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Introduction 

In the later years several Paley-Wiener type theorems have been established for 

Fourier transforms on special classes of non-fiat symmetric spaces. In particular this is 

so for the case of Riemannian symmetric spaces of the non-compact type, see e.g. 

Ehrenpreis-Mautner [10], Helgason [17] and Gangolli [16], and for the case of the 

semisimple non-compact Lie groups (which in their own right are non-Riemannian 

symmetric spaces), see e.g. Zelobenko [31], Ehrenpreis-Mautner [10], Campoli [5], 

Arthur [1], Delorme [8] and Clozel-Delorme [6] and [7]. 

For a general non-Riemannian semisimple symmetric space G/H, the question of 

how the Fourier transform should be defined and in particular how it should be 

normalized is not definitively clarified. However a fairly explicit Plancherel formula 

has been announced by Oshima and Sekiguchi. A Paley-Wiener type theorem should 

either refer to a specific normalization or it should be formulated independent of 

normalizations. In any case a Paley-Wiener theorem should characterize the image 

under the Fourier transform of natural classes of compactly supported functions or 

maybe classes of very rapidly decreasing functions. 

The main result of this paper is Theorem I, which exhibits a large class of 

functions as Fourier transforms of compactly supported K-finite C| on G/H. 
The proof is in fact rather elementary. However it seems to us, in spite of this, that the 

content of the theorem is not uninteresting. To illustrate this we specialize in Theorem 

2 to the case of a non-compact semisimple Lie group. Theorem 2 was first proved by 

Campoli [5] for the rank one case and in general by Arthur [1]. For them our Theorem 2 

is a simple corollary of their Paley-Wiener theorem, which is rather difficult to prove. 

E.g. Harish-Chandra's Plancherel formula and the theory of differential equations with 
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regular singularities are used. But in fact our Theorem 2 covers most of those functions 

in Arthur's Paley-Wiener-space, for which it is manageable directly to verify the 

conditions. 

Clozel and the first author in [6] have a simpler proof of our Theorem 2 than 

Arthur's, but they still have to rely on the explicit form of Harish-Chandra's Plancherel 

formula. For them our Theorem 2 is a crucial step in the proof of their invariant 

Paley-Wiener theorem. This means that our proof leads to a considerable simplification 

in the proof of their result. Another feature of our proof is that it does not assume 

linearity of the group. 

Following a suggestion by N. Wallach we derive in Theorem 3 an analogue of 

Theorem 1 for C| which decrease "faster than any exponential". Hereby 

we generalize Theorem 1.8 in Delorme [9]. This space of functions 5e0 was fh-st 

introduced to the authors in lectures by Casselman. 

In the last section we use Theorem 1 to derive a Paley-Wiener type theorem for 

the isotropic spaces, which are special examples of rank one semisimple symmetric 

spaces. We use results of Faraut [11] and Kosters [24]. One may remark at this point, 

that Theorem 1 is not really needed in the proof, since explicit calculations and the 

Paley-Wiener theorem for the Jacobi transform suffices for these simple cases. We 

have included these examples of results analogous to the invariant Paley-Wiener 

theorem, because they reveal some non-trivial features, which in contrast to the 

Riemannian case and the group case must be taken into account in one way or the other 

for the general case. In particular only a part of the discrete spectrum can be separated 

from the continuous spectrum in the Paley-Wiener theorem. 

For a general introduction to analysis on non-Riemannian symmetric spaces and 

for further references see Flensted-Jensen [15]. 

We should like to thank Schlichtkrull for several helpful comments on the manu- 

script, Wailach for the suggestion about rapidly decreasing functions and Helgason for 

pointing out the uniqueness in Theorem 1. The first author has learnt from Duflo, how 

to see the invariant Paley-Wiener theorem as a particular case of the spherical 

Paley-Wiener theorem for semisimple symmetric spaces. 

w 1. The main result 

In order to state our main result we must recall some notation. 

Let G/H be a semisimple symmetric space corresponding to the involution o of G, 

i.e. G is a connected, semisimple Lie group and H is a closed subgroup of the fLxed 
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point group G ~ for a containing the identity component lfr0 of G ~ There exists a Cartan 

involution 0 commuting with a. Let K be the fixed point group for 0, then K is 

connected and it is also a maximal compact subgroup of G modulo the center Z=Z(G). 

Let 

~=~+q=i+~ 

be the corresponding decompositions of the Lie algebra g of G, where q, resp. p, is the 

- 1  eigenspace of a, resp. 0, in g. 

Let a c q  be a 0-invariant Cartan subspace for G/H, i.e. a is a maximal 0-invariant 

and Abelian subspace of q. By gc, ac etc. we denote the complexifications. Let 

W=W(ac, ~c) be the Weyl group corresponding to the restricted root system X= 

X(ac, ~c). The real form of ac generated by the co-root vectors is 

a'= i(an~)+an~. 

Clearly ar is W-invariant. Let D(G/H) be the algebra of G-invariant differential opera- 

tors on G/H. The complex characters of D(G/H) are parametrized in the usual way as 

Z~, where 2 E a~ modulo W. 

By (KA)rnn we denote the set of unitary (KflH)-spherical representations of K, 

i.e. consisting of equivalence classes of unitary irreducible, and thus finite dimensional, 

representations (/~, EF,) of K having a non-trivial (KflH)-fixed vector eoEE~,. Let ~ be 

the character of Z obtained from ~. We shall call ~ the G-central character of/a. 

Let (~t, V) be a quasisimple representation of G of finite length. (We assume for 

simplicity that V is a Hilbert space and that ~ is unitary on K.) Let V| and V_=~V 

be the C| and the distribution vectors respectively for z. Similarly V" and V'| 

are defined for the dual representation z v. So e.g. the representation ~ |  on V_oo is the 
V dual representation to ~ on V',  where V" is given the C| A vector 

v 0 E V = ,  v0=~0 , is called/-/-spherical, if it is ~t_=(H)-invariant and a joint eigenvector of 

D(G/H), i.e. if there exists 2 E a~ such that 

z_=(D) v o = xx(D) v o for each D E D(G/H). 

