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1. Introduction

An a‰ne Hecke algebra is associated to a based root datum R ¼ ðX ;Y ;R0;R
4
0 ;F0Þ,

where X , Y are lattices with a perfect pairing, R0 HX is a reduced root system, R4
0 HY is

the coroot system and F0 is a basis of R0, together with a length multiplicative function q of
the a‰ne Weyl group associated to R. It is denoted by HðR; qÞ or simply H. It admits a
natural prehilbertian structure (provided q has values in Rþ, which we assume throughout),
and it acts on its completion L2ðHÞ through bounded operators. With this structure H is a
Hilbert algebra in the sense of [9], a remark that gives rise to natural questions from an
harmonic analytic and operator algebraic point of view.

The main motivation for considering such matters is the role of a‰ne Hecke algebras
in the harmonic analysis of reductive p-adic groups. The most general point of view in this
context is provided by the theory of types (see [6]). This theory seeks to describe a given
block in the Bernstein decomposition of the category of smooth representations of a
p-adic reductive group G via Morita equivalence as the representation category of the
Hecke algebra of an associated ‘‘type’’. In many cases this is known, and in many impor-
tant cases it was shown that the emerging Hecke algebras associated to types are isomor-
phic to a‰ne Hecke algebras in the above sense (see e.g. [15], [24], [20]). These Morita
equivalences respect the harmonic analysis: The spectral measure of the Hilbert algebra of
the a‰ne Hecke algebra H arising as the Hecke algebra of a type of G can be transferred
(up to a known positive factor) by the Morita equivalence to the Plancherel measure of G

restricted to the corresponding Bernstein block [7]. In this way the a‰ne Hecke algebra
may be considered as a tool to disclose parts of the Plancherel measure of a reductive
p-adic group, a point of view that was advocated by several authors (e.g. [28], [29], [14]).

Thus we would like to compute the spectral measure of the Hilbert algebra attached
to H (called the ‘‘Plancherel measure of H’’ in the sequel) explicitly. This entails in partic-
ular a full description of the set of irreducible representations of H in the support of the
Plancherel measure. From Theorem 3.22 and Theorem 4.3 it follows that the support of
the Plancherel measure of H coincides with the set of irreducible tempered representations

of H, i.e. the irreducible representations of H which extend continuously to the Fréchet
algebra completion S ¼ SðR; qÞ (the so-called Schwartz algebra, introduced in [26]) of
H. According to Corollary 3.8 this set of irreducible representations of H can alternatively
be described by Casselman’s criterion.

The Schwartz algebra S is instrumental to analyze the set of tempered representa-
tions of H. First of all the study of S gives a detailed understanding of the decomposition
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in irreducibles of tempered standard modules via the theory of analytic R-groups, similar to
the role played by the Harish-Chandra Schwartz algebra CðGÞ in the harmonic analysis of
a reductive p-adic group G. This type of application follows closely classical arguments due
to Harish-Chandra, Knapp-Stein and Silberger. The novelty consists in the fact that the
same machinery works equally well for arbitrary q in our space of continuous parameters,
a fact that becomes important for the deformation arguments mentioned below. The sec-
ond application of S is a comparison theorem of the second author with Solleveld (to
appear) stating that for tempered representations V , W there is a natural isomorphism
Ext i

SðV ;WÞFExt i
HðV ;WÞ. This applies directly to the study of the space of elliptic tem-

pered characters of H (in the case of reductive p-adic groups see [32], [23]). Finally we
mention an important result of Solleveld [34] stating that the q-parameter family of algebra
structures on the Fréchet space S is continuous with respect to the Fréchet topology. This
allows, in combination with the above and with the results of this paper, to study the set of
irreducible tempered representations by deformation arguments. We claim that for non-
simply laced a‰ne Hecke algebras these techniques are essentially su‰cient to classify the
set of tempered representations and compute the Plancherel measure (to appear elsewhere).

The main theorem of this article is the characterization of the image of S by the
Fourier transform F. This result is reminiscent to Harish-Chandra’s results for p-adic
groups (see e.g. [36] (but we remark that the proofs of these results are necessarily very dif-
ferent from Harish-Chandra’s proofs). We refer the reader to the Appendix 10 for the con-
nection between our Schwartz algebra S and the Harish-Chandra Schwartz algebra CðGÞ
in the special case where G is a split semisimple p-adic group and H ¼ HðG;BÞ is the
Iwahori-Matsumoto Hecke algebra.

The description of FðSÞ has some immediate consequences which are described in
Section 5. Let us briefly discuss these applications.

First of all, we obtain the analog of Harish-Chandra’s Completeness Theorem for
generalized principal series of real reductive groups. The representations involved in the
spectral decomposition of L2ðHÞ are, as representations of H, subrepresentations of cer-
tain finite dimensional induced representations from parabolic subalgebras (which are sub-
algebras of H which themselves belong to the class of a‰ne Hecke algebras). We call these
the standard tempered induced representations. There exist standard interwining operators
(see [26]) between the standard induced tempered representations. The Completeness The-
orem states that the commutant of the standard tempered induced representations is gener-
ated by the self-intertwining operators given by standard intertwining operators.

Next we determine the image of the center of S and, as a consequence, we obtain the
analog of Langlands’ Disjointness Theorem for real reductive groups: two standard tem-
pered induced representations are either disjoint, i.e., without simple subquotient in com-
mon, or equivalent.

Then we discuss the characterization of the Fourier transform, and of the set of min-
imal central idempotents of the reduced C �-algebra C�

r ðHÞ of H.

Finally we observe that the dense subalgebra SHC�
r is closed for holomorphic cal-

culus. In the case of Hecke algebras SðG;KÞ associated with a compact open subgroup K

of a reductive p-adic group G this was shown by Vignéras [35].
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Let us finally comment on the proof of the Main Theorem. As it is familiar since
Harish-Chandra’s work on real reductive groups [11], [12], [36], the determination of the
image of S by F requires a theory of the constant term for coe‰cients of tempered
representations of H. This theory is fairly simple using the decomposition of these linear
forms on H along weights of the action of the abelian subalgebra A of H. This sub-
algebra admits as a basis, the family yx, x A X , which arises in the Bernstein presentation
of H.

There is a natural candidate ŜS for the image of S by F. The inclusion FðSÞH ŜS is
easy to prove, using estimates of the coe‰cients of standard induced tempered representa-
tions.

The only thing that remains to be proved at this point, is that the inverse of the Four-
ier transform, the wave packet operator J, maps ŜS to S. For this a particular role is
played by normalized smooth family of coe‰cients of standard tempered induced represen-
tations: these are smooth families divided by the c-function. Of particular important is the
fact that the constant terms of these families are finite sums of normalized smooth families
of coe‰cients for Hecke subalgebras of smaller semisimple rank. This is a nontrivial fact
which requires the explicit computation of the constant term of coe‰cients for generic stan-
dard tempered induced representations. If I is the maximal ideal of the center Z of H
which annihilates such a representation, its coe‰cients can be viewed as linear forms on
Lusztig’s formal completion of H associated to I. This allows to use Lusztig’s First Re-
duction Theorem [19] which decomposes this algebra. Some results on Weyl groups are
then needed to achieve this computation of the constant term.

Once this property of normalized smooth family is obtained, it is easy to form wave
packets in the Schwartz space, by analogy with Harish-Chandra’s work for real reductive
groups [11]. Simple lemmas on spectral projections of matrices and an induction argument,
allowed by the theory of the constant term, lead to the desired result.

The paper is roughly structured as follows. First we discuss in Sections 2 to 4 the
necessary preliminary material on the a‰ne Hecke algebra and the Fourier transform on
L2ðHÞ. We formulate the Main Theorem in Section 5, and we discuss some of its conse-
quences. In Section 6 we compute the constant terms of coe‰cients of the standard induced
representations and of normalized smooth families of such coe‰cients. Finally, in Section 7
we use this and the material in the Appendix on spectral projections in order to prove the
Main Theorem. In two separate appendices we have collected useful fundamental proper-
ties of spectral projections and of the Macdonald c-function on which many of our results
ultimately rely.

Acknowledgements. It is a pleasure to thank Maarten Solleveld for some useful
comments. We also thank the referee for interesting suggestions (see Section 11).

2. The a‰ne Hecke algebra and the Schwartz algebra

This section serves as a reminder for the definition of the a‰ne Hecke algebra and
related analytic structures. We refer the reader to [26], [19] and [25] for further background
material.
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2.1. The root datum and the a‰ne Weyl group. A reduced root datum is a 5-tuple
R ¼ ðX ;Y ;R0;R

4
0 ;F0Þ, where X , Y are lattices with perfect pairing h� ; �i, R0 HX is a re-

duced root system, R4
0 HY is the coroot system (which is in bijection with R0 via the map

a ! a4), and F0 HR0 is a basis of simple roots of R0. The set F0 determines a subset
R0;þHR0 of positive roots.

The Weyl group W0 ¼ W ðR0ÞHGLðXÞ of R0 is the group generated by the reflec-
tions sa in the roots a A R0. The set S0 :¼ fsa j a A F0g is called the set of simple reflections
of W0. Then ðW0;S0Þ is a finite Coxeter group.

We define the a‰ne Weyl group W ¼ WðRÞ associated to R as the semidirect pro-
duct W ¼ W0 yX , which acts as a group of a‰ne transformations on QnZ X . The lat-
tice X contains the root lattice Q, and the normal subgroup W a¤ :¼ W0 yQpW is a
Coxeter group whose Dynkin diagram is given by the a‰ne extension of (each component
of) the Dynkin diagram of R4

0 . The a‰ne root system of W a¤ is given by
Ra¤ ¼ R4

0 � ZHY � Z, whose elements will be denoted ð�aa; nÞ, or �aaþ n, viewing them as
a‰ne functional on QnZ X . Note that W acts on Ra¤ .

Let Ra¤
þ be the set of positive a‰ne roots defined by

Ra¤
þ ¼ fða4; nÞ j n > 0; or n ¼ 0 and a A R0;þg:

Let F a¤ denote the corresponding set of a‰ne simple roots. Observe that F4
0 HF a¤ . If S a¤

denotes the associated set of a‰ne simple reflections, then ðW a¤ ;S a¤Þ is an a‰ne Coxeter
group.

In this paper we adhere to the convention N ¼ f1; 2; 3; . . .g and Zþ ¼ f0; 1; 2; . . .g.
We define the length function l : W ! Zþ on W as usual, by means of the formula
lðwÞ :¼ jRa¤

þ Xw�1ðRa¤
� Þj. Let WHW denote the set fw A W j lðwÞ ¼ 0g. It is a subgroup

of W , complementary to W a¤ . Therefore WFX=Q is a finitely generated abelian sub-
group of W .

