram is 
commutative 

g(GdU)(K~:) J ,g(Kc)(rr174 ). 

Moreover, ~ is a linear isomorphism, and if we endow g(G)(g) (resp. 
g(GcJU)(Kc~) with its natural structure of U(g) |  (resp. U(gc))-module 
derived from the left and right regular action of G (resp. left regular action of 
Go) we have: 

VD~Z(g)w U(g)|  U(g), Vcp~(G)(g~, (D~p)~=D~p ~. 

2.6. Now we embed g(G)(K) in 8(G)~g). This subspace of o~(d)($) is the space of 
smooth functions on G, which generate a fnite dimensional K x/~-submodule 
of N(d) which factors through the quotient to K x K. Now let 6, 7 be in /~  (the 
set of equivalence classes of finite dimensional irreducible representations of K) 
such that ~f(G) ~ is non zero. Then the lift of 6 | 7 to /~  x/s  factors through the 
quotient by Z 1 in a representation of K~ (see 2.4). Let us denote by (6,7) the 
corresponding representation of K c (see 2.3), which is simple, as is 6@7. We 
denote by K~ the set of classes of equivalence o._gff irreducible representations of 
K c obtained in this way: a generic element in K C will be denoted by (6, 7) (with 
6, ~ in/() .  
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Proposition 1. Denote by r 1 the restriction of @ to 8(G)tr ) embedded in 8(G)(g) 
and ~(G)~r) the image of ~l in ~(GcJU)(rr ). Then: 

(i) The linear map r 1 is a bijection between r and ~(G)~r), and is the 
unique linear map making commutative the following diagram: 

8(G)(K ) i ,8(K~)(KZ~|  ) 

(D) lO j 1"o | 

8(Ge/U)(Kr , r | r 

(see 2.3 for the definition of tl o, and 2.4 for the definitions of i and J). 

(ii) VD~(U(9)| U(g))wZ(9), Vr (D~o)"=D"q~". 
(iii) For each 6, 7 in I( such that g(G) ~ is non zero, g(GcJU) (~'" is closed in 

g(Ge/U) and t 1 is a topological isomorphism between o~(G) ~ and g(GcJU) (6'~). 
(iv) 8(G)~x)= @~d~(GrJU) ( ' ' ' .  

(~,y)eK c 

Proof. (i) and (ii) follow from the properties of 0 quoted in 2.5. Now, retain the 
notations of (iii). We have seen that ~ | 7, when lifted t o / (  •  factors through 
the quotient by Z~ in a representation of K~, also denoted by 6|  Y. 

It is clear that ~(K~) ~| is isomorphic to ~(K)~| the spaces ~(K) ~ 
and ~(K) ~ being finite dimensional by the Peter-Weyl theorem for compact 
groups. On the other hand, we deduce from the definition of t/o (cf. 2.3): 

~ ( K J  6," = rio (~(K 1)6 | 0. 

Hence d~(Ke) (~'" is finite dimensional and this implies that N(Kr | g(p) is 
closed in ~(Kr x p). As j is a topological embedding of N(Ge/U ) in g(Kr  x p) 
(cf. 2.4), we deduce, from the obvious equality: 

j (~ (GcJ U) (~'~)) = j (o ~ (Gr c~ (~ (Kr (~'" | e (p)), 

that o~(GdU) (~'r) is closed in g ( G d U  ). Then (iii) and (iv) follow easily from the 
commutativity of (D) and from the properties of i and j. 

2.7. Denote by ~(G) (resp. ~re(Ge/U) the space of compactly supported (resp. 
compactly supported modulo Kr smooth functions on G (resp. GcJU) endowed 
with its natural inductive topology. As every compact subset of G (resp. 
compact subset modulo Kr of Gc/U) is contained in KexpD, (resp. 
Ke(expD~) U) for some r >__0, setting 

and 

we have: 

~,(G) = {~o I q ~ ( G ) ,  Supp ~o c K exp D,} 

N,,Kc(GdU) = {Ol~k ~Ke(GcJU),  Supp~ c Ke(expD,) C}, 

Moreover ~(G) (resp. ~Kc(GrJU)) is the inductive limit of the ~r(G) (resp. 
~,,Kr endowed with the topology induced from g(G) (resp. 8(GeJU)). 
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We will denote by ~,(GcJU)(Kr ) (resp. ~(GeJU)(Kr the space of left K e- 
finite elements in ~,.Ke(GcJU) (resp. ~r 

Attention. Notice that ~(Ge/U)(xr ) is not the space of left Kr elements in 
~(GcJU) which is reduced to zero. 