For g E(K^)KnH we let d~, be the dimension and Tr(g) the character, then 

Pt,=~_=(d~, Tr(gV)) is well defined as the projection in V_| onto the/t-isotypic compo- 

nent V~cV| when W4:{0). 

Considering ct r as an Euclidean space we denote by PW(a') the Paley-Wiener space 

9-91~285 Acta Mathematica 167. Imprim~ |e 22 ao~t 1991 
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for a r, i.e. the image under the classical Fourier transform ~ of C~(a~), where ~ is 

defined by 

~f(2)  = f f(x) exp( - i2,  x)  dx, ~ E arc, f ~  C~(ct'). 
.l a 

Then, as is well known, PW(a') consists of the entire, rapidly decreasing functions on 

(ar)$ of exponential type. More precisely ~p E PW(a r) satisfies 

3R~>0, VNEN: sup (l+ll~.ll)%-Rll~xtllW0.)l< +oo, 

where ~ denotes the imaginary part. 

Restricting to the W-invariant functions we have in particular that the Fourier 

transform is a bijection of C~(ar) w onto PW(ar) w. Let finally C~(G/H; K) be the space 

of K-finite Ca-functions on G/H compactly supported modulo K. 

THEOREM 1. Let IffEPW(Rr) TM and /tE(K/X)KnH . There exists a unique function 

fE  C~(G/H; K) o f  type/t such that the following holds: 

Let ~ be the G-central character of/t, let (~, V) be any quasisimple representation 

of  finite length and with central character ~ and let Vo E V_= be an H-spherical vector 

corresponding to - i2  E ct~, then z_=(f)  vo is well defined and we have 

~_~(f)  v o = ~p(2) Pj, v o. 

Thus in particular if  v~ is any H-invariant vector in V'_| then 

( z  ~(f)  V o, v~) = ~0(~,) (Pz Vo' v~). 

Remark. It follows from the proof, that if ~p is of exponential type R, then f has 

support in a "ball"  of radius R, as usual, i.e. supp( f )cKBnH.  Notice also, when Z is 

finite, that the formulas in the theorem are valid for any :r without the condition on the 

central character. 

The distribution f--~(z-|  v6) occuring in the theorem is the prototype 

of a spherical distribution on G/H, i.e. an H-invariant joint eigendistribution on 

G/H of D(G/H). The correspondence which associates to f E  C~(G/H) the function 

F(z, v0, v~)= (z_| v~) may be called the scalar valued spherical Fourier trans- 

form on G/H. In order to describe this transform more explicitly one would need a 

parametrization of a sufficiently large class of representations (~, V) and for each such 
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a description(1) of  V n_~ and V ''n_~o. These  two spaces are finite dimensional by van den 

Ban [3]. Of course one might also define the scalar valued Fourier  t ransform o f f  as 

: t~F( : r ) ,  F(:t) E homc(VH| X V " ~ ;  C), where F(:0 (v 0, v~)=F(:t, v 0, v~). Similarly we de- 

fine the vector valued spherical Fourier transform o f f  as (:r, Vo)--->:r_~(f) v o. 

Example 1. The Riemannian case. Assume that G/H is a Riemannian symmetric  

space of  the non-compact  type,  then H=K. If  V is irreducible then vH_| and 

dimV_H| If  we normalize such that (Vo, V~)=l, then the scalar valued 

Fourier  t ransform is just  Harish-Chandra 's  spherical Fourier  transform. The Paley-  

Wiener theorem corresponding to this t ransform is proved by Helgason [17] and 

Gangolli [16]. See also [21]. 

The vector  valued spherical Four ier  t ransform can be identified with Helgason 's  

transform 

f--> F(2, b) = f f(x)e (-iz-O'lt(x-lb)) dx, 
J~ /K 

where F(2, .) is an element  of  V~=L2(K/M) for each 2. For  this t ransform Helgason has 

proved a Paley-Wiener  theorem for C~(G/K) [19, Theorem 8.3] and one for C~(G/K; K) 
[20, Theorem 7.1], in which the description of the Paley-Wiener  space is more explicit. 

Theorem 1 in the non-compact  Riemannian case is equivalent to the surjectivity 

statement in the Helgason-Gangoll i  Paley-Wiener  theorem. This s tatement is the more 

difficult part  to prove. Our p roof  in the next  section consists of  a reduction to this case. 

We should add here,  that it is possible along the same lines to reduce the non-compact  

Riemannian case to the non-compact  Riemannian case, for which the group has a 

complex structure. This case is then reduced to the Euclidean case, cf. [15, Chapter  III, 

Theorem 5]. 

However before turning to the proof  we want to specialize Theorem 1 to the group 

case. (See Examples  2 and 3 below for more details). So let G be a connected  

semisimple Lie group with Lie algebra ~ etc. Le t  a be a 0-invariant Cartan subalgebra 

and let ar=i(aNf)+aNp. Let  W be the complex Weyl group of  a and let Cc(G;K) 

(1) In order for f--*F(:r, vo, v~) to be an eigendistribution of D(G/H) it is sufficient, that v0 is an 
eigenvector. However V_H~ being finite dimensional and D(G/H)-invariant implies, since D(GIH) is Abelian, 
that any v 0 E V H| is a linear combination of generalized eigenvectors. Therefore it may be more convenient to 
use the H-fixed distribution vectors in the definition of the Fourier transform instead of the D(G/H)- 
eigenvectors. 
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denote the space of C| on G, which are both left and right finite under K and 

have compact support modulo Z. 

THF.OREM 2. Let ~OEPW(ar) w and tzEK ̂ . There exists a unique function 

fE  C~(G; K) o f  type (kt,/~v), such that the following holds: 

Let ~t be the G-central character o f  l~, let (at, V) be any quasisimple representation 

of  G of  finite length, with central character ~ and infinitesimal character - iA ,  then 

at(f) is well defined and we have 

at(f) = ~0(A)P u, 

and hence 

Trace(~f) )  = ~0(A) dim(W). 

Example 2. The matrix valued Fourier transform on G. Recall that we consider G 

as the symmetric space GxG/d(G), where d(G) is the diagonal in GxG. The vector 

valued spherical Fourier transform for Gx G/d(G) reduces to the usual operator valued 

transformf-+at(f) E horn(V), where (V, at) runs through a set of suitable representations 

of G. I f f  is K-finite of type (kt,/z v) then we may consider at(f) as being contained in 
hom(W). 