Let Xþ HX denote the cone of dominant elements

Xþ ¼ fx A X j Ea A R0;þ : hx; a4if 0g:

We put X� :¼ �XþHX for the cone of anti-dominant elements in X . Then
ZX :¼ XþXX�HX is a sublattice which is central in W . In particular it follows that
ZX HW. The quotient Wf FW=ZX is a finite abelian group which acts faithfully on S a¤

by means of diagram automorphisms.

We choose a basis zi of ZX , and define a norm k � k on the rational vector space
QnZ ZX by k

P
lizik :¼

P
jlij. We now define a norm N on W by

NðwÞ :¼ lðwÞ þ kwð0Þ0k;ð2:1Þ

where wð0Þ is the image by the a‰ne transformation w of 0 A QnZ X , and where wð0Þ0

denotes the projection of wð0Þ onto QnZ ZX along QnZ Q. The norm N plays an impor-
tant role in this paper. Observe that it satisfies
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Nðww 0ÞeNðwÞ þNðw 0Þ;ð2:2Þ

and that NðwÞ ¼ 0 if and only if w is an element of W of finite order.

We call R semisimple if ZX ¼ 0.

2.2. Standard parabolic subsystems. A root subsystem R 0 HR0 is called parabolic if
R 0 ¼ QR 0XR0. The Weyl group W0 acts on the collection of parabolic root subsystems.
Let P be the power set of F0. With P A P we associate a standard parabolic root subsystem
RP HR0 by RP :¼ ZPXR0. Every parabolic root subsystem is W0-conjugate to a standard
parabolic subsystem.

We denote by WP ¼ WðRPÞHW0 the Coxeter subgroup of W0 generated by the re-
flections in P. We denote by W P the set of shortest length representatives of the left cosets
W0=WP of WP HW0.

Given P A P we define a sub root datum RP HR simply by RP :¼ ðX ;Y ;RP;R
4
P;PÞ.

We also define a ‘‘quotient root datum’’ RP of RP by RP ¼ ðXP;YP;RP;R
4
P;PÞ where

XP :¼ X=
�
X X ðR4

PÞ
?� and YP ¼ Y XQR4

P. The root datum RP is semisimple.

2.3. Label functions and root labels. A positive real label function is a length
multiplicative function q : W ! Rþ. This means that qðww 0Þ ¼ qðwÞqðw 0Þ whenever
lðww 0Þ ¼ lðwÞ þ lðw 0Þ, and that qðoÞ ¼ 1 for all o A W.

Such a function q is uniquely determined by its restriction to the set of a‰ne simple
reflections S a¤ . By the braid relations and the action of Wf on S a¤ it follows easily that
qðsÞ ¼ qðs 0Þ whenever s; s 0 A S a¤ are W -conjugate. Hence there exists a unique W -invariant
function a 7! qa on Ra¤ such that qaþ1 ¼ qðsaÞ for all simple a‰ne roots a A F a¤ .

We associate a possibly non-reduced root system Rnr with R by

Rnr :¼ R0 W f2a j a4 A R4
0 X 2Yg:ð2:3Þ

If a A R0 then 2a A Rnr if and only if the a‰ne roots a ¼ a4 and a ¼ a4þ 1 are not
W -conjugate. Therefore we can also characterize the label function q on W by means of
the following extension of the set of root labels qa4 to arbitrary a A Rnr. If a A R0 with
2a A Rnr, then we define

qa4=2 :¼ qa4þ1

qa4
:ð2:4Þ

With these conventions we have for all w A W0

qðwÞ ¼
Q

a ARnr;þXw�1Rnr;�

qa4:ð2:5Þ

We denote by R1 HX the reduced root system

R1 :¼ fa A Rnr j 2a B Rnrg:ð2:6Þ
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2.3.1. Restriction to parabolic subsystems. Let P A P. Both the non-reduced root
system associated with RP and the non-reduced root system associated with RP are equal
to RP;nr :¼ QRP XRnr. We define a collection of root labels qP;a4 ¼ qP

a4 for a A RP;nr by re-
stricting the labels of Rnr to RP;nr HRnr. Then qP denotes the length-multiplicative function
on WðRPÞ associated with this label function on RP;nr, and qP denotes the associated
length multiplicative function on W ðRPÞ.

2.4. The Iwahori-Hecke algebra. Given a root datum R and a (positive real) label
function q on the associated a‰ne Weyl group W , there exists a unique associative complex
Hecke algebra H ¼ HðR; qÞ with C-basis Nw indexed by w A W , satisfying the relations:

(i) Nww 0 ¼ NwNw 0 for all w;w 0 A W such that lðww 0Þ ¼ lðwÞ þ lðw 0Þ.

(ii)
�
Ns þ qðsÞ�1=2��

Ns � qðsÞ1=2� ¼ 0 for all s A S a¤ .

Notice that the algebra H is unital, with unit 1 ¼ Ne. Notice also that it follows from the
defining relations that Nw A H is invertible, for all w A W .

By convention we assume that the label function q is of the form

qðsÞ ¼ q fs :ð2:7Þ

The parameters fs A R are fixed, and the base q satisfies q > 1.

2.4.1. Isomorphisms between Hecke algebras. Suppose that f : W ! W 0 is a
length preserving isomorphism between two a‰ne Weyl groups W ¼ W0 yX and
W 0 ¼ W 0

0 yX 0. Then fðWÞ ¼ W 0 and fðS a¤Þ ¼ S 0a¤ . We define an a‰ne Dynkin diagram
isomorphism (also denoted by f) from F a¤ to F 0a¤ by requiring that fðsaÞ ¼ sfðaÞ for all
a A F a¤ . Suppose that we are given label functions q for W and q 0 for W 0. Clearly,
if q 0�fðsÞ� ¼ qðsÞ for all s A S, then f induces an isomorphism of Hecke algebras
c : HðR; qÞ ! HðR 0; q 0Þ by cðNwÞ ¼ NfðwÞ.

Observe that X HW is precisely the set of elements in W which have finitely many
conjugates. Therefore fðXÞ ¼ X 0, and u :¼ fjX : X ! X 0 is an isomorphism of lattices. Let
a ¼ a4þ n be an a‰ne root, and let x A X be arbitrary. Using the relation saxs�1

a ¼ sa4ðxÞ
it is easy to see that there exists an integer n 0 such that fðsaÞ ¼ su4ða4Þþn 0 , where u4 denotes
the inverse transpose of u. Hence there exists a weight l of R0 such that the action of f on
a‰ne roots is given by fðaÞðxÞ ¼ a

�
u�1ðxÞ þ l

�
. The weight l is uniquely determined by u.

Since f and c are thus completely determined by u, we will write fu and cu.

In the special case where uðF0Þ ¼ F 0
0 we have l ¼ 0. In this case u determines an iso-

morphism between the root data R ¼ ðX ;Y ;R0;R
4
0 ;F0Þ and R 0 ¼ ðX 0;Y 0;R 0

0;R
0;4
0 ;F 0

0Þ
(with the action on Y and on R4

0 being given by u4) which is compatible with the label
functions. The restriction of f to F a¤ is now an isomorphism of a‰ne Dynkin diagrams
which is obtained by the unique a‰ne extension of the isomorphism u4 of finite type Dyn-
kin diagrams. Conversely, every isomorphism u between two root data determines a length
preserving isomorphism fu between the associated a‰ne Weyl groups.

2.4.2. Bernstein presentation. There is another, extremely important presentation of
the algebra H, due to Joseph Bernstein (unpublished). Since the length function is additive
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on the dominant cone Xþ, the map Xþ C x 7! Nx is a homomorphism of the commuta-
tive monoid Xþ with values in H�, the group of invertible elements of H. Thus there ex-
ists a unique extension to a homomorphism X C x 7! yx A H� of the lattice X with values
in H�.

The abelian subalgebra of H generated by yx, x A X , is denoted by A. Let
H0 ¼ HðW0; q0Þ be the finite type Hecke algebra associated with W0 and the restriction
q0 of q to W0. Then the Bernstein presentation asserts that both the collections yxNw and
Nwyx ðw A W0; x A X Þ are bases of H, subject only to the cross relation (for all x A X and
s ¼ sa with a A F0):

yxNs � NsysðxÞð2:8Þ

¼
ðq1=2

a4 � q
�1=2
a4 Þ

yx � ysðxÞ
1 � y�a

if 2a B Rnr;

�
ðq1=2

a4=2q
1=2
a4 � q

�1=2
a4=2 q

�1=2
a4 Þ þ ðq1=2

a4 � q
�1=2
a4 Þy�a

� yx � ysðxÞ
1 � y�2a

if 2a A Rnr:

8>>><
>>>:

2.4.3. The center Z of H. An immediate consequence of the Bernstein presentation
of H is the description of the center of H:

Theorem 2.1. The center Z of H is equal to AW0 . In particular, H is finitely gener-

ated over its center.

As an immediate consequence we see that irreducible representations of H are finite
dimensional by an application of (Dixmier’s version of) Schur’s Lemma.

We denote by T the complex torus T ¼ HomðX ;C�Þ of complex characters of the
lattice X . The space SpecðZÞ of complex homomorphisms of Z is thus canonically isomor-
phic to the (geometric) quotient W0nT .

Thus, to an irreducible representation ðV ; pÞ of H we attach an orbit W0t A W0nT ,
called the central character of p.

2.4.4. Parabolic subalgebras and their semisimple quotients. We consider another
important consequence of the Bernstein presentation of H:

Proposition 2.2. (i) The Hecke algebra HP :¼ HðRP; qPÞ is isomorphic to the subal-

gebra of H generated by A and the finite type Hecke subalgebra HðWPÞ :¼ HðWP; qjWP
Þ.

(ii) We can view HP :¼ HðRP; qPÞ as a quotient of HP via the surjective homo-

morphism f1 : HP ! HP characterized by (1) f1 is the identity on the finite type sub-

algebra HðWPÞ and (2) f1ðyxÞ :¼ yx, where x A XP is the canonical image of x in

XP ¼ X=
�
X X ðR4

PÞ
?�

.

Let T P denote the character torus of the lattice X=ðX XQRPÞ. Then T P HT is a
subtorus which is fixed for all the elements w A WP and which is inside the simultaneous
kernel of the a A RP. The next result again follows simply from the Bernstein presenta-
tion:
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Proposition 2.3. There exists a family of automorphisms ct ðt A T PÞ of HP, defined

by ctðyxNwÞ ¼ xðtÞyxNw.

We use the above family of automorphisms to twist the projection f1 : HP ! HP.
Given t A T P, we define the epimorphism ft : H

P ! HP by ft :¼ f1 � ct.