Similarly, for (6, 7)eK e, we set 

(G d U)(o, 7) = 9 (GeJ U)(Kr ) c~ 8 (Gel U) ~" ~). 

Proposition 2. (i) Let ~o be in ~(G)(~). Then Supp~0 is included in KexpD~/f  and 
only if Suppcp" is included in Ke(expD,)U. 

(ii) 1/ is a topological isomorphism between ~(G) ~r and ~(Ge/U) ~'~), for all 
6, 7 in I( such that ~(G) ~ is non zero. 

(iii) ~(G)~)= @. ~(GcfU) ~'~). 
(~, ~)6K~ 

Proof. We have diffeomorphisms: K x p ~ G  (resp. it x p x U~Gr defined by: 

(k; X)--*kexpX (resp. (X, Y,, u)~(exp X)(exp Y)u) 

(see e.g. [2], 2.1). Then (i) is an easy consequence of Proposition l(i). (ii) follows 
from (i) and Proposition 1 (iii). We deduce (iii) from (i) and Proposition 1 (iv), 

3. Commuting algebra of the left regular action of Gr on ~(GJU) 

3.1. In this part, we will study the continuous linear endomorphisms of 
~(Ge/U ) which commute with the action of Gr We will denote the algebra of 
such maps by Lr(GcJU). We will show (Theorem 1) that Lr(Ge/U ) is canoni- 
cally isomorphic to the convolution algebra N'(a) we of Wr compactly 
supported distributions on a. 

3.2. Let vea~:. Consider the one dimensional representation of B=  TAN which 
is trivial on N and T, whose differential restricted to a is equal to v. Denote by 
rcv the representation of Gr smoothly induced from this representation of B (the 
so-called spherical principal series with parameter v). We will use the compact 
realization of ztv, namely the space of 7r v will be N(U/T), denoted by ) f  in the 
sequel. When veia*, ~ extends to a unitary representation of Gr in 
L2(U/T, dti), where d~/is the U-invariant measure on U/T with total mass one. 

3.3. Let ~ denote the function in J(f which is identically equal to one on U/T. 
The spherical Fourier transform ~b of an element of g'(Gc/U ) is the map: 

~b: a ~ ,  defined by ~b(v)=~(q~)ll. 

3.4. Let g(U\GcJU) (resp. N(U\Gc/U), resp. g'(U\GeJU)) be the space of 
smooth functions (resp. compactly supported smooth functions, resp. compactly 
supported distributions) on G e which are biinvariant under U with its usual 
topology. ~(U\Ge /U ) and g'(U\Ge/U ) are convolution subalgebras of g'(Ge). 



16 P. Delorme 

If (p is in g'(U\Ge/U ) and v in a~:, ~(v) is just a constant function on U/T and 
O(v) is identified with this constant. The spherical Paley-Wiener theorem (cf. 
[4]) asserts that the space of spherical Fourier transforms of elements in 
~(U\Gc /U  ) is exactly the space of usual Fourier transforms of elements of 
~(a)  we. This gives rise to a topological isomorphism of algebras between 
~(U\GcJU) and the convolution algebra @(a) wC. It is obvious that this iso- 
morphism extends to an isomorphism between g'(a) and 8'(U\GdU),  denoted 
by z ~ ,  such that the usual Fourier transform of ~ is equal to he spherical 
Fourier transform of ~. Moreover, z in g'(a) we has support in B,, if and only if 

has support in (exp C,) U(=  Uexp C r = U(expBr) U). 

3.5. Theorem l. (i) Let ~ be in g'(a) we and let T~ be the continuous linear 
endomorphism of 8(GcJU) defined by: Vtpeg(G~/U), T~q~=q~,f. Then T~ com- 
mutes with the left action of G c and leaves stable ~(Gc/U ). Its restriction to 
~(Ge/U), denoted also by T,, is a continuous endomorphism of ~(Gc]U) commut- 
ing with the left Gr In other words T~ is in ~(G~/U). 

(ii) The mapz--*T, from the convolution algebra g'(a) wC into the algebra 
(under composition of endomorphisms) ~(GeJU) is an isomorphism of algebras. 