Let P=MApN be a minimal parabolic subgroup in G and let (at~6,~), V~), where 

V~=L2(K/M; 6), be the principal series representation for 6 E M^,2 E (ap)~. Arthur [1] 

and Campoli [5] defines the Fourier transform of a function f of type (kt,/~v) as 

F(6, ~) = at~.a(f) E hom(W~), 

and they give an intrinsic but rather complicated description of the image space 

PW(G, K) = {(6, 2)--+ F(6, 2) I fE  C~(G; g)}.  

As mentioned earlier, essentially the only functions of (6, 2), for which Arthur's 

conditions are simple to verify directly, are the functions of the form 7)(A) Pu, where A, 

depending on 6 and ~, is the infinitesimal character of at6,z. It follows that our Theorem 

2, at least for the linear groups, which essentially are the ones treated by Arthur, is a 

simple corollary of his Paley-Wiener theorem. One should also mention, that in the 

case, where G has only one conjugacy class of Cartan subgroups, the first author [8] 

has proved a Paley-Wiener theoreffa in which the symmetry conditions in the Paley- 

Wiener space are explicit and simple. The result in [8] is a non-trivial corollary to 

Theorem 2 above. The proof given in [8] of Theorem 2 in this particular case uses an 
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idea following Zelobenko, which is mainly a reduction to the K-biinvariant case, by 

means of multiplication by matrix-coefficients of finite dimensional representations. 

Apparently this proof does not extend to the general case. 

Example 3. The invariant Paley-Wiener theorem for G. In the case of GxG/d(G) 
the scalar valued Fourier transform reduces to the invariant Fourier transform 

f---> Trace(:t(f)). 

Let P/=MiAJN/, j =  1 . . . . .  r, be representatives of the different equivalence classes 

of cuspidal parabolic subgroups in G. For a discrete series representation 6 of M / 

and kE(ai)~ let (:t~,x,V~) be the corresponding generalized principal series on 

V6=L2(K/M j N K);6[( w n r)). Clozel and the first author [6] define the invariant Fourier 

transform o f f E  C~(G; K) as the function 

(j, 6, ~ )--+ F(j, 6, 2) = Trace(:t~,x(f)). 

Their invariant Paley-Wiener theorem states that this Fourier transform is onto the 

space consisting of functions ~p of j, 6 and k of finite support as a function of 6, such 

that k---~p(j, 6,/2) belongs to PW(a :r) and such that ~(j ,  w6, w2)=~p(j, 6, k) for each 

w E W J, where W g is the Weyl group of a j in G. One of the main tools used in their proof 

is their Theorem 3, which is a corollary of our Theorem 2. See [6], and also [7]. 

There are many possible variants of a Paley-Wiener theorem corresponding to 

different choices of function spaces instead of C~. The following space of very rapidly 

decreasing functions has been used in some special cases, see f. ex. Oshima-Sekiguchi 

[25], where it is denoted by ~r Wallach [30] here denoted by 5e and van den 

Ban-Schlichtkrull [4] here also denoted by 6e. 

For the definition we shall need a little further notation. If we choose a~clo N q as a 

maximal Abelian subspace, then we have, cf. Flensted-Jensen [13], with Aa=exp(a~) 

that 

Let for x E Gill Ixl be defined by 

G =  KApH. 

Ixl = 

where x=k expXH with X E a~ and k E K, and where the norm ~ of X is defined using 

the Killing form. Finally we let ~ be the universal enveloping algebra of {~c and g(g) 
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its center. We can now define the zero Schwartz space in the following way, where L ,  

for u E q/(g) denotes u considered as a differential operator acting from the left, 

(1) go(G/H) = { f E  C| Vu E a//(g), Vm E R, sup (e~lmlLJ(x) l) < + oo }. 
x E G/H 

We use the subscript 0 to indicate that 9~ is the limit as p--~0 of the spaces gp of 

rapidly decreasing functions in LP(G/H). This is a rather simple fact. (For a proof in a 

slightly less general situation see Delorme [9, Lemma 1.1]). The spaces go(G/H; K)  and 

g0(G;K) of K-finite functions are defined in the same way as for the C~~ When 

we restrict to K-finite functions as in go(G/H; K) it follows, according to N. Wallach, 

from general theory, that it is enough in (1) to use ~Z(g) instead of ag(g). We shall not 

use this fact. 

We shall now define the corresponding Paley-Wiener space PWo(a~). Identifying a ~ 

with R n for some n we define PW0(R n) to be the space of Fourier transforms of 

functions in g0(R~). It is well known that we then have 

PW0(R n) = {~p: Cn---> C I ~p is entire and VNE N, VC>O,  

sup{(1 + e c ,  I1 (;Oll c )  < + 

THEOREM 3. (a) Let the notation be as in Theorem 1. Let  ~pEPWo(ar) w and 

pE(K^)KnH. There exists a unique function fEgo(G/H;K)  o f  type /~ such that the 

following holds: 

Let ~ be the G-central character o f  p, let (~r, V) be any quasisimple representation 

of  finite length and with central character ~ and let Vo E V_ ~ be an H-spherical vector 

corresponding to - i2  E a~, then z_|  Vo is well defined and we have 

z - ~ ( f )  Vo = ~(~) P~ Vo. 

Thus in particular i f  v6 is any H-invariant vector in V '~  then 

(~_~( f )  v o, v~) = ~0(~.) {PF, Vo, v~}. 

(b) Let the notation be as in Theorem 2. Let ~p E P Wo(a r) W and p E K ^. There exists 

a unique function f E  go(G; K) o f  type (it, pv), such that the following holds. 

Let ~ be the G-central character o f  p, let (z, V) be any quasisimple representation 

of  G of  finite length, with central character ~ and infinitesimal character - i A ,  then 

z~(f) is well defined and we have 
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~(f )  = ~p(A) PF,, 

and hence 

Trace(~(f)) = ~p(A) dim(W). 