2.5. Intertwining elements. Let s ¼ sa A S0 with a A F1. We define an ‘‘intertwining
element’’ is A H as follows:

is ¼ ð1 � y�aÞNs þ
�
ðq�1=2

a4 q
�1=2
2a4 � q

1=2
a4 q

1=2
2a4Þ þ ðq�1=2

2a4 � q
1=2
2a4Þy�a=2

�
¼ Nsð1 � yaÞ þ

�
ðq�1=2

a4 q
�1=2
2a4 � q

1=2
a4 q

1=2
2a4Þya þ ðq�1=2

2a4 � q
1=2
2a4Þya=2

�
:

(If a=2 B X then we put q2a4 ¼ 1; see Remark 9.1.) We recall from [25], Theorem 2.8 that
these elements satisfy the braid relations, and they satisfy (for all x A X )

isyx ¼ ysðxÞis:ð2:9Þ

Let Q denote the quotient field of the centre Z of H, and let QH denote the Q-algebra

QH ¼ QnZH. Inside QH we normalize the elements is as follows.

We first introduce

na :¼ q
1=2
a4 q

1=2
2a4ð1 þ q

�1=2
a4 y�a=2Þð1 � q

�1=2
a4 q�1

2a4y�a=2Þ A A:ð2:10Þ

Then the normalized intertwiners i0s ðs A S0Þ are defined by (with s ¼ sa, a A R1):

i0s :¼ n�1
a is A QH:ð2:11Þ

It is known that the normalized elements i0s satisfy ði0s Þ
2 ¼ 1. In particular, i0s A QH

�, the
group of invertible elements of QH. In fact we have:

Lemma 2.4 ([26], Lemma 4.1). The map S0 C s 7! i0s A QH
� extends (uniquely) to a

homomorphism W0 C w 7! i0w A QH
�. Moreover, for all f A QA we have that i0w f i0

w�1 ¼ f w.

2.6. Formal completion of H and Lusztig’s Structure Theorem. Let t A T , and let It

denote the maximal ideal of Z associated with the orbit W0t. We denote by ZW0t the
It-adic completion of Z. In [19] Lusztig considered the structure of the completion

Ht :¼ ZW0t nZH:ð2:12Þ

We will use Lusztig’s results on the structure of this formal completion (in a slightly
adapted version) for so called RP-generic points t A T .

2.6.1. RP-generic points of T. Let RP HR0 be a parabolic subset of roots, i.e.,
RP ¼ RRP XR0. Let us recall the notion of an RP-generic point t A T (cf. [26], Definition
4.12). To t A T we associate RPðtÞHR0, the smallest parabolic subset containing all roots
a A R0 for which one of the following statements holds (where ca denotes the Macdonald
c-function, cf. equation (9.2)):
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(i) ca B O�
t (the invertible holomorphic germs at t).

(ii) aðtÞ ¼ 1.

(iii) aðtÞ ¼ �1 and a B 2X .

We say that t1; t2 A T are equivalent if there exists a w A WPðt1Þ :¼ WðRPðt1ÞÞ such that
t2 ¼ wðt1Þ. Notice that in this case RPðt1Þ ¼ RPðt2Þ, so that this is indeed an equivalence re-
lation. The equivalence class of t A T is equal to the orbit $ ¼ WPðtÞtHW0t.

We define PðtÞ as the basis of simple roots of RPðtÞ inside R0;þ, and we sometimes use
the notation Pð$Þ instead of PðtÞ.

Definition 2.5. We call t A T an RP-generic point if wt A $ (with w A W0) implies
that w A WP.

Remark 2.6. Notice that if t A T is RP-generic then RPðtÞHRP, but not con-
versely.

2.6.2. Lusztig’s First Reduction Theorem. Let PHF0, and let t be RP-generic such
that PðtÞ ¼ P. This implies in particular that $ ¼ WPt. Lusztig ([19], Subsection 8.7) asso-
ciates idempotents ew$ A Ht with the equivalence classes w$ A W0t (in the notation of
Lusztig these elements are denoted by 1w$). By Lusztig’s First Reduction Theorem (cf.
[19]) we know that if u; v A W P, then i0ue$i

0
v�1 is a well defined element of Ht, and that we

have the decomposition (compare with [26], equation (4.46))

Ht ¼
L

u; v AW P

i0ue$H
P

t i0v�1 ;ð2:13Þ

where HP
t denotes the completion of HP at $ ¼ WPt. Moreover, the subspace i0ue$H

P
t i0

v�1

is equal to eu$Htev$. When u ¼ v then this is a subalgebra of Ht, and when u ¼ v ¼ e then
this subalgebra reduces to e$H

P
t , which is isomorphic to HP

t via x 7! e$xð¼ xe$Þ.

Finally, assume that u ¼ v A W P is such that uðPÞ ¼ QHF0. Then u naturally ex-
tends to an isomorphism u : RP ! RQ of root data which is compatible with the label
functions qP and qQ (since u A W ). By 2.4.1 there exists an isomorphism of a‰ne Hecke
algebras cu : HP ! HQ. This isomorphism gives rise, by continuity, to an isomorphism
(also denoted by cu) cu : HP

t ! H
Q

uðtÞ. Lusztig’s Theorem also asserts that for all x A HP
t ,

we have the formula

i0uðe$xÞi0u�1 ¼ eu$cuðxÞ:ð2:14Þ

We will use these results of Lusztig in the situation that t A T is of the form t ¼ rPtP with
WPrP HTP the central character of a discrete series representation ðVd; dÞ (see Definition
2.7), and tP A T P (this is the case if W0tHT is the central character of a representation
which is induced from ðVd; dÞ). In this situation rP A TP is a so-called ðRP; qPÞ-residual
point (see Definition 9.3, Theorem 2.10). Therefore, RPðtÞ IRP ([26], Proposition 7.3),
and RPðtÞ ¼ RP for an open dense subset of T P (the complement of a subvariety of codi-
mension 1 in T P). Thus if t ¼ rPtP is RP-generic in this situation, then indeed PðtÞ ¼ P, as
required.
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2.6.3. Application. We will use the above result (2.13) when analyzing a finite func-
tional f A A (cf. section 3.2) or a representation p of H which contains a power In

t of It in
its kernel.

We can then view f (or p) as a linear function on the quotient H=In
t H. Since this

quotient is finite dimensional (by Theorem 2.1), we have

H=In
t H ¼ Ht=I

n
t Ht:ð2:15Þ

In this way we can view f (resp., p) as a functional (resp., representation) of the completion
Ht. For example, this applies when W0t is the central character of an irreducible represen-
tation p. We can view p as a representation of the quotient Ht :¼ H=ItH (the case n ¼ 1
of (2.15)), and the matrix coe‰cients of p can be viewed as functionals on H t.

2.7. Hilbert algebra structure on H. The anti-linear map h 7! h� defined by�P
w

cwNw

��
¼

P
w

cw�1 Nw is an anti-involution of H. Thus it gives H the structure of an

involutive algebra.

In the context of involutive algebras we can also arrange Schur’s Lemma for topolog-
ically irreducible representations (cf. [9]). Thus the topologically irreducible representations
of the involutive algebra ðH; �Þ are finite dimensional by Theorem 2.1.

The linear functional t : H ! C given by t

�P
w

cwNw

�
¼ ce is a positive trace for

the involutive algebra ðH; �Þ. The basis Nw of H is orthonormal with respect to the pre-
Hilbert structure ðx; yÞ :¼ tðx�yÞ on H. We denote the Hilbert completion of H with re-
spect to ð� ; �Þ by L2ðHÞ. This is a separable Hilbert space with Hilbert basis Nw ðw A WÞ.

Let x A H. The operators lðxÞ : H ! H (given by lðxÞðyÞ :¼ xy) and
rðxÞ : H ! H (given by rðxÞðyÞ :¼ yx) extend to B

�
L2ðHÞ

�
, the algebra of bounded op-

erators on L2ðHÞ. This gives H the structure of a Hilbert algebra (cf. [9]).

The operator norm completion of lðHÞHB
�
L2ðHÞ

�
is a C �-algebra which we call

the reduced C �-algebra C �
r ðHÞ of H (cf. [26], Definition 2.4). The natural action of C �

r ðHÞ
on L2ðHÞ via l (resp., r) is called the left regular (resp., right regular) representation of
C �

r ðHÞ. Since it has only finite dimensional irreducible representations by the above re-
mark, C �

r ðHÞ is of type I.

The norm kxko of x A C �
r ðHÞ is by definition equal to the norm of lðxÞ A B

�
L2ðHÞ

�
.

Observe that the map x 7! lðxÞNe defines an embedding

C �
r ðHÞHL2ðHÞ:ð2:16Þ

2.8. Discrete series representations.

Definition 2.7. We call an irreducible representation ðVd; dÞ of ðH; �Þ a discrete se-
ries representation if ðVd; dÞ is equivalent to a subrepresentation of

�
L2ðHÞ; l

�
. We denote

by D ¼ DR;q a complete set of representatives of the equivalence classes of the irreducible
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discrete series representations of ðH; �Þ. When r A T is given, DW0r HD denotes the subset
of D consisting of irreducible discrete series representations with central character W0r

ðr A TÞ.

Corollary 2.8 (of Theorem 2.1). DW0r is a finite set.

There is an important characterization of the discrete series representations due to
Casselman. This characterization has consequences for the growth behaviour of matrix
coe‰cients of discrete series representations. Recall that T denotes the complex algebraic
torus of characters of the lattice X . It has polar decomposition T ¼ TrsTu where Trs is the
real split form of T , and Tu the compact form. If t A T we denote by jtj A Trs its real split
part.

Theorem 2.9 (Casselman’s criterion for discrete series representations, cf. [26], Lemma
2.22). Let ðVd; dÞ be an irreducible representation of H. The following are equivalent:

(i) ðVd; dÞ is a discrete series representation.

(ii) All matrix coe‰cients of d belong to L2ðHÞ.

(iii) The character w of d belongs to L2ðHÞ.

(iv) The weights t A T of the generalized A-weight spaces of Vd satisfy: jxðtÞj < 1, for

all 03 x A Xþ.

(v) ZX ¼ f0g, and there exists an � > 0 such that for all matrix coe‰cients m of d,
there exists a C > 0 such that the inequality jmðNwÞj < Cq��lðwÞ holds.

We have the following characterization of the set of central characters of irreducible
discrete series representations. For the notion of ‘‘residual points’’ of T we refer the reader
to Definition 9.3.

Theorem 2.10 (cf. [26], Lemma 3.31 and Corollary 7.12). The set DW0r is nonempty if

and only if r A T is a residual point. In particular, D is finite, and empty unless ZX ¼ 0.

2.9. The Schwartz algebra; tempered representations. We define norms pn

ðn A Zþ ¼ f0; 1; 2; . . .gÞ on H by

pnðhÞ ¼ sup
w AW

jðNw; hÞj
�
1 þNðwÞ

�n
;ð2:17Þ

and we define the Schwartz completion S of H by

S :¼
�

x ¼
P
w

xwNw A H�
���� pnðxÞ < y En A Zþ

�
:ð2:18Þ

In [26], Theorem 6.5, it was shown that the multiplication operation of H is continuous
with respect to the family pn of norms. The completion S is a (nuclear, unital) Fréchet al-
gebra (cf. [26], Definition 6.6).
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As an application of [26], Theorem 6.1, it is easy to see that there exist constants
D A Zþ and C > 0 such that khko eCpDðhÞ for all h A H. Thus we have a continuous em-
bedding

SHC �
r ðHÞ:ð2:19Þ

The subalgebra S is clearly dense and symmetric (i.e., S� ¼ S). The Main Theorem 5.3
can be viewed as a structure theorem for this Fréchet algebra via the Fourier transform.