Proof. (i) is clear and the only assertion which is not obvious in (ii) is to show 
that the mapz~T~ is surjective. Let us prove this. Let T be an element of 
~(Ge/U ). Proceeding as in [6] Chap. VI, Theorem X and the remark following 
the proof of this theorem, we get immediately that T is a right convolution by 
a compactly supported distribution on Gr which is invariant under U. From 
the spherical Paley-Wiener theorem, this distribution is of the form ~ for some 
z in r we. Hence T is of the form T~ and the theorem is proved. 1 

3.6. Remark. A similar result holds for any Riemannian symmetric space of 
non compact type. The spherical Paley-Wiener theorem for these spaces is 
needed. Then the proof is exactly the same. We have not  written down the 
proof in the general case, first by economy of notations and references, se- 
condly because it can be easily deduced from our Theorem 3. 

3.7. With the notations of 2.2, let v be in a~ and denote by 8,(GdU) the space 
of joint eigenfunctions under D(Ge/U ) on Gc_/U, with joint eigenvalue X~, 
which is a Go-module for the left regular action of G C. 

Proposition 3. Let z be in ~'(a) we and v in a~. I f  8~(G~fU) is irreducible under 
Gr then for all (p in r Trip is equal to f(v)q). 

Proof. In 8~(Ge/U ) there is a unique biinvariant function under U with value 
one at the origin, the so-called zonal spherical function with parameter v, 
denoted by (p, in the sequel. From the properties of q~ and of the spherical 
Fourier transform, we see that: r �9 ~ = ~ �9 q~ = r tp~. 

In other words: 

T,q~ = ~(v) q~. 

1 I am grateful to M. Duflo and F. Rouviere for having suggested this proof of (ii) which is 
simpler than my original one. 
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As T, commutes with the action of G C and is continuous on g(GrJU), we 
deduce from this that T~o is equal to f(v)q~ for all ~0 in the closed subspace of 
g~(Ge/U ) generated by the orbit of q~v under G C. If gv(Gc/U) is irreducible, this 
subspace is the whole space and this concludes the proof of the proposition. 

3.8. Lemma 1. (i) Let X, Y be in q (resp. p), then there exists a unique Z in q 
(resp. p) such that: 

(exp X) (exp Y) ~_ (exp Z) U (resp. (exp Z) K). 

Moreover: 

]]Zll < NIX]I + IL VII. 

(ii) Let Z' be in q. There exists a unique (X', Y') in i[ • p such that: 

exp Z' 6 expX' exp Y' U. 
Moreover: 

fiX'If2 ~-~ llXtH 2-]- It Y'[I 2. 

Proof. (i) We introduce the geodesic distance d on the Riemannian symmetric 
space Ge/U (resp. G/K). It is well known that d is invariant under G c (resp. G). 

t-a-... 
Moreover: V X ~ q (resp. p) d(d, expX)= IIXIL. Here, for g in G e (resp. G) we 

denote by g the class of g modulo U (resp. K). The existence of Z in (i) follows 
from the Caftan decomposition of G~ (resp. G) with respect to U (resp. K). 
Then we have: 

~ �9 
II Z II = d(d, exp X exp Y) = d(exp - X, ex '~ ) ,  

hence, by the triangular inequality: 

H Z I] < d (exp-  X, d)+ d(d, exp Y)= II X Lt + t[ Y I[. 

So (i) is proved. 

(ii) As the map i{ x p x U-+G c defined by (X, Y,, u)-+expX exp Yu is a dif- 
feomorphism (cf. e.g. [2], 2.1), the existence of (X', Y') in (ii) is clear. Now 
GeJU is a Riemannian space with negative curvature and the exponential map 
at any point in this Riemannian space is a diffeomorphism. Then it follows 
from [3], Corollary 13.2, that for any geodesic triangle in Ge/U, ABC, with AB 
perpendicular to A C we have: 

d(A, B) 2 +d(A, C) 2 <d(B, C) 2 (Pythagorian theorem in GrJU). 

As p is orthogonal in iI in q we can apply this to the triangle 

(d, e x p - X ' , e x p Y ' )  in GeJU 

and we get: 

lIx'  II 5 + mr Y' rl 2 __> (d(exp -- X'), 
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From the Ge invariance of d we also have: 

d(ex~p--X ', ex~'ff~')= d(d, ( e ~ ' ) ) =  [[Z'M 

and (ii) follows. 

3.9. Proposition 4. Let z be in 8'(a) we with support in Bro. Then: 

(i) I f  q9 in r is supported by Ke(expD,)U for some r, T~q~ is sup- 
ported by Ke(exp D,+,o ) U. 