Remark. Part (b) of the theorem is a slight generalization of Delorme [9, Theorem 

1.8], where it is only proved dealing with generalized principal series representations. 

w 2. Proofs of the main theorems 

In this chapter we prove the Theorems 1, 2 and 3. The main thing is to prove Theorem 

1. Theorem 2 is just a specialization of Theorem 1 and we only give a few remarks 

about that. The proof of Theorem 3 follows very closely the proofs of Theorems 1 and 2 

and we only indicate the necessary adjustments. The proof of Theorem 1 is based on 

three propositions, which we now describe. 

It is clearly sufficient to prove the theorem under the assumption that the symmet- 

ric space X=G/H is simply connected, and therefore also that H is connected. Let Z be 

the center of G, then Z c K .  By factorizing over Z n = Z O H  we may assume that 

ZNH={e )  and thus also that K A H  is compact. 

Let Gc be the complex adjoint group corresponding to go, then we may consider 

G/Z, H, K/Z and also the group H a= (K n H)exp(9 n q) as subgroups of Gc. Let Kc and 

Hc be the complex analytic subgroups of Gc corresponding to fc and bc. It is then easily 

seen that H c H c  and that K can be embedded into a complex Lie group K c, such that 

Kc/Z=K c. From the structure theory of symmetric spaces, cf. Flensted-Jensen [13, 

Theorem 4.1], it follows that 

(1) G = KHaH. 

Let n o w  G d be the real form of Gc for which Hc O Gd=K d is compact. This means 

that K d is the analytic subgroup corresponding to fa=~ n ~+/(~ fl p) and therefore that K d 

is the compact real form of Hc and Gd=K d exp(i(q n ~)+(~ N q)). Define Hd=(G d fl Kc) ~ 

then H d is a non-compact real form of Kc. Similarly to (1) we have 

(2) Ga= HaHaK a. 

Notice in particular that H a, modulo a slight abuse of notation, is equal to the 

connected component of the identity in G N G d. Therefore we have that H a fl Kd=Hfl K 
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and that H a may be considered as a subgroup of K c. This means formally speaking that 

both G and G d are "contained" in K c/-/~H c. 

If we now consider the K-finite functions C| K) on G/H and the Ha-finite 

functions C| Ha) on GdlK a, it follows by holomorphic extension in/~c, respec- 

tively in Hc, and restriction that the following proposition holds. 

PROPOSITION 1. Let the notation be as above. Restriction to Ha=(GfIGd) ~ 

and holomorphic extension in K~c and H c defines an isomorphism ~l:f---~f r o f  

C| onto C| d) considered as ~ from the left and as 

ql(~)~C-modules from the right. 

For the proof we refer to Schlichtkrull [27] and Flensted-Jensen [ 14, Theorem 2.3]. 

The proposition easily extends to finite dimensional vector valued functions. 

The symmetric spaces X=G/H and Xr=Gd/K a may be considered as two different 

simply connected real forms of the "holomorphic" symmetric space Xc--Gc/Ho Being 

Riemannian of the non-compact type we shall call X ~ the non-compact Riemannian 

form of X. 

Let LP(K\G/H), respectively LP(Ha\Ga/K d) denote the space of K-invariant L p- 

functions on G/H w.r.t, a G-invariant measure, respectively the Kd-right-invariant L p- 

functions on Hd\G d w.r.t, a Gd-invariant measure. A simple computation of the 

appropriate Jacobian, cf. Flensted-Jensen [14, Theorem 2.6] leads to the following 

proposition, in which we assume the measures to be suitably normalized. 

PROPOSITION 2. Let p ~  l. The map ~l: f---~f ~ extends from C~ to an isomorphism o f  

LP(K\G/H) onto LP(Hd\Ga/Kd). 

The third result we shall need is the spherical Paley-Wiener theorem for the 

symmetric space Xr=Ga/K a. Let as in w 1 accl be a 0-invariant Cartan subspace for 

G/H, then ar=i(aNf)+aN~ is a Cartan subspace for X~=Gd/Ka. Let for ;tEa~ $~ be 

Harish-Chandra's spherical function, i.e. 

= f e xE G a, r 

where H: Gd---~Ct ~ is the Iwasawa projection, (i.e. H is defined by xEKaexp(H(x))N d, 

where H(x) E a ~ and Ga=KaA~N a is an Iwasawa decomposition of Gd), and p is defined 

as usual. 

PROPOSITION 3. The spherical Fourier transform on Xr=Gd/K d 
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f---> f-(]r = f j ( x )  •_ix(x) dx, ~ E ct~, 

is a bijection Of Cc(Ka\Ga/K d) on to  ew(c~r)  W. 

For a good exposition of the original proof by Helgason and Gangolli see Helgason 

[21]. In [15, Chapter III, Theorem 5] using [13] and a result of Rais [26, Corollary 4.5] 

the second author gave a rather elementary proof by first reducing it (by the above 

Proposition 1 for the group case) to the case where G is a complex group and then 

reducing it (by means of a rather simple known expression for the spherical functions 

on a complex group) to the classical Paley-Wiener theorem. (See also Clozel-Delorme 

[7, Appendix B] for a direct proof of Rais' result.) 

We can now turn to the proof of Theorem 1. 

Proof of  Theorem 1. To prove the uniqueness o f f  assume that for all zc and all v0 

we have z(f)v0=0.  Let, for any x in G, f~ be the left translate of f by x -l. Then 

z(f~) v0=0. Therefore we have that 

(~(s V~}=o, fo ran  v;ev'_'2. 