Definition 2.11. The topological dual S 0 is called the space of tempered functionals.
A finite dimensional, continuous representation of S is called a tempered representation.
By abuse of terminology, we call a finite dimensional representation of H tempered if it
extends continuously to S.

In particular, a finite dimensional representation ðV ; pÞ of H is tempered if and only
if the matrix coe‰cient h 7! f

�
pðhÞv

�
extends continuously to S for all f A V � and v A V .

Remark 2.12. By the proof of Corollary 5.9 the group of units S� is open in the
Fréchet algebra S. Therefore automatic continuity applies so that actually any finite di-
mensional representation of S is continuous (compare the reasoning in the Appendix by
Schneider and Stuhler of [31], p. 205).

Observe that the involution � of H extends continuously to S. As a consequence we
have:

Proposition 2.13. Let ðV ; pÞ ! ðV �; p�Þ denote the duality functor defined on the cat-

egory of finite dimensional modules of H as follows: V � denotes the conjugate linear dual of

V , equipped with the H-action defined by p�ðhÞðfÞðvÞ :¼ f
�
pðh�Þv

�
. This functor is contra-

variant exact, and V �� FV. The duality restricts to a duality on the category of tempered

modules.

3. Tempered representations

In this section we collect general facts about tempered representations and their ma-
trix coe‰cients, the tempered finite functionals. We first discuss Casselman’s criterion for
temperedness, and then parabolic induction for tempered representations.

3.1. Finite functionals.

3.1.1. Algebraic dual of H. We identify the algebraic dual H� of H with
formal linear combinations f ¼

P
w AW

dwNw via the sesquilinear pairing ð� ; �Þ defined by

ðx; yÞ ¼ tðx�yÞ. Thus f ðxÞ ¼ ð f �; xÞ and dw ¼ f ðNw�1Þ. For x; y A H and f A H� we de-
fine Rxð f ÞðyÞ :¼ f ðyxÞ and Lxð f ÞðyÞ :¼ f ðxyÞ (a right representation of H). Note that in
terms of multiplication of formal series we have: Rxð f Þ ¼ x: f and Lxð f Þ ¼ f :x.

3.1.2. Finite functionals. Let AðHÞ or simply A denote the subspace of H� consist-
ing of finite linear functionals on H:
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Definition 3.1. The space A consists of all the elements f A H� such that the space
Vf :¼ H: f :H is finite dimensional.

Remark 3.2. f A A is a coe‰cient of ðVf ;RÞ. Hence A is the space of (or equiva-
lently set of) coe‰cients of finite dimensional representations of H.

Since H is finitely generated over its center Z, f is finite if and only if
dimð f :ZÞ < y. Recall that A denotes the abelian subalgebra of H spanned by the ele-
ments yx with x A X . Since ZHA we see that f A A if and only if dimðA: f Þ < y if and
only if dimð f :AÞ < y.

3.2. Exponents of finite functionals.

Definition 3.3. We say that t A T is an exponent of f A A if the X -module on the
finite dimensional space V ¼ f :H (the space of left translates of f ) defined via x 7! Lyx

jV
contains a (generalized) weight space with weight t.

Proposition 3.4. Let f A A and let � denote the set of exponents of f . There exist

unique functions E
f

t ðt A �Þ on H� X , polynomial in X , such that

f ðyxhÞ ¼
P
t A �

E
f

t ðh; xÞtðxÞ:ð3:1Þ

Proof. Uniqueness: Suppose that we have a finite set � of exponents and for each
t A � a polynomial function x 7! EtðxÞ of X such that

P
t A �

EtðxÞtðxÞ1 0:

Suppose that there exists a t A � such that x 7! EtðxÞ has positive degree. We apply the dif-
ference operator Dt;y ðt A �; y A XÞ defined by

Dt;yð f ÞðxÞ :¼ tðyÞ�1
f ðx þ yÞ � f ðxÞ:

It is easy to see that for a suitable choice of y this operator lowers the degree of the coe‰-
cient of t by 1, and leaves the degrees of the other coe‰cients invariant. Hence, if we as-
sume that not all of the coe‰cients Et are zero, we obtain a nontrivial complex linear rela-
tion of characters of X , after applying a suitable sequence of operators Ds; z. This is a
contradiction.

Existence: We fix h A H and we decompose f according to generalized LX -
eigenspaces in V . We may replace f by one of its constituents, and thus assume that
� ¼ ftg. We may replace the action of X by the action L 0

x ¼ tðxÞ�1
Lx. Therefore it is

enough to consider the case t ¼ 1. Let N denote the dimension of V . By Engel’s theorem
applied to the commuting unipotent elements Lyx

acting in V , we see that any product of N

or more di¤erence operators of the form Dy ¼ Lyy
� 1 is equal to zero in V . By induction

on N this implies that for any h, the function x 7! f ðyxhÞ is a polynomial in x of degree at
most N � 1. r

Corollary 3.5. We have E
f

t ðyxh; yÞ ¼ tðxÞE f
t ðh; x þ yÞ. In particular, the degree of

the polynomial E
f

t ðh; xÞ is uniformly bounded as a function of h.
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Corollary 3.6. Put ftðhÞ ¼ E
f

t ðh; 0Þ. Then ft is the component of f corresponding to

the generalized LX -eigenspace with eigenvalue t in V. Observe that ftðyxhÞ ¼ tðxÞE f
t ðh; xÞ,

and that ft A f �A ¼ LX ð f ÞHV HA.

3.3. The space Atemp of tempered finite functionals. If f A A, we can express the con-
dition f A S 0 (temperedness) or f A L2ðHÞ (square integrability) in terms of a system of
inequalities on the set of exponents � of f . This is the content of the Casselman conditions
for temperedness ([26], Lemma 2.20). We will formulate these results below, adapted to suit
the applications we have in mind (Section 3.7).

Given P A P we define a partial orderingeP on exponents as follows:

Definition 3.7. Let P A P, and let RP be the standard parabolic subsystem with
that subset. For real characters t1, t2 on X we say that t1 eP t2 if and only if
t1ðxÞe t2ðxÞ for all x A X P;þ :¼ fx A X j Ea A P : hx; a4if 0g. In other words, t1 eF0

t2

means that t1ðxÞe t2ðxÞ for all x A Xþ, and in general t1 eP t2 if and only if both
t1 eF0

t2 and t1jXXP? ¼ t2jXXP? .

Thus t1 eP t2 if and only if t1t�1
2 ¼

Q
a AP

ðda n a4Þ with 0 < dae 1, where d n a4 A Trs

is the real character defined by d n a4ðxÞ ¼ dhx;a4i.

Let ðV ; pÞ be a finite dimensional representation of H. It follows easily from Defini-
tion 3.3 that the union of the sets of exponents of the matrix coe‰cients h 7! f

�
pðhÞv

�
of p

coincides with the set of weights t of the generalized A-weight spaces of V . Using [26],
Lemma 2.20, we get:

Corollary 3.8 ([26], Lemma 2.20, Casselman’s criterion for temperedness). Let

ðV ; pÞ be a finite dimensional representation of H. The following statements are equivalent:

(i) ðV ; pÞ is tempered.

(ii) The weights t of the generalized A-weight spaces of V satisfy jtjeF0
1.

(iii) The exponents t of the matrix coe‰cients h 7! f
�
pðhÞv

�
of p satisfy jtjeF0

1.

Let f A A. The space of matrix coe‰cients of the finite dimensional representation�
Vf :¼ RHð f Þ;R

�
is the space H � f �H. Hence the union of the sets of exponents of the

matrix coe‰cients of Vf is equal to the set of exponents of f . Hence we obtain:

Corollary 3.9 (Casselman’s temperedness condition for functionals). We have

f A Atemp :¼ AXS 0 if and only if the real part jtj of every exponent t of f satisfies jtjeF0
1.

Definition 3.10. We put A2;modc for the subspace of Atemp consisting of those f such
that all exponents t of f satisfy jtj ¼

Q
a AF0

ðda n a4Þ with 0 < da < 1.

In other words, f A A2;modc if and only if f A Atemp, and for any of the exponents t of
f the following statement holds: If P A P is such that jtjeP 1 then P ¼ F0.
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Then Theorem 2.9 implies that:

Corollary 3.11. (i) A2 :¼ AXL2ðHÞ3 0 only if ZX ¼ 0, and in this case,
A2 ¼ A2;modc.

(ii) Let o A T F0 . Suppose that f A AðHÞ factors through the morphism

fo : H ! HF0
defined after Proposition 2.3 in an element fo A AðHF0

Þ. Then

f A A2;modcðHÞ if and only if fo A A2ðHF0
Þ and o A T F0

u .

3.4. Induction from standard parabolic subquotient algebras. In this subsection we
discuss the technique of parabolic induction of tempered representations.

Let PHF0 and let WP HW0 be the standard parabolic subgroup of W0 gener-
ated by the simple reflections sa with a A P. Let HP HH be the subalgebra
HP :¼ HðWPÞ �AHH, and let HP denote the quotient of HP by the (two sided) ideal
generated by the central elements yx � 1 where x A X is such that hx; a4i ¼ 0 for all a A P.
Then HP is again an a‰ne Hecke algebra, with root datum RP ¼ ðRP;XP;R

4
P;YP;PÞ,

where XP ¼ X=P4;? and YP ¼ Y XRP4, and root labels qP that are obtained by restric-
tion from Rnr to RP;nr.

There exists a parameter family of homomorphisms ftP : HP ! HP with
tP A T P HT , the subtorus with character lattice X P ¼ X=ðX XRPÞ, defined by
ftPðyxTwÞ ¼ xðtPÞyxTw, where x A XP denotes the canonical image of x in XP. The kernel
of ftP is the two-sided ideal generated by elements of the form xðtPÞ�1yx � 1, with x A X

such that hx; a4i ¼ 0 for all a A P.

Let ðVd; dÞ be a discrete series representation of the subquotient Hecke algebra HP.
Let WPrP be the central character of d. It is known that rP is a residual point of TP (cf.
[26], Lemma 3.31), the subtorus of T with character lattice XP.

Theorem 3.12 ([26], Proposition 4.19 and Proposition 4.20). Let tP A T P
u , and let dtP

denote the lift to HP of d via ftP . Then the induced representation p ¼ pðRP;WPrP; d; t
PÞ

from the representation dtP of HP to H is a unitary, tempered representation.