(ii) For each (fi, 7) in Kr T~ leaves stable ~(Gc/U) O'r~ and @(Ge/U) ~'r~. 
Moreover T, induces a continuous endomorphism of these spaces, when they are 
endowed with their natural topologies. 

Proof. (i) As T~ is a right convolution by the distribution ~, which has its 
support contained in expC,oU (cf. 3.4), it follows that T,q~ has its support 
contained in: 

F = Ke(expD,) U exp C,o U. 

But, as Ke=(expit)K,  we have: 

Ke(expD,) U =(exp iI)(exp D,) U. 

We have also: 

U exp C,o = (exp C~o ) U. 

Hence: F = e x p  it expD r exp Cro U, and if x is in F, we have: 

3(X, Y,Z,u)e(i~)xD, x C,oX U, x=(expX)(exp Y)(expZ)u. 

From Lemma 1 (i), it follows that: 

3Zxeq, IlZall<llYIl+llZll, (expZOU=(expX)(exp Y)u 

and from Lemma 1 (ii) we get: 

3Xxeit, ?Ya~o, IIXall2+llYall2<llZxll 2, (expZOU=(expX1)(expY1)U. 

But [IYll<r, IlZl[~r o implies IlZxll<r+ro, thus I[Yxll<r+ro, and x is in 
K c expDr+~o U and (i) is proved�9 

(ii) As T~ commutes with the left translations by K C, and is continuous on 
g(GeJU), it is clear that T~ is a continuous endomorphism of ~(GcJU) ~'~. 
From this and (i), we deduce immediately that T, is a continuous endomor- 
phism of ~(Ge/U) t~'~). 

4. Multipliers for the algebra ~(G)~s) 

4.1. The convolution algebra ~(G)~K) has a structure of left and right ~(G)~K) 
(resp. U(g)-module). Let us denote by ~ (G,  K) (resp. Z(G, K)) the algebra of 
endomorphisms of ~(G)~r ~ which are commuting with these actions of ~(G)IK ~ 
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(resp. U(~)) and which are continuous on @(G) ~r for all 6, 7 i n / ( .  In [1], it is 
stated that ~(G,  K) is equal to Z (G, K). We will deduce this equality from the 
abstract Plancherel theorem. 

4.2. Lemma 2. (i) Let dg be a complete, locally convex space, with a smooth G- 
action such that Z(g) acts on Jtl by a character. Let JV" be a K-stable subspace 
of JgtK) such that ~V ~ is closed in Jg, for all 6 in I(. Let fV" be the closure of JV" 
in J[. Then the following properties are equivalent: 

(a) ~ i s  G-invariant. 

(b) J ' i s  ~(G)~r)-invariant. 
(c) ,A r is U(g)-invariant. 

I f  one of these properties is true, JV'= Xc~ ~ttr ). 

(ii) Let J l l ,  Jlt 2 be complete, locally convex spaces with smooth G-actions, 
and let T be a linear map from (Jlgl)<K ~ into (~//2)(K)' continuous on Jinx for all 
in I(. I f  T satisfies one of the following properties: 

(a') T is a ~(G)tr)-morphism, 

(b') T is a U (g)-morphism, 

then T is a K-map. 

Moreover, if Z(g) acts by a character on both ~[x and ~[2, the properties (a') 
and (b') are equivalent. 

Proof. (i) First assume (b). Then ~/" is obviously invariant under ~(G), hence 
G-invariant and (b) implies (a). 

Now, assume (c). An easy adaptation of I-7], Theorem 3.23 to the case of 
complete, locally convex spaces implies that X is stable under G which shows 
that (c) implies (a). 

Finally, assume (a). As JV" is K-stable, it is obvious that (~)~ is equal to the 
closure of A/*. 

From the hypothesis on A r we deduce that (,~)~r)= Ar and this implies that 
(b) and (c) are satisfied. This finishes the proof of (i). 

(ii) Let us show that, if one of the properties (a') or (b') is satisfied, T is a 
K-map. 