Since the Dirac measure at eH on G/H can be expanded in terms of H-invariant 

distributions of the type f---> (~ ( f )  v0, v6), cf. van Dijk and Poel [32, Proposition 1.4], we 

conclude, that f(x)=f~(e)=O. Strictly speaking [32, Proposition 1.4] assumes that Z is 

finite. This assumption stems from Ban [3, Proposition 1.4]. However, Proposition 1.4 

in [3] is valid if we instead of the finiteness assumption on Z fix a unitary central 

character x of Z. To see this one has to replace C~ (X) and L2(X) in [3, Lemma 1.2] by 

the following spaces of functions: 

and 

Cc~,(X) = ( fE C| = u(z)-l f(x) Vz E Z, Vx E X, Ill E Cc(G/ZH) } 

L2(X) = {f'. X--> Clf(zx) = x(z)-l f(x) Vz E Z, Vx E X, Ifl ~ L2(G/ZH)} 

The last space is a HUbert space with the scalar product 

( f l  g), = f f(Jc) 
GIZH 

The ~Pt of [3, Lemma 2.2] should be defined on X/Z=G/ZH and lifted to X=G/H. Then 

10-918288 Acta Mathematica 167. Imprim6 ie 22 aollt 1991 
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~p, has compact support modulo Z and ~ptfE C~, ~(X) for each fE  L2~(X) | Furthermore 

we have 

(Dfl g)~ = ( f l  D'g),, 

for all f, gEC~,,(X) and DED(G/H). With these remarks the proof in [3] is easily 

adjusted. 

Let now ~pEPW(a') w and gE(K^)xnn. Let eoEE~, and e~EE'~ be (KNH)-fixed 

vectors such that (e0, e~)=l .  Let l=d~,-1 and extend to dual basis e0, e I .. . . .  e t 

and e~, e' 1 ..... e~, i.e. assume that (e i, e])=6~/, where 6 U is the Kronecker symbol. To 

prove existence we proceed in two steps. 

Step 1. Definition off.  By Proposition 3 we can choose F E Cc (g d \Gd/K d) such that 

F-=~p. We let/z and/~v denote also the holomorphic extension of/~ and/ t  v to K~c as 

well as the restrictions to Ha. 

Let Fu: Gd/Kd---~E~ be defined by 

(3) Ft,(x) = d, IF(hx) /~V(h -1) e~ dh, x E Gd/K d, 
J,a 

then clearly 

(4) F~,(yx) =/zV(y) Fu(x), y E H a, x E Ga/K a. 

Notice that F~, has compact support modulo Ha. (More precisely assume that ~p is of 

exponential type R, then F restricted to A r has support in a ball BR of radius R. Without 

loss of generality we may assume that arN~=a~, then  Fz has support in the set 

Ha(BR NA~)Ka.) We define f~: G/H--,,E~, by Proposition 1 and the requirement that 

(ei, f~(.)) r= (ei, F~,(.) ), i = 0  ..... l. 

Finally we shall define the function f by 

f (x )= (eo,fu(x)), xEG/H. 

We are now going to show that ffullfds the requirements in Theorem 1. It follows 

from the definition of f u, that it has compact support. (More precisely in a "ball" of 

radius R, i.e. supp(f~)cK(Bn N A~)H.) From (4) it follows that 

(5) f~(kx) =/~V(k)f~(x), k E K, x E G/H. 
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This shows that f is of type/~. We shall need the following lemma. Notice the analogy 

with the definition of Fu in (3). 

LEMMA 4. Let f and f~ be defined as above, then 

f~(x) = d, fK/zf(kx)l~V(k-l) e~ dk. 

Proof. It suffices to prove for each i=0 ... . .  l, that 

(6) (e~,f~(x)) = dz Jr//zf(kx) ( e~,/zV(k -~) e~) dk. 

By the definition o f f  and by (5) we get 

f(kx) = ( e 0,f~(kx) ) = < e0,/~V(k)f~(x) ). 

In this formula we substitute 

t 

L(x) = ej,L(x) ) ej 
i=0 

and insert in the right hand side of (6). Then using that, by Peter-Weyl theory, 

d~ ~ (eo,tzV(k) ej) (ei,/~V(k-~)e~) dk= 6 o 
J K/Z 

the result follows. [] 

Step 2. Computation of z~_,~(f) Vo. Notice first that z_| Vo is well defined, since 

the function x---~f(x)zt_| is defined on Z\G/H and has compact support. In the 

following we write z also for z_| We shall prove w i t h f a s  defined above, that for any 

v' E V' we have: 

(a ( f )  v0, v') =  0(t) (P.  v0, v'). 

Neither side changes if we substitute V"=fKnHzV(k)Pv v'dk for v'. This follows s incef  

is (Kn H)-fixed and K-finite of type it. Therefore we may assume that v'E V ''~'~, which 

is the ttV-isotypic component in V', and that v' is (KnH)-fixed. We then have 

(z(f)Vo, V')= ( f(x)(P~,z(X)Vo, v')dx 
JZ\GIH 
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= f ~ f(kx)(~t(k)Puz(X)Vo, V')dkdx 
J K \GIH J KIZ 

=flC\G/H<Puz(X)Vo, fx/zf(kx)zV(k-l)vtdk> dx. 

Assuming that v '~0 we can choose a K-homomorphism a of E~ into V' such that 

a(e~)--v'. Therefore we have that a(/~V(k -l) e~)=TtV(k -1) v'. From Lemma 4 we then get 

(zt(f) Vo, v' ) = d~' ( (Pu ~(x) v o , a (f~(x))) dx. 
.Ix \GIH 

Let ~(x) = Pu ~(x)v0, then ~b: G/H--* V~,c V= is K-finite, such that ~" is defined. In order 

to apply Proposition 2 we must find the image under the map ~ of the function 

x--*(~(x), a(f~(x))). But this is clearly 

(~(.), a(f,(. )))" = (qf(.), a(Fu(. )) ). 

We now get using Proposition 2 

where 

d;'f,~ ( Z(f) v o, v' ) = (d~'(x), a(F u(x)) ) dx 

= d-~/' fI-:\~ (q)r(x), a(Fu(x)) ) dx 

= d;' f~,~ <~'(x),d,, f, aF(hx)~V(h-')a(e~)dh> ax 

=f,~ f/aF(h~)(r dh~ 
= f6 ~ F(x) (r v' ) dx 

=LV(x)f,,(r 
= J6 ~l/tcF(x) r dx, 

r = f,r (~'(kx), v' ) dk. 
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Now recall that o0 is a spherical vector in V_| therefore r is an eigen- 

function of D(G/H). It follows that $, and ~ are eigenfunctions with the same eigen- 

value, i.e. corresponding to - /2 .  Since �9 is Kd-bi-invariant, * is a constant multiple of 

Harish-Chandra's spherical function $_a or precisely 

r = ~(e) r 

We find that 

r  = (~r(e) ,  V' ) = ( ~ ( e ) ,  v' ) = (P~ v 0, v' ) .  