Remark 3.13. If ðV ; dÞ is a finite dimensional representation of HP let us denote by�
iPðVÞ; iPðdÞ

�
the induced representation of ðV ; dÞ to H. Then one sees, as in the references

for the previous theorem, that, if d is tempered, then iPðdÞ is tempered.

3.4.1. Compact realization of p(RP ,WPrP, d, tP). Put HðW PÞHH for the finite
dimensional linear subspace of H spanned by the elements Nw with w A W P. Then

HFHðW PÞnHP;ð3:2Þ

where the isomorphism is realized by the product map. Therefore we have the isomorphism

HnHP VdF iðVdÞ :¼ HðW PÞnVd:ð3:3Þ

We will use this isomorphism to identify the representation space of pðP;WPrP; d; t
PÞ with

iðVdÞ. This realization of the induced representation is called the compact realization, by
analogy with induced representations for reductive groups.
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According to [26], Proposition 4.19, the representation pðP;WPrP; d; t
PÞ is unitary

(i.e., a �-representation) with respect to the Hermitian inner product

hh1 n v1; h2 n v2i ¼ tðh�
1 h2Þðv1; v2Þ;ð3:4Þ

where ðv1; v2Þ denotes the inner product on the representation space Vd of the discrete series
representation ðVd; dÞ.

More generally, for tP A T P the Hermitian form h� ; �i on iðVdÞ defines a nondegener-
ate sesquilinear pairing of H-modules as follows:

pðP;WPrP; d; tP�1Þ � pðP;WPrP; d; t
PÞ ! C:ð3:5Þ

3.5. Groupoid of tempered standard induction data. Let P denote the power set of
F0. Let X (respectively Xu) denote the set of all triples x ¼ ðP; d; tPÞ with P A P, d an irre-
ducible discrete series representation of HP (with underlying vector space Vd), and tP A T P

(respectively tP A T P
u ). We denote the central character of d by WPrP.

Let W denote the finite groupoid whose set of objects is P and such that the
set of arrows from P to Q ðP;Q A PÞ consists of KQ � WðP;QÞ, where KQ ¼ TQ XT Q

and WðP;QÞ ¼ fw A W0 jwðPÞ ¼ Qg. The composition of arrows is defined by
ðk1;w1Þðk2;w2Þ ¼

�
k1w1ðk2Þ;w1w2

�
. This groupoid acts on X as follows. An element

g ¼ k � n A KQ � WðP;QÞ of WX defines an algebra isomorphism cg : HP ! HQ as fol-
lows. An element n A WðP;QÞ defines an isomorphism from the root datum ðRP; qPÞ to
ðRQ; qQÞ compatible with qP and qQ, which determines a Hecke algebra isomorphism cn

as in 2.4.1. On the other hand, if k A KQ then ck : HQ ! HQ is the automorphism de-
fined by ckðyxNwÞ ¼ kðxÞyxNw. Then cg is defined by the composition of these isomor-
phisms. We obtain a bijection Cg : DWPrP

! Dk�1WQnðrPÞ (where DWPrP
¼ DP;WPrP

denotes
a complete set of representatives for the equivalence classes of irreducible discrete series
representations of HP with central character WPrP) characterized by the requirement
CgðdÞF d � c�1

g . The action of W on X is defined by: gðP; d; tPÞ ¼
�
Q;CgðdÞ; gðtPÞ

�
,

with gðtPÞ :¼ knðtPÞ.

Definition 3.14. The fibred product WX ¼ W�P X is called the groupoid of stan-
dard induction data. The full compact subgroupoid WXu

¼ W�P Xu is called the groupoid
of tempered standard induction data.

Definition 3.15. An element x ¼ ðP; d; tPÞ A X is called generic if t ¼ rPtP is RP-
generic (cf. Definition 2.5), where rP A TP is such that WPrP is the central character of d.
Notice that the set of non-generic x A XP; d is a proper Zariski-closed subset of XP; d.

The groupoid WXu
was introduced in [26] (but was denoted by WX there) and plays

an important role in the theory of the Fourier transform for H. It is easy to see that WX is
a smooth analytic, étale groupoid, whose set of objects is equal to X. Thus WX is a union of
complex algebraic tori, and therefore we can speak of polynomial and rational functions on
X and on WX. This also applies to the full compact subgroupoid WXu

.

[26], Theorem 4.38 states that there exists an induction functor

p : WXu
! PRepunit; tempðHÞ;
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where the target groupoid is the category of finite dimensional, unitary, tempered represen-
tations of H in which the morphisms are given by unitary intertwining isomorphisms
modulo the action of scalars. The image of x ¼ ðP; d; tPÞ A Xu is the representation
pðxÞ :¼ pðP;WPrP; d; t

PÞ of H, in its compact realization, as was defined in subsection
3.4.1.

The intertwining isomorphism pðg; xÞ : iðVdÞ ! iðVCgðdÞÞ associated with

g ¼ k � n A KQ � W ðP;QÞ

is the operator Aðg;RP;WPrP; d; t
PÞ which was defined in [26] (equation (4.82)). In order to

explain its construction we need to use Lusztig’s Theorem on the structure of the formal
completion of H at the central character of pðxÞ (cf. Subsection 2.6). The central character
of pðxÞ ðx ¼ ðP; d; tPÞÞ is equal to W0t with t ¼ rPtP, where WPrP denotes the central char-
acter of d. Recall that we can then extend pðxÞ to the formal completion Ht of H with re-
spect to the maximal ideal It of Z at W0t (cf. 2.6.3).

First we consider the case where x is generic (Definition 3.15). For w A W P, w3 e,
the idempotent ewo (cf. equation (2.13)) vanishes on 1nVdH iðVdÞ, where the action is
through pðxÞ (extended to the completion). Therefore we have the natural isomorphisms
of vector spaces:

iðVdÞFHnHP Vdð3:6Þ

FHt ne$H
P

t
Vd

F
L

u AW P

i0ue$nVd;

where e$H
P

t FHP
t acts on Vd via dtP , extended to the formal completion at the central

character WPt. We will often suppress the subscript e$H
P

t of n .

Let us now define the unitary standard intertwining operators pðg; xÞ in this case

where x is generic. First we choose a unitary isomorphism ~ddg : Vd ! VCgðdÞ intertwining the
representations d � c�1

g and CgðdÞ. These choices are not canonical, but give rise to a co-
cycle hD with values in S1 of the finite groupoid WD ¼ W�P D (constructed in a similar
way as WX) such that

gCvðdÞCvðdÞu � ~ddv ¼ hDðu; vÞ~dduv:ð3:7Þ

The cohomology class ½hD� A H 2ðWD;S
1Þ is independent of the choices of the intertwiners

~ddg. Then we define

pðg; xÞ : iðVdÞ ! iðVCgðdÞÞ;ð3:8Þ

hn v ! hi0g�1eg$ n
eg$H

gðPÞ
gðtÞ

~ddgðvÞ;

where we use the isomorphism of equation (3.6) to view the right-hand side as an element
of iðVCgðdÞÞ. It follows easily that pðg; xÞ is an intertwining operator between pðxÞ and
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pðgxÞ. The composition of these normalized intertwining operators clearly satisfy (for com-
posable arrows u, v of the groupoid WX, with source of v being x):

p
�
u; vðxÞ

�
pðv; xÞ ¼ hðuD; vDÞpðuv; xÞð3:9Þ

(where uD, vD are the images of u, v in WD under the natural homomorphism WX ! WD).
The appearance of h implies that p is only a projective representation of WX (see
below).

For general x we need the following regularity results from [26]. The matrix elements
of pðg; xÞ are meromorphic in x, with possible poles at the nongeneric x. However, it was
shown in [26], Theorem 4.33, that for RP-generic t ¼ rPtP with tP A T P

u , pðg; xÞ is unitary
with respect to the Hilbert space structures of iðVdÞ and iðVCgðdÞÞ (which are independent of
tP A T P

u , cf. equation (3.4)). Together with a description of the locus of the possible singu-
larities of pðg; xÞ (as a rational function on XP; d, the set of induction data of the form
ðP; d; tPÞ with tP A T P), this implies (according to a simple argument, cf. [2], Lemma 8)
that pðg; xÞ has only removable singularities in a tubular neighbourhood of XP; d;u (the sub-
set of triples in XP; d with tP A T P

u ). Thus pðg; xÞ has a unique holomorphic extension to a
tubular neighbourhood of XP; d;u. This finally clarifies the definition of pðg; xÞ for general
x A XP; d;u (and in fact in a ‘‘tubular neighbourhood’’ of this subset of XP; d).

We conclude with the following summary of the above:

Theorem 3.16. The induction functor p : WXu
! PRepunit; tempðHÞ is rational and

smooth.

By this we simply mean that on each component XP; d;u of Xu, the representations pðxÞ
can be realized by smooth rational matrices as a function of x A XP; d;u, and also the ma-
trices of the pðg; xÞ are both rational and smooth in x A XP; d;u. We note that the matrices
pðx; hÞ :¼ pðxÞðhÞ (for h A H fixed) are in fact even regular functions of x, and that the ma-
trices pðk; xÞ (for k A KP) are constant.

3.6. The constant part of a tempered representation. Let ðV ; pÞ denote a tempered
representation of H, and let P A P. Given t A T we denote by tP the restriction of the char-
acter t to the sublattice P?XX . We define the constant part V P of V along P by

V P ¼
L

t AT :jtjP¼1

Vtð3:10Þ

and its complement

V Pþ ¼
L

t AT :jtjP31

Vtð3:11Þ

where Vt denotes the generalized t-eigenspace for the representation x 7! pðxÞ of the lattice
X on V . Recall the partial ordering eP introduced in Definition 3.7. Then, because V is
tempered, one has

V P ¼
L

t AT :jtjeP1

Vt:ð3:12Þ
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Since the sets t A T defined by jtjP ¼ 1 and jtjP 3 1 are WP-invariant it is clear that
V P HV and V PþHV are subrepresentations of the restriction of ðV ; pÞ to the subalgebra
HP (recall that C½X �WP is the center of HP).

Definition 3.17. Let ðV P; pPÞ denote the representation of HP on V P described
above. We call this representation the constant part of V along P. We denote by
pP;V : V ! V P the projection of V to V P along V Pþ. Observe that this is an HP-module
morphism.

The following proposition is elementary.

Proposition 3.18. (i) V is the direct sum of the HP-submodules V P and V Pþ which

have no irreducible subquotient in common. In particular V Pþ is the unique complementary

H P-submodule of V P in V.

(ii) The HP representation V P is tempered. It is the unique maximal tempered HP-

subrepresentation of the restriction V jHP to HP of V.

(iii) V P is a direct summand of V jHP .

(iv) The assignment V 7! V P is functorial, and is an exact functor.

(v) Transitivity: If PHQ, then V P ¼ ðV QÞP
.