First assume (a'). If 6 is i n / (  we denote by %~ the normalized character of 6 
and view it as a distribution on G, supported by K. We can approximate, in 
g'(G), the Dirac measure at any point k of K by a sequence (q~k) in ~(G). 
Denote by n i (i = 1, 2) the representation of G in Jgi. Then: 

V ~ E g ,  V v ~ ,  n~(Z~)v=v, 

and: 

V fi~/(, V v~ /~ i ,  V k e K ,  rci(k)v= lim r~i(ZO*tpk*x~)V. 
l i f o 0  

Now, for all n in N, )~a. q~k. Z~ is in ~(G) ha. From this, the assumption (a') and 
the continuity of T on ~r we get: 

V 6 e / ( ,  V v~ J[~, V k ~ K ,  T(~ta(k)v)= lim ~2(zo*q~k,*zn)Tv. 
rl ~ o o  
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Hence: 

V ~ I ( ,  Vv~Jr Vk~K, T(ltl(k)v)=(lt2(k))(Tv ) 

and T is a K-map if (a') is true. 
Now assume (b'). Then, as K is connected and T is a f-map continuous on 

Jg~ for all 6 in / ( ,  it is clear that T is a K-map. Then, if Z(g) acts by the same 
character on both ~t' 1 and J/E, the equivalence of (a') and (b') is easily deduced 
from the equivalence of (b) and (c) in (i) applied to the graph of T. 

4.3. Let Z be a character of Z(g) and I z its kernel. Let Jz be the closure of 
Iz~(G)=~(G)I  x in ~(G) and Jz=Jxc~(G)(x). Then obviously J~ (resp. Jx) is a 
two-sided ideal in ~(G)a~) (res p. ~(G)), stable by left and right translations by 
elements of K. Moreover Jx is stable by left and right translations by elements 
of G (as Ix~(G)=~(G)I x is) and, for all 6, ~ in K, J ~ ( = J z c ~ ( G )  or) is the 
closure in ~nr(G) of Iz~(G) ~. We also have: 

Jx= ,G gJ~x" 

Now let us consider the G x G-module @(G)/J x. It is clear that ~(G)(K)/J x 
embeds in it and is its subspace of K x K  finite vectors and we have a 
topological isomorphism between (~(G)/Jx) ~ and ~(G)~/J~ ~. Moreover 
Z(~)| acts by Z|  on ~(G)/Jx. 

4.4. Lemma 3. Let T be in Z(G, K). Then, for any character Z of Z(~): 

(i) r leaves stable Jx" 
(ii) Denoting by T z the quotient map Tx: ~(G)a~)/Jx~(G)tK)/Jx, T x commutes 

with the right and left actions of ~(G)~K). 

Proof. As T(Ix~(G)o:))=Ix(T@(G)tK) ), (i) follows from the properties of Jz and 
the continuity of T on each ~(G) ~. 

On the other hand, (ii) follows from Lemma 2(ii) (applied to G • G and Tz 
which is a U(g)Q U(g) map) and from the properties of ~(G) /J  z quoted above. 

4.5. Lemma 4. The intersection of the Jx over the characters )~ of Z(fl) is reduced 
to zero. 

Proof. Every element q~ in this intersection is in the annihilator of any G- 
module with an infinitesimal character. As the smooth G-module of smooth 
vectors of any irreducible unitary representation of G has an infinitesimal 
character, q~ annihilates any irreducible unitary representation of G. From 
Plancherel's abstract formula for G, this implies that q~ is the zero function and 
the lemma is proved. 

4.6. Theorem 2. The algebra Z(G, K) of U(g)-endomorphisms of ~(G)~r) is equal 
to the algebra .~(G, K) of multipliers of ~(G)(r). 

Proof. Let T be in ~e(G, K). From Lemma 2(i), T is a K • K-map. One sees 
easily that T admits a closure T whose graph is G x G-invariant. From which it 
follows that T is in Z(G, K). Thus we have proved that ~(G,  K) is contained in 
Z(G, K). 
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Let us prove the reversed inclusion. Let T' be in Z(G,K). Then, from 
Lemma 3(ii), we know that: 

Vz6Z(g)  ^, V(p,q/e~(G)(K ), (p*(T'~)-T'(q)*O)~J x 
and 

A 

V z E Z ( g ) ,  Vq),~0~(G)(10, (T 'q ) )*r162  x. 

From Lemma 4 one deduces that it implies: 

V (p, ~k 6 ~(G)(K) , ~o,(T't//)=T'(q~,~)=(T'q~),6. 

Hence T is in ~e(G, K) and this finishes the proof of the theorem. 

4.7. We now turn to the main result of this paper (which we recall has been 
proved first by J. Arthur (cf. [1], Theorem 4.1)). 