Finally summing up we find that 

(z ( f )  v o, v') = (P~,v o, v') f F(x) dp_a(x) dx 
.16 d 

= Oo, o ' )  

= v0, v ' ) .  

This finishes the proof of Theorem I. [] 

Proof of Theorem 2. In order to distinguish the notation in Theorem 1 from that of 

Theorem 2 we let subscript " 1"  denote the objects in Theorem 2! So let G! be a 

connected semisimple Lie group, 01 a Cartan involution with fixed-points KI etc. 

We define G=GIxGI and o(x,y)=(y,x), then H=d(GI) is the diagonal in GlxGl 
and K=K~xKI. We observe that G/H is diffeomorphic to Gl under the map 

(x, y)d(Gl)--->xy -1 and in this way we can consider GI as a symmetric space. 

Let Orb V1) be a quasisimple representation of finite length on a Hilbert space VI. 

Define :r=:q|  v on V=Vl~V ~, the Hilbert space tensor product of Vt with V~, which 

is isomorphic to homn.s.(V0, the Hilbert-Schmidt operators on VI. Let /z  i E K~ and 

define #=#l| v E (K^)rnn. (Notice that K0 H=d(K0.)  

Let al be a Orinvariant Cartan subalgehra and let WI be the complex Weyl group. 

Let A~ E (cq)~ be the infinitesimal character of ~q. Choosing the opposite ordering -A~ 

is the infinitesimal character of z~' and therefore (Al, - A 0  is the infinitesimal character 

of :r. The antidiagonal a = { X , - X ) I X E c q  ) is a 0-invariant Cartan subspace for G/H. 
Therefore ct r is isomorphic to ct~=i(al n ~0+c h n 101 and W is isomorphic to W~. The linear 

functional ~, in Theorem 1 is the restriction of (AI, - A 0  to a. 
~H e We may now chose v 0 6 V_a| as the identity operator in horn(V0 and v 0 E V :| as th 

trace of elements in horn(V0. If :rl is irreducible then the dimensions of  V_H~ and V'-~ 
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are both one and they are spanned by o0 and 06 respectively. Since ~q has infinitesimal 

character A~, it follows that o0 is a spherical vector of type ;t=(A1, -A,)I, .  

The space 

| • C~(G/H; K) = C c (G l Gl/d(G1), K l x K  l) 

is isomorphic to C~(G 1; K1). Theorem 2 is now clearly a restatement of Theorem 1 for 

the above situation. [] 

Proof o f  Theorem 3. In order to modify the proof of Theorems 1 and 2 we must be 

able to replace C~ with 6e 0 and PW(a r) with PWo(ar). The appropriate version of 

Proposition 3 is the following 

PROPOSITION 3*. The spherical Fourier transform on X'=Gd/K d 

f---~ f-(~)  = f J ( x )  (9_~(x) dx, 2 E 

is a bijection of  ~o(Kd\Gd/K d) onto PWo(a~) w. 

Proof. This follows from Trombi and Varadarajan [29, Theorem 3.10.1], since 

5eo(Kd\Gd/K d) is the intersection for all p>0  of 5ep(Ka\Gd/Kd), which Trombi and 

Varadarajan denotes ~P(G), and PWo(a~) w is the intersection of the spaces ~ ( ~ ' )  for 

e>0. [] 

Remark. Since the proof in [29] of the Theorem 3.10.1 is rather involved, one 

should remark, that Proposition 3* similarly to Proposition 3 can be given a rather 

elementary proof. However Anker [2] has a simple proof of the result of Trombi and 

Varadarajan via a reduction to the C~-Paley-Wiener theorem. 

We shall also need a couple of lemmas. First define the space of Ha-finite zero- 

Schwartz-functions o n  Gd/K d in the following way 

6eo(Gd/Kd;H d) = { fE  C| I Vu E 0//(~), Vm E R, V compact set C c H  d, 

sup{e I/~m IZuf(h exp H) I [h E C, n E ap} < oo ). 

LEMMA 5. Let F~  ~(Kd\Gd/K d) and S>0 and assume that 

IF(g)l ~< C s e -2slgl, Vg E a d, 

for some constant Cs. Let (9 be an Ha-finite function on H d and assume that S is so 
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large that h--~[~(h) I e -slhl is integrable. Then we have 

I f  qJ(h)F(ha)dh<-Cs,~e-Slu',VaEAp, 

for some constant Cs,r 

Proof. From Flensted-Jensen [15, Chapter IV, Lemma I 1] we have that elhal~>e Ihl 

and elhal>~e I~l, therefore we get that 

f ~(h)F(ha)dh <.Cs ft  ]~(h)le-S'h'dh.e-Sl~l=Cs,~e-S'a'. [] 

COROLLARY 6. Let F E 5eo(Kd\Gd/Kd) and let ~ be an Ha-finite function on H a, then 
fr defined by 

fc,(g) = ft_ld~(h) F(hg) dh 

that 

(Luf ~) (g) = f ~  q~(h) Lob F(hg) dh, 

where Vh=Ad(h -1) u. Let  ul, u2,..., u, be a basis of the finite dimensional subspace of  

o//(g) generated by the action of  H on u. We can then write 

$ 

Vh ---- Z ~i (h) Ui' 
i=1 

where ~i, i= 1 . . . . .  s, are Hal-finite functions on H d. 

Since L , F  belongs to ~o(Kd\Gd/K d) it follows that LuJ~, is a linear combination of 

functions, which according to Lemma 5 satisfies the relevant growth conditions. 

Therefore we conclude that f~ E Sr Ha). [] 

In particular we have the following 

COROLLARY 7. Let FE ~o(Kd\Gd/g a) and let/t E(K^)rnn. Then every component 
(e, Fu(.)) for eEE u of the function Fu defined by 

belongs to SPo(Gd/Kd;t-I~. 

Proof. In order to show that fr  Yo(Gd/Ka; H d) we let m E R and u E ~//(g). We have 
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f 
F (x) = d~,JndF(hx)t~V(h-1)e~dh, xEG d 

belongs to Se0(Gd/Kd;/-/d). 