Let o be a unitary character of the lattice ZX , and let ðV ; pÞ be a finite dimensional
representation of H such that the central subalgebra AZ ¼ C½yx : x A ZX �FC½ZX � acts on
V via the character o. We call ðV ; pÞ an o-representation. Choose a character o 0 A T F0

u

such that o 0jZX
¼ o. By definition (using the notations introduced in Subsection 3.4) the

representation p factors through the quotient map fo 0 . Hence there exists a representation
ðV ; rÞ of the semisimple quotient a‰ne Hecke algebra HF0

such that p ¼ ro 0 . It is easy to
check that the following definition is independent of the choice of the lift o 0 of o:

Definition 3.19. In the above situation we say that ðV ; pÞ is an o-representation
which is square integrable modulo ZX if all matrix coe‰cients of ðV ; rÞ belong to L2ðHF0

Þ
or equivalently, if all matrix coe‰cients of ðV ; pÞ belong to A2;modc.

Proposition 3.20. Let o be a unitary character of ZX and let ðV ; pÞ be an o-

representation. Then ðV ; pÞ is square integrable modulo ZX i¤ ðV ; pÞ is tempered and

V P ¼ 0 for all proper subsets PHF0.

In this case ðV ; pÞ is a direct sum of representations of the form ðU ; do 0 Þ where the

ðU ; dÞ are irreducible discrete series representations of HF0
.

Proof. By the text above Definition 3.19 this reduces to the situation where ZX ¼ 0.
So we may and will assume that H ¼ HF0

is semisimple from now on.

In view of Definition 3.10, the observation just above Corollary 3.8, and Corollary
3.11 we have V P ¼ 0 for all proper subsets PHF0 if and only if all the matrix coe‰cients
of V belong to Acusp ¼ AXL2ðHÞ. In particular ðV ; pÞ is tempered, and all irreducible
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subquotients of V are discrete series representations. This implies the first claim of the
proposition. The discrete series representations are projective as modules over S by [26],
Proposition 6.10. Using this fact an easy induction argument on the dimension of V shows
that ðV ; pÞ is actually a direct sum of discrete series representations. r

Taking the constant part of V along P is a right adjoint of the induction functor from
tempered representations of HP to H (see [26], Proposition 4.20):

Proposition 3.21 (Frobenius reciprocity). Let ðW ; dÞ be a tempered representation of

HP, and let ðV ; pÞ be a tempered representation of H. Then

HomH

�
IndH

HPðWÞ;V
�
FHomHPðW ;V PÞ:ð3:13Þ

Proof. By Proposition 3.18(i) we have HomHPðW ;V PÞ ¼ HomHPðW ;VÞ. Now
use Frobenius reciprocity for induction from HP to H. r

3.6.1. Irreducible tempered representations. In this paragraph we prove that the irre-
ducible tempered representations of H are exhausted by the irreducible summands of the
representations pðxÞ ðx A XuÞ.

Theorem 3.22. Let ðV ; pÞ be an irreducible tempered H representation. There exists a

tempered standard induction datum x such that ðV ; pÞ is a summand of pðxÞ.

Proof. By Theorem 3.12, pðxÞ is unitary (in particular, self-dual). Hence it su‰ces
to show that there exists a tempered standard induction datum x ¼ ðP; d; tÞ such that
HomH

�
V ; pðxÞ

�
is nonzero. By Proposition 2.13 (duality) it is equivalent to show that

HomH

�
pðxÞ;W

�
is nonzero, where W ¼ V �. By Proposition 3.21 (Frobenius reciprocity)

we need to find a standard parabolic subset PHF0, and an irreducible square inte-
grable modulo ZX ðRPÞ ¼ X XP? representation of the form dt for HP, such that
HomHPðdt;W

PÞ is nonzero. For this, take P minimal such that W P is nonzero. By Propo-
sition 3.18 it follows that if Q is a proper subset of P and if U is any submodule of W P,
then U Q ¼ 0. Take any irreducible submodule ðU ; sÞ of W P. Then there exists a unitary
character o of X XP? such that ðU ; sÞ is an o representation. Hence by Proposition
3.20, ðU ; sÞ is of the form ðU ; dtÞ where ðU ; dÞ is an irreducible discrete series representa-
tion for HP. Hence x ¼ ðP; d; tÞ is a tempered standard induction datum with the desired
properties. r

Corollary 3.23. An irreducible tempered representation is unitarizable. In particular,
it is self-dual in the sense of Proposition 2.13.

3.7. Definition of the constant terms of f A Atemp. In this subsection we define the
constant term of a tempered finite functional f A Atemp along a standard parabolic subalge-
bra HP of H. Recall the notion of exponents (3.2) and the Casselman criteria for tempered
finite functionals.

Definition 3.24 (Constant term). Let P A P and f A Atemp. Then we define the con-
stant term of f along P by

f PðhÞ :¼
P

t A �:jtjeP1

ftðhÞ;

79Delorme and Opdam, The Schwartz algebra of an a‰ne Hecke algebra

Brought to you by | Universite Mediterranee-Aix Marseille II
Authenticated

Download Date | 6/30/16 11:16 AM



where (in the notation of Corollary 3.6) ftðhÞ :¼ E
f

t ðh; 0Þ, and the coe‰cients E
f

t and the
set � are defined by the expansion (3.1). We say that an exponent t A � of f is P-tempered if
it satisfies the condition jtjeP 1.

Hence we have the following characterization of the subspace A2;modc (cf. Definition
3.10):

Corollary 3.25. Let f A Atemp. Then f A A2;modc if and only if f P ¼ 0 for every

proper P A P.

Observe the following elementary properties of the constant term:

Corollary 3.26. (i) f P A Atemp.

(ii) Lx commutes with f 7! f P if x A HP.

(iii) Ry commutes with f 7! f P for all y A H.

(iv) f P A LX ð f Þ ¼ f �AH f �H.

(v) If V is a finite dimensional complex Hilbert space and T A EndðVÞ then we denote

the adjoint of T by T �. Now assume that V is a tempered unitary module of H. Given

a; b A V we define the matrix coe‰cient fa;b A Atemp by fa;bðhÞ :¼ ha; hbi ðh A HÞ. For

h A HP we have

f P
a;bðhÞ ¼ fðpP;V Þ�ðaÞ;pP;V ðbÞðhÞ:ð3:14Þ

The projection of f to f P can be made explicit using an idempotent eP in a formal
completion of AHH. Such completions were introduced and studied by Lusztig [19] (cf.
Subsection 2.6). This will be applied to the case were f is a matrix coe‰cient of a paraboli-
cally induced representation in the Section 6.

4. Fourier transform

In this section we briefly review the Fourier transform on L2ðHÞ as formulated in
[26]. The spectral data are organized in terms of the induction functor on the groupoid of
tempered standard induction data WXu

.

4.1. Fourier transform on L2(H). Let Vx denote the representation space of pðxÞ,
x A X. Thus Vx ¼ iðVdÞ if x ¼ ðP; d; tPÞ, and this vector space does not depend on the pa-
rameter tP A T P. We denote by VX the trivial fibre bundle over X whose fibre at x is Vx,
thus

VX :¼
S

ðP; dÞ
XP; d � iðVdÞð4:1Þ

where XP; d denotes the component of X associated to P A P, and ðVd; dÞ A DP. Recall that
DP is a complete set of representatives of the irreducible discrete series representations d

of HP. We denote by EndðVXÞ the endomorphism bundle of VX, and by Pol
�
X;EndðVXÞ

�
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the space of polynomial sections in this bundle. Similarly, let us introduce the space
Ratreg

�
Xu;EndðVXÞ

�
of rational sections which are regular in a neighbourhood of Xu.

There is an action of W on EndðVXÞ as follows. If ðP; gÞ A WP (the set of elements
of W with source P A P) with g ¼ k � n A KQ � WðP;QÞ, x A XP, and A A EndðVxÞ we
define gðAÞ :¼ pðg; xÞ � A � pðg; xÞ�1 A EndðVgðxÞÞ. A section of f of EndðVXÞ is called

W-equivariant if we have f ðxÞ ¼ g�1
�

f
�
gðxÞ

��
for all x A X and g A Wx (where Wx :¼ WP

if x ¼ ðP; d; tPÞ).

Definition 4.1. We define an averaging projection pW onto the space of W-
equivariant sections by:

pWð f ÞðxÞ :¼ jWxj�1 P
g AWx

g�1
�

f
�
gðxÞ

��
:ð4:2Þ

Notice that this projection preserves the space Ratreg
�
Xu;EndðVXÞ

�
, but not the space

Pol
�
X;EndðVXÞ

�
.

If h A Wx then WhðxÞ ¼ Wx � h�1. Using this one checks simply that
pWð f Þ

�
hðxÞ

�
¼ h

�
pWð f ÞðxÞ

�
for all h A Wx, or in other words, that pWð f Þ is W-

equivariant. It is obvious that pW restricts to the identity on the space of W-equivariant
sections. Hence pW is indeed a projection onto the space of W-equivariant sections.

The Fourier transform FH on H is the following algebra homomorphism

FH : H ! Pol
�
Xu;EndðVXÞ

�W
;ð4:3Þ

h 7! fx 7! pðx; hÞg

where Pol
�
X;EndðVXÞ

�W
denotes the space of W-equivariant polynomial sections of

EndðVXÞ.

We will now describe a W-invariant measure mPl on Xu whose push forward to WnXu

will be the spectral measure of the positive trace t of H ([26], Theorem 4.43) (we will call
this measure the Plancherel measure of H). Put x ¼ ðP; d; tPÞ A Xu and let t ¼ rPtP. We
write dx :¼ jKP; dj dtP where dtP denotes the normalized Haar measure of T P

u and where
KP; d denotes the stabilizer of d under the natural action of KP on DP. Let KpW denote
the normal subgroupoid whose set of objects is P, and with HomKðP;QÞ ¼ j unless
P ¼ Q, in which case we have HomKðP;PÞ ¼ KP. Thus WP=KP ¼ fw A W0 jwðPÞHF0g.
Let mRP;PlðfdgÞ denote the Plancherel mass of d with respect to HP (and its trace tP). It is
known that mRP;PlðfdgÞ > 0 (see [26], Theorem 2.25) and an explicit product formula for
mRP;PlðfdgÞ (up to a multiplicative constant independent of q) is known (see [26], Corollary
3.32). We now define the Plancherel measure mPl :

Definition 4.2.

dmPlðxÞ :¼ qðwPÞ�1jWP=KPj�1mRP;PlðfdgÞjcðxÞj
�2

dxð4:4Þ

where cðxÞ is the Macdonald c-function, see Definition 9.7.
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This measure is smooth on Xu (Proposition 9.8(v)), and it is invariant for the action of
W on Xu, by Proposition 9.8(ii).