Let z be in g'(a) wC. It follows from Propositions 1, 2, 4 that Tr leaves stable 
~/(8(G)(to ) and t/(@(G))~, hence T~"=t/-1 o To t/ is a well defined endomorphism 
of ~(G)(r) and ~(G)(K). 

Theorem 3. (i) For each z in 8'(a) we, the endomorphism T~ ~ of ~(G)(K) (resp. 
N(G)(K) ) commutes with the left and right actions of U(g) and ~(G)(K). 

(ii) I f  z has support in Bro, T~ sends ~r(G)(K) into ~,+,o(G)(r). 
(iii) Identifying Z(g) with S(a) we as in 2.2, for all vea~: and any principal 

series representation (~, H~) of G with infinitesimal character )~v we have: 

v q) ~.~(( ;)( ,  o ~(T&o) = ~(v) ~(~o). 

(iv) The mapping ~ T ~  is an algebra homomorphism from 8'(a) we into 
~:(G, K). 

Proof. (i) From the properties of T~ and t/ it follows easily that T:, as an 
endomorphism of ~(G)(K) is in Z(G,K); hence, from Theorem m, Tf is in 
~(G,  K). By a continuity argument, this implies that T~", as an endomorphism 
of 8(G)(r), commutes with the left and right actions of U(g) and ~(G)(K) and (i) 
is proved. 

(ii) is a consequence of the Propositions 2 and 4. 
(iii) Let a be a (finite dimensional) irreducible unitary representation of Me, 

~. an element of (%)~: and (n~,~, H~,~) the corresponding principal series ob- 
tained by inducing from M4,Ac~N ~ to G the representation a |174  1~,. 

The space r of coefficients of the K-finite vectors of H~,a is a @(G)(r) 
invariant subspace of g(G)(r). If e (resp. f )  is a K-finite vector in H~,z (resp. in 
the topological dual of H~,z), denote by c~,f the corresponding coefficient. Then 
we have: 

V ~o ~ ~(G)c~< ) , ~o*c~,:=c~.,~(~o)~,:. 

On the other hand, following [2], Remark7.2, q(g~,a) is contained in 
6v=.~(GeJU), where v~, z is in a~: and )~v,.~ is the infinitesimal character of rc~,~ 
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(with the identification of Z(g) with S(a) we, see 2.2). From the irreducibility 
criteria of the Gr 8~,,(GcJU) (cf. [5]), it is easy to find a real affine 
subspace E of (%)~:, with the same dimension as %, such that for all 2 in 
E, ~ , ,~  is irreducible. 

Then from Proposition 3 we get: 

Hence, for all K-finite vectors e (resp. f )  in H~,, (resp. * H,,4), with 2 in E, we 
have: 

V q~ 6 ~(G)(~), q~*(Tfce, I)={(%,z)q)*ce,y. 

But: ~o * Ce, f=Cn~,Mq~)e,f. 
Moreover, as T~ ~ is in ~(G,  K), we have also: 

(p �9 (T~ Ce, f )= Z~"(q) * C e, f). 

From the properties of T," proved in (i) and its continuity, we deduce: 

T~" (q~ * ee, y)= (T~ qo) * Ce,f=c~,,(r.o)~,f. 

Finally we get: 

V q~ e~(G)(r) , V2eE,  Vee(Ho, z)(r), Vfe(H*,z)(r) , 

c~o.~lr~ ~)~,2 ~ = ~(%,4) c~,~(,)~,y. 

(H,, 4)(x) (resp. H~,* z) being dense in H,, 4 (resp. Hr 4), it follows that: 

V~pe~(G)~r) , V).eE, rt~,4(T, nq))=f(%,4)rt~,z(q~ ). 

On the other hand f is analytic, and x~,4(T,"q~), rE~,a(~o ) have a well known 
property of analyticity in 2. 

Then, by analytic continuation of the equality above, we get (iii). 

(iv) is clear from (i) and Theorem 1. This concludes the proof of the theo- 
rem. 

Remark. Notice that in general the multipliers of ~(G)or do not extend in a 
continuous multiplier of ~(G). In fact, proceeding as in [6], VI. Theorem X, 
and the remark following this theorem, it is easy to show that a multiplier of 
~(G) is a convolution by a compactly supported distribution, invariant by 
conjugacy. The only compact conjugacy classes of G being the conjugacy 
classes of the elements of the center of G (if G has no compact factors), it 
follows that a multiplier of N(G) is the composition of a translation by an 
element of the center of G and of a convolution with an element of Z(g). 
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