Finally we have the following lemma, which is an easy consequence of the 

definition of 5e0 and the basic properties of the map rl:f---~f r, cf. Proposition 1. 

LEMMA 8. Let fE C| K) then fE  ~o(G/H; K) if and only if f" E SPo(Gd/Kd; lid). 

Now the proof of Theorem 3 follows exactly the same lines as the proof of 

Theorems 1 and 2. [] 

Remark. Let 6f~o(Gd/Kd; H a) denote the space defined with ~(g) instead of 0//(g), 

and similarily for the spaces of K-finite functions etc. 

Clearly 5e0~ contains 5e 0. It is easily seen that the spherical Fourier transform on 

X'=Gd/K d maps 6e~o(Kd\Gd/K d) into PWo(a') w. It then follows from Proposition 3", that 

Y ~o ( K d \ Gd / K d) = Yo( K d \ Gd/ Kd) . 

in fact the same argument shows, that it suffices to use powers of the Casimir operator 

instead of ~(g). 

w 3. A Paley-Wiener theorem for the isotropic spaces 

The spherical distributions and the Fourier transform on the non-Riemannian isotropic 

spaces has been studied by Faraut [11] for the classical spaces and by M. Kosters [24] 

for the exceptional space. All these spaces are non-Riemannian semisimple symmetric 

spaces of rank one. They may each be realized as a projective hyperbolic space with 

p~>2 and q~>l: 

X = P (P-1 ,  q)(F) 

= {x E w+q I IXll 2+' ' '  +lx, I 2 . . . . .  IXp+ql 2 -- 1 }/{a E FI lal = 1 }, 

where F = R, C, H or (only for p=2  and q= 1) F=O.  Here F is the quaternions and O is 

the Cayley numbers. We define d=dimRF and O=�89 

The K-types having a (K N H)-fixed vector are in all cases parametrized, as 61, by 

an even non-negative integer l. (Faraut uses two parameters I and m, with m+l even and 
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m<~l, but m=O when there is a (K N H)-fixed vector. Kosters uses p, q corresponding to 

m=p and i=2q+p.) The trivial representation of K corresponds to /=0 .  

A spherical distribution is by definition, cf. w 1, an H-invariant eigendistribution of 

D(X). Since the rank is one, D(X) is generated by the Laplace--Beltrami operator on X 

corresponding to the natural pseudo-Riemannian structure. 

From Faraut [11] and Kosters [24] we have the existence of the following spherical 

distributions: 

(i) ~s, s E C. This is a holomorphic family satisfying cs = r 

(ii) Or, rEN={O, 1,2 . . . .  }. These  are defind only when dq is even, i.e. when 

F=C, H, O or when F = R  and q is even. 

For convenience we denote the parameter space for these distributions by 

~"~---~')s ~j ~')r, where ff~s=C and ~')r=~ when dq is odd and ~r--N otherwise. 

Remarks. (a) The spherical distributions cs and Or suffice for the decomposition of 

the Dirac measure at the origin in X. In fact the continuous spectrum corresponds to 

s E zli and the discrete spectrum has two parts: One corresponding to fir and another 

corresponding to the set of parameters s E fls given by {s=p+2r  I 0<s<~,  r E Z} if dq is 

even and {s=Q+2r+l  I s>0, rEZ} otherwise. 

(b) For dq odd any spherical distribution is a multiple of a ~s. For dq even the 

appropriate linear combinations of cs and 0r does not in general give all spherical 

distributions. However the remaining ones can be obtained from ~s, Or and 

(dr r=0, 1,2 . . . . .  Notice in passing that cs is always non-zero for dq odd. For 

dq even the parameters s=+(o+2r) ,  r=0, I, 2, ... give exactly the zeros of ~,. 

(c) The spherical distributions ~s are naturally connected with what could be called 

the principal series representations :r~ for the symmetric space X in the following way. 

One can define spherical distribution vectors us for :t~ and a pairing between :ts and :r-s 

such that 

= 

From this it is easily seen that if Z6 is the normalized character of a K-type ~, then 

= ( s(z,O us, u_s) 

is well defined since :ts(Z~)us is an analytic vector for :is. 

Notice that ~s(X~) can only be non-zero if 6 has a (K N H)-fixed vector. Having 

parametrized these K-types as St,/=0, 2 ....  we define 

vt (s )  = ( 
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(1) 

with 

From [11, p. 407] and [24, p. 72] we get that 

~'t(s) = c t~ ( s )  ~ ( - s )  

fllo(S) = c; ( s - q )  ( s - o - 2 )  . . .  (s-o-l+2) 
r((s-o+l+dp)/2) 

where ct and c[ are constants. 

(d) The spherical distributions Or, r E fir, correspond to subrepresentations of :r_,, 

respectively quotient representations of ~r,, where s=Q+2r. The formula corresponding 

to (1) for 0r follows from [11, p. 413] and [24, p. 82] 

d 
Or(Zr) = Cl(-~s flto) (Q+ 2r) fllo(--Q-- 2r). 

From this we get that 

(Or,(9) =0  if (9~C~(X) is of type 81 with l<dq+2r 

and that there exists (9 E C~(X) of type ddq+2 r such that (O r, (9)~0. 
(e) Any K-finite function in C~(X) is a linear combination of functions of the form 

(9(ka)=d~(k)(9(a), kEK and aEAp, 

where ~ is K-finite of a specific type d. We now assume that 6=dr and that �9 is (K N H)- 

invariant and non-zero. For such a function (9 of the calculation of (~s, (9) leads to the 

following explicit formula, cf. [11, p. 402] and [24, p. 72] 

So (2) ( ~, (9) = c(d, d~) 7t (s) (9(a,) (9~, ~(t) A(t) dt, 

where c(6, e~) is a constant, at is given by at=exp(tHo) for a normalized choice of 

H0 E a~ and (gs, ~ is given by 

a ~  

where 

(9s. ~ (t) = (cosh t)l(9] ~' #+t)(t), 

dq-l'2 3 = - ~  - - I  and 2=is. 
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The function ~]~'~) is the Jacobi function. It is given by,  cf. Koornwinder  [23, p. 5-6], 

~'~) = 2F~(1/2(a+fl+ 1 - i t ) ,  1/2(a+fl+ 1 +i2); a +  1; - (sinh t) 2) 

= (cosh t)-(~+/~+l+u) 2 Fl(1/2(a+fl+ l - i t ) ,  1~2(a-r+ 1 +i t ) ;  a +  1; (tanh t)2). 