With these notations we have:

Theorem 4.3 ([26], Theorem 4.43). (i) FH extends to an isometric isomorphism

F : L2ðHÞ ! L2

�
Xu;EndðVXÞ; mPl

�W
;ð4:5Þ

where the Hermitian inner product ð� ; �Þ on L2

�
Xu;EndðVXÞ; mPl

�W
is defined by integrating

the Hilbert-Schmidt form ðA;BÞ :¼ trðA�BÞ in the fibres EndðVxÞ against the above measure

mPl on the base space Xu.

(ii) If x A C �
r ðHÞHL2ðHÞ then FðxÞ is an element of the space C

�
Xu;EndðVXÞ

�W
of continuous sections of the trivial bundle EndðVXÞ.

(iii) Let C �
r ðHÞo

denote the opposite C �-algebra of C �
r ðHÞ. Let

ðx; yÞ A C �
r ðHÞ � C �

r ðHÞo

act on L2ðHÞ via the regular representation lðxÞ � rðyÞ, and on L2

�
Xu;EndðVXÞ; mPl

�W
through fibrewise multiplication from the left with FðxÞ and from the right with FðyÞ.
Then F intertwines these representations of C �

r ðHÞ � C �
r ðHÞo

.

Proof. As to (ii), first recall that according to equation (4.3),

FHðHÞHPol
�
Xu;EndðVXÞ

�W
:

By [26], Theorem 4.43(iii), one easily deduces that khko ¼ kFHðhÞksup for all h A H, where

ksksup :¼ sup
x AXu

ksðxÞko (where ksðxÞko denotes the operatornorm of sðxÞ A EndðVxÞ). Hence

F
�
C �

r ðHÞ
�
HC

�
Xu;EndðVXÞ

�W
.

Now (iii) follows from (ii) and [26], Theorem 4.43(iii). r

The following result is an immediate consequence of Theorem 4.3 and Theorem 3.22:

Corollary 4.4. The support of the Plancherel measure is the set of irreducible tem-

pered representations of H.

The following easy corollary is important in the sequel:

Corollary 4.5 ([26], Corollary 4.45). The averaging operator pW defines an orthogo-

nal projection onto the space of W-equivariant sections in L2

�
Xu;EndðVXÞ; mPl

�
. Moreover,

if

J : L2

�
Xu;EndðVXÞ; mPl

�
! L2ðHÞð4:6Þ

denotes the adjoint of F (the wave packet operator), then JF ¼ id and FJ ¼ pW.
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Proof. Theorem 4.3 implies that JF :¼ id and that FJ is equal to the orthogonal
projection onto the space of W-equivariant L2-sections of EndðVXÞ.

On the other hand, since the action of W on EndðVXÞ is defined in terms of in-
vertible smooth matrices (cf. Theorem 3.16), pW preserves the space of L2-sections. By the
W-invariance of mPl, the projection pW on L2

�
Xu;EndðVXÞ; mPl

�
is in fact an orthogonal

projection. This finishes the proof. r

5. Main Theorem and its applications

The space of smooth sections of the trivial bundle EndðVXÞ on Xu will be denoted by
Cy

�
Xu;EndðVXÞ

�
. We equip this vector space with its usual Fréchet topology. The collec-

tion of semi-norms inducing the topology is of the form pðsÞ :¼ sup
x AXu

kDsðxÞko, where D is

a constant coe‰cient di¤erential operator on Xu (i.e., one such operator for each connected
component of Xu), acting entrywise on the section s of the trivial bundle EndðVXÞ, and
where k � ko denotes the operatornorm. It is obvious from the product rule for di¤erentia-
tion that Cy

�
Xu;EndðVXÞ

�
is a Fréchet algebra.

The projection pW is continuous on Cy
�
Xu;EndðVXÞ

�
, since it is defined in terms of

the action of W on Xu, and conjugations with invertible smooth matrices. Thus the sub-
algebra Cy

�
Xu;EndðVXÞ

�W
of W-equivariant sections is a closed subalgebra.

We now define the vector space

Definition 5.1.

C
�
Xu;EndðVXÞ

�
:¼ cCy

�
Xu;EndðVXÞ

�
;ð5:1Þ

where c denotes the c-function of Definition 9.7 on Xu. We equip C
�
Xu;EndðVXÞ

�
with the Fréchet space topology of Cy

�
Xu;EndðVXÞ

�
via the linear isomorphism

Cy
�
Xu;EndðVXÞ

�
! C

�
Xu;EndðVXÞ

�
defined by s 7! cs.

Lemma 5.2. The complex vector space C
�
Xu;EndðVXÞ

�
is closed for taking ( fibre-

wise) adjoints, and

C
�
Xu;EndðVXÞ

�
HL2

�
Xu;EndðVXÞ; mPl

�
:ð5:2Þ

Moreover,

Cy
�
Xu;EndðVXÞ

�
HC

�
Xu;EndðVXÞ

�
ð5:3Þ

is a closed subspace.

Proof. It is closed for taking adjoints by Proposition 9.8(iv) (applied to
d ¼ wP A WðP;P 0Þ), and it is a subspace of L2

�
Xu;EndðVXÞ; mPl

�
by Proposition 9.8(i).

The last assertion follows from Proposition 9.8(v). r

Now we are prepared to formulate the main theorem of this paper.
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Theorem 5.3. The Fourier transform restricts to an isomorphism of Fréchet algebras

FS : S ! Cy
�
Xu;EndðVXÞ

�W
:ð5:4Þ

The wave packet operator J restricts to a surjective continuous map

JC : C
�
Xu;EndðVXÞ

�
! S:ð5:5Þ

We have JCFS ¼ idS, and FSJC ¼ pW;C (the restriction of pW to C
�
Xu;EndðVXÞ

�
).

In particular, the map pW;C is a continuous projection of C
�
Xu;EndðVXÞ

�
onto

Cy
�
Xu;EndðVXÞ

�W
.

5.1. Applications of the Main Theorem. Before we embark on its proof we discuss
some immediate consequences of the Main Theorem. The following corollary of the Main
Theorem is the analog for a‰ne Hecke algebras of Harish-Chandra’s completeness theo-
rem for real reductive groups.

Corollary 5.4 (Harish-Chandra’s completeness Theorem, cf. [12], and [18],
Theorem 14.31). Let x A Xu. The complex linear span Cx of the set of operators

fpðg; xÞ j g A EndWX
ðxÞg is a unital, involutive subalgebra of EndðVxÞ. For all x A Xu we

have Cx ¼ EndHðVxÞ.

Proof. Let x ¼ ðP; d; tPÞ and denote by CxHEndðVxÞ the complex linear span of
the set of operators fpðg; xÞ j g A EndWX

ðxÞg. By Theorem 3.16, Cx is an involutive (i.e.,
�-invariant), unital subalgebra of EndðVxÞ. Let us show that Theorem 5.3 implies that
pðx;HÞ is equal to the commuting algebra, C 0

x, of Cx. First observe that the inclusion
pðx;HÞHC 0

x is obvious. Since Vx is finite dimensional and since pðx; �Þ extends continu-
ously to S we have pðx;HÞ ¼ pðx;SÞ. By Theorem 5.3 this last algebra is equal to the
algebra of values at x of Cy

�
Xu;EndðVXÞ

�W
. If A A C 0

x then we can find a section
s A Cy

�
Xu;EndðVXÞ

�
such that sðxÞ ¼ A and sðgxÞ ¼ 0 for all g A Wx such that

gðxÞ3 x. Then pWðsÞ A Cy
�
Xu;EndðVXÞ

�W
and pWðsÞðxÞ is a non zero scalar multiple

of A. We conclude that A A pðx;HÞ.

The Bicommutant Theorem therefore implies that Cx is equal to the commutant
pðx;HÞ0 of pðx;HÞ. r

Corollary 5.5. The center ZS of S is, via the Fourier transform FS, isomorphic to

the algebra CyðXuÞW of smooth W-invariant functions on Xu.

Proof. The algebra of scalar sections of Cy
�
Xu;EndðVXu

Þ
�W

is isomorphic to
CyðXuÞW, and is contained in FSðZSÞ by Theorem 5.3. To show the equality, observe
that Corollary 5.4 implies that an element of FSðZSÞ is scalar at all fibers EndðVxÞ with
x A Xu generic (since EndHðVxÞ ¼ C in this case). By the density of the set of generic points
in Xu we obtain the desired equality. r

Notice that ZS is in general larger than the closure in S of the center Z of H.

Corollary 5.6 (Langlands’ disjointness Theorem, cf. [18], Theorem 14.90). Let

x; x 0 A Xu. If pðxÞ and pðx 0Þ are not disjoint, then the objects x; x 0 A Xu of WXu
are isomorphic

(and thus, pðxÞ and pðx 0Þ are actually equivalent).
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Proof. Corollary 5.5 implies that ZS separates the W-orbits of Xu. Whence the
result. r

Corollary 5.7. The Fourier transform F restricts to a C �-algebra isomorphism

FC : C �
r ðHÞ ! C

�
Xu;EndðVXÞ

�W
;ð5:6Þ

where C �
r ðHÞ denotes the reduced C �-algebra of H (cf. 2.7).

Proof. By Theorem 4.3, the restriction of F to C �
r ðHÞ is an algebra homomor-

phism. It is a homomorphism of involutive algebras since pðx; x�Þ ¼ pðx; xÞ� (cf. Subsec-
tion 3.4).

The reduced C �-algebra C �
r ðHÞ of H is defined in [26] as the norm closure of

lðHÞHB
�
L2ðHÞ

�
. By Theorem 4.3, the norm kxko of C �

r ðHÞ is equal to the supremum
norm kFðxÞksup of the W-invariant continuous function x 7! kpðx; xÞko on Xu (where
kpðx; hÞko denotes the operator norm for operators on the finite dimensional Hilbert space
Vx ¼ iðVdÞ). Notice that, by the regularity of the standard intertwining operators, the pro-
jection operator pW restricts to a continuous projection on the space of continuous sections
of EndðVXÞ.

By Theorem 5.3, the closure of FðSÞ with respect to k � ksup is equal to
C
�
Xu;EndðVXÞ

�W
. In view of Theorem 4.3(ii) this finishes the proof. r

Corollary 5.8. The set of minimal central idempotents of C �
r ðHÞ is parameterized by

the ( finite) set of W-orbits of pairs ðP; dÞ with P A P and d A DP. The central idempotents

eðP; dÞ are elements of S.

Proof. This is immediate from Theorem 5.3 and Corollary 5.7. r

Corollary 5.9. The dense subalgebra SHC �
r ðHÞ is closed for holomorphic func-

tional calculus.

Proof. The Fréchet subalgebra SHC �
r ðHÞ is dense, symmetric, and the embed-

ding is continuous (see (2.19)). In addition, Theorem 5.3 and Corollary 5.7 imply that S
is also spectrally closed, i.e., if a A S is invertible in C �

r ðHÞ, then a�1 A S. Hence S is a
C�-algebra, and thus closed under holomorphic functional calculus [10]. Alternatively, one
may verify directly from Theorem 5.3 and the definition of f ðaÞ that f ðaÞ A S for all a A S
and all f holomorphic on the spectrum of a. r

6. Constant terms of matrix coe‰cients of p(x)

In the remainder of this paper we will prove the Main Theorem, Theorem 5.3. A
main tool is the notion of the constant term f P of a functional f A Atemp with respect to a
standard parabolic subset P A P (see Subsection 3.7).