Finally A(t) is given by 

A(t) = (2 cosh t)~+l(2 sinh t) 2~+1. 

Then it follows that J'o ~(at) tPs,6(t) A(t) dt is the Jacobi  transform of parameter  (a, fl+l) 
and with variable t=is of the function t--*(cosh t)-tep(at). Therefore the conclusion is, 

cf. (2), that (r is yt(it) times the Jacobi transform of t-~(cosht)-tqb(at), up to a 

constant depending on 6 and ~ .  

From the Paley-Wiener  theorem for the Jacobi transform, cf. Koornwinder  [22] or 

[23], we can now derive Theorem 1 for these special cases. In fact we get more 

precisely, that s -*  (~s, q~) for any K-finite function q~ E C~ can be written as ( s= i t )  

(3) ~ Gr(t) y6(s), 

where the sum is over the finite set of  6 E K  ̂  related to $ and where G6 EPWe(R), the 

even functions in PW(R). Conversely any function like (3) can be  obtained from a 

function q~ in C~(X; K) only involving the K-types occuring in (3). One should remark at 

this point that the expression for ( ~s, q~) in (3) is highly non-unique. 

Let  ~ be the vector space spanned by finite linear combinations of  the functions 

s---> (~ s, Z~) = (zrs(X~)u s, u_s), 6 E (K^)rnn or more precisely by the functions s--->yt(s), 
/=0, 2, 4 . . . . .  Now inspired by Theorem 1 and Remark (e) we define the Paley-Wiener  

space PW(X) for X to be the vector space of  functions F: ft---~C such that 

(i) F has finite support  on gtr, 

(ii) ;t---~F(it), s=i2 E fits belongs to the natural image of  PWe(R)|  in the space of 

functions on ft. 

For ~ E C~(X) the Fourier  transform is defined by 

and 

~^(r)=(Or,~), r~Q~. 
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One might more precisely call it the scalar valued Fourier transform in contrast to 

the vector valued Fourier transform, which is defined by 

~---,~s(~)us, SeQs, ~EcT(x) 

and similarly for r E Qr. 

THEOREM 4. Let X be an isotropic non-Riemannian symmetric space and let the 

notation be as abooe. A function F on g) is the Fourier transform of a K-finite function 

in C~(X) if and only if F belongs to the Paley-Wiener space PW(X). 

Proof. First assume that ~ E C~(X) is K-finite then it follows from Remark (e) that 

F = ~  ^ belongs to PW(X). 

Next assume that FEPW(X). In particular we have an expression for F(s), s E fl ,  of  

the form 

F(s) = ~ Gj(is)y2j(s) 
j=0 

where 

GjE PWe(R). 

From Theorem 1 or from Remark (e) it follows that for j =  1 . . . . .  n there exist fj. in C*~(X) 

of type 6~., such that if we define ~ = E~=0f j, then 

r = F(s), for all s E f~,. 

This means that it will suffice to prove the following lemma. 

LEMMA 9. Let r0EN. There exists ~EC~(X)  which is K-finite and satisfies 

~^( r0 )= l ,  ~ ^ ( r ) = 0  if r>r  o and ~^(s)=O forail sEf],. 

Proof. First we observe, that it follows from Remark (d), that i f $  is of type 60, then 

$^(r)=0 for each rE fir. It also follows that there exists $2 E C~(X) of type lo=dq+2ro 
such that 

0r0(~)2) = 1 and 0r($2) = 0 if r > r 0. 

From the first part of the proof we know for such ~ that 
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where GEPWe(R). 

r = G(is) 3'to(S) for s E fl, 

Using the formula for 3't and the recursion formula for the F-function we can get 

dp~(s) = G(is) P(s) yo(s) ' 
Q(s) 

where P(s) and Q(s) are even polynomials. The precise form of Q(s) is 

Q(s) = 2-1~ (s-q+dp+lo-4)  ... (s-o+dp) 

•  ( - s -q+dp+lo -4 )  ... ( - s -q+ dp) .  

Inserting lo=dq+2ro and recalling that 2~=dp+dq-2 we can write 

Q(s) = (s+(q+2r0)) (-s+(q+2r0))  Ql(s) 

where Ql(s) is even and Ql(q+2ro)=Ql(-q-2ro)~O. We may choose an invariant 

differential operator D E D(X) such that 

(D~)^(s) = Ql(q+ 2ro)-l Ql(s) ~^(s) 

and then we get with s=Q+2ro: 

(Dq~2)A(ro) = Q,(q+2ro)-'Q,(q+2r o) ~2^(r0) = ~2^(r0) = 1. 

Therefore if we put ~lmO~b2, w e  get that 

qb~(s) = Ql(O+ 2ro)-lQl(S) G(is) P(s) y0(s) 
Q(s) 

(4) G(is) Ql(Q+ 2ro)'le(s) 
= (s+(Q+2r0)) (-s+(0+2r0))  •0(s)" 

Next we observe that ~(o+2ro)=(~o+2ro, qbl)=O , since s=0+2r0 is a zero of ~s. By 

inspection of the formula for 3'o it follows that s=~+2ro is a simple zero of ~/o, but then it 

follows from (4) that s=Q+2r0 must be a zero for G(is)P(s). Similarly for s=-(0+2r0) .  

This means that ^ r ]~, is of the form Go(is)3'o(S), where Go E PWe(R). Now choose r of 

type 80 such that ~ ( s ) = ~ ( s ) ,  s E f~s. Then ~=~1--~0 satisfies the lemma. [] 

This also completes the proof of Theorem 4. [] 
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Remark.  It follows from the proof  with a few extra considerations, that if F has 

exponential type R, then the K-finite function can be chosen with support in a K- 

invariant "ba l l"  of  radius R. 
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