6.1. Constant terms of coe‰cients of p(x) for x A Xu generic. In this subsection we as-

sume that x is generic unless stated otherwise.

85Delorme and Opdam, The Schwartz algebra of an a‰ne Hecke algebra

Brought to you by | Universite Mediterranee-Aix Marseille II
Authenticated

Download Date | 6/30/16 11:16 AM



We will compute the constant terms of a matrix coe‰cient of p ¼ pðxÞ in the case
where x ¼ ðP; d; tPÞ A Xu is generic. Choose rP A TP such that WPrP is the central character
of d. We thus assume that t ¼ rPtP A T is RP-generic in this subsection.

Let a; b A iðVdÞ, and denote by f ¼ fa;b ¼ fa;bðxÞ the matrix coe‰cient defined by
f ðhÞ ¼ ha; pðx; hÞðbÞi. By [26], Lemma 2.20 and Proposition 4.20, we have: If tP A T P

u

then fa;b A Atemp for all a; b A HðW PÞnVd. More precisely:

Proposition 6.1. The exponents of f (cf. 3.3) are of the form wt 0 where w runs over the

set W P and where t 0 runs over the set of weights of dtP , thus tP times the set of XP-weights

of d.

Now let QHF0 be another standard parabolic. By the proof of [26], Proposition 4.20
we deduce:

Proposition 6.2. Let w A W P and let u A WP such that wut is an exponent of f . If

wujtjeQ 1, then wðPÞHRQ;þ.

Proof. The equivalence class $ of t ¼ rPtP is equal to WPt (since we assume ge-
nericity). If wut is an exponent then wut ¼ w 0t 0 with t 0 an X -weight of dtP and w 0 A W P.
Thus t 0 and ut are both in $, the equivalence class of t. Hence by genericity, w 0 ¼ w and
thus ut ¼ t 0, a weight of dtP . But d is discrete series for HP, hence jutj ¼

Q
a AP

da n a4 with all

0 < da < 1. Thus wujtj ¼
Q
a AP

da nwða4ÞeQ 1 implies (since for all a A P: wða4Þ A R4
0;þ)

that wðPÞHRQ;þ. r

Corollary 6.3. Recall that the equivalence classes in W0t are of the form w$ with

$ ¼ WPt and w A W P. If an exponent wt 0 of f (with w A W P and t 0 a weight of dtP) is

Q-tempered, then all exponents of f in its class w$ are Q-tempered. The class w$
ðw A W PÞ is Q-tempered if and only if wðPÞHRQ;þ.

Proof. Since wðPÞHRQ;þ we have wWPw�1 HWQ. Hence w$HWQwt, so that the
moduli of all elements of w$ have trivial restriction to X XQ?. r

Now we will express the constant term of a matrix coe‰cient of pðxÞ in terms of the
idempotents e$ of the completion Ht. Recall the material of Subsection 2.6.

We will use the analog of Lusztig’s First Reduction Theorem (2.13) for Ht, in combi-
nation with the results in [26], Section 4.3 on the Hilbert algebra structure of Ht, the quo-
tient of H t by the radical of the positive semi-definite Hermitian pairing ðx; yÞt :¼ wtðx�yÞ,
in order to express and study the constant term (see Subsection 3.7).

Proposition 6.4. We have that

f QðhÞ ¼
P

w AW P:wðPÞHRQ;þ

f ðew$hÞ:

Proof. Let us denote by Jw the ideal in AWwðPÞ of elements in this ring vanishing at
w$. Clearly It H Jw for all w. By some elementary algebra (similar to proof of [25], Pro-
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position 2.24(4)) we see that for every x A Jw and k A N there exist a x A It and a unit e in
Amw

such that

ex A x þ mk
w;

where mw denotes the ideal of all functions in A which vanish at the points of w$. (To be
sure, we construct x by first adding an element u A J k

w such that x þ u is nonzero at the
other classes w 0$ with w 0 A W P, w 0 3w. Take x equal to the product of the translates
ðx þ uÞw where w runs over the set of left cosets W0=WwðPÞ. Let e be equal to the product
of these factors ðx þ uÞw where w runs over the set of left cosets W0=WwðPÞ with w3WwðPÞ.)
Let M be the ideal of functions in A vanishing at W0t. Then M ¼

Q
mw and by genericity

the ideals mw are relatively prime. So AM ¼
L

Amw
by the Chinese Remainder Theo-

rem. Then ew$ is the unit of the summand Amw
(see [19], 8.7(b)). Let ew$ be the unit of

R :¼ Amw
=ItAmw

(the canonical image of ew$ A Amw
). Note that R is finite dimensional

over C, and thus R is Artinian. By definition of mw, mwew$ is contained in all the maximal
ideals of R. Hence mwew$ is contained in the intersection of the maximal ideals of R, which
is nilpotent in R (see the proof of [22], Theorem 3.2). In particular, for su‰ciently large k,
mk

wew$HItAmw
, whence

xew$ A ItAmw
:

But then the right-hand side is in the kernel of p, thus we conclude that Jwew$ is in the ker-
nel of p. In particular, the element (for any z A X ) Yz :¼

Q
y AWwðPÞz

�
ðwtÞðzÞ�1yy � 1

�
A Jw acts

by zero on the finite dimensional space of left A-translates of h 7! f ðew$hÞ. Thus the expo-
nents of f 7! f ðew$hÞ are contained in w$.

We obviously have

f ðhÞ ¼
P

w AW P

f ðew$hÞ

(splitting of 1 according the decomposition of AM). By the results in this paragraph,
an exponent of h 7! f ðew$hÞ is Q-tempered if and only if all exponents of this term are
Q-tempered if and only if wðPÞHRQ;þ. Hence the result. r

Corollary 6.5. The constituents f ðew$hÞ depend on the induction parameter tP as a

rational function.

Proof. In the proof of Corollary 6.4 we can equally well work over the field K of
rational functions on T P instead of C. Then ew$ A AðKÞM=ItAðKÞM ¼ AðKÞ=ItAðKÞ.
Hence the result. r

6.2. Some results for Weyl groups. We want to work with standard parabolics only,
and wðPÞHRQ;þ does not need to be standard. We resolve this by combining terms ac-
cording to left WQ cosets. We use the following results (see [6], Section 2.7).

Proposition 6.6. Let P;Q A P. The set DQ;P :¼ ðW QÞ�1 XW P intersects every dou-

ble coset WQwWP in precisely one element d ¼ dðwÞ, which is the unique element of shortest

length of the double coset.
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Proposition 6.7 (Kilmoyer). Let d A DQ;P. Then WQ XWdðPÞ is the standard para-

bolic subgroup of W0 corresponding to the subset L ¼ QX dðPÞ.

Let t A rPT P be WP-generic as before, where WPrP HTP is the central character of a
discrete series representation d of HP. Let $ ¼ WPt be the equivalence class of t.

Corollary 6.8. (i) Let w A W P be such that w$ is Q-tempered. Then wðPÞHRQ;þ.

We can write w ¼ ud with d ¼ dðwÞ A DQ;P and u A WQ. Then dðPÞHQ, and u A W
dðPÞ

Q .

Conversely, if d A DQ;P is such that dðPÞHQ, then for all u A W
dðPÞ

Q we have judð$ÞjeQ 1
(in other words, is Q-tempered ).

(ii) The classes $u;d ¼: udð$Þ with d A DQ;P such that dðPÞHQ and u A W
dðPÞ

Q , are

mutually disjoint.

Proof. (i) According to a result of Howlett (cf. [6], Proposition 2.7.5), we can
uniquely decompose w as a product of the form w ¼ udv with d ¼ dðwÞ A DQ;P,
u A WQ XW L (with L ¼ QX dðPÞ), and v A WP. In fact v ¼ e, since otherwise there would
exist a a A RP;þ with vðaÞ ¼ �ap A P. But then udðapÞ < 0, which implies (according to [6],
Lemma 2.7.1) that dðapÞ ¼ aq A L. Hence uðaqÞ < 0, which contradicts the assumption
u A WQ XW L. Thus we have dðPÞ ¼ u�1wðPÞHRQ;þ, whence WdðPÞ HWQ. By Kil-
moyer’s result it now follows that WdðPÞ ¼ WQXdðPÞ. Hence dðPÞHQ and L ¼ dðPÞ. The
converse is clear.

(ii) Suppose that $u;d X$u 0;d 0 3j. The Weyl group W0 permutes equivalence
classes, thus this implies that ðudÞ�1

u 0d 0ðtÞ A $. Since t is generic, there exists a v A WP

such that u 0d 0 ¼ udv. By Howlett’s result [6], Proposition 2.7.5 this implies that v ¼ 1,
u ¼ u 0 and d ¼ d 0. r

Corollary 6.9. For all d A DQ;P with dðPÞHQ we write

eWQd$ ¼
P

u AW
dðPÞ

Q

eud$:

This is a collection of orthogonal idempotents of Ht. The constant term of f ¼ fa;bðxÞ equals

f QðhÞ ¼
P

d ADQ;P:dðPÞHQ

f dðhÞ;

where we define f dðhÞ :¼ f ðeWQd$hÞ. This is the contribution to the constant term f Q of f

whose exponents have the same restriction to X XQ? as dðtÞ.

6.3. The singularities of f d . In this subsection we take the formulae of Corollary 6.9
as a definition of f Q and f d , even when tP A T P is not in T P

u .

We will now bound the possible singularities of the individual contributions f d to
f Q, viewed as functions of tP A T P. We have seen in Corollary 6.5 that f d extends to a
rational function of x A X. To stress this dependence we sometimes write f dðx; hÞ. We write
x ¼ ðP; d; tPÞ and put t ¼ tðxÞ ¼ rPtP, where rP A TP is such that WPrP is equal to the cen-
tral character of d.
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Lemma 6.10. Let P;Q A P and let d A DQ;P be such that dðPÞHQ. Let h; h 0 A Ht.

Then

f d
a;bðx; hh 0Þ ¼ f d

a;pðx;h 0ÞðbÞðx; hÞ:ð6:1Þ

Proof. This follows immediately from Corollary 3.26. r

Lemma 6.11. As in Lemma 6.10. Let g A WP and put P 0 ¼ gðPÞ. According to Corol-

lary 6.8 we can write dg�1 ¼ u 0d 0 with d 0 A DQ;P 0
and u 0 A W P 0

Q . We put t 0 ¼ gðtÞ and

$ 0 ¼ WP 0t 0 ¼ gð$Þ, so that eWQd$ ¼ eWQd 0$ 0 . With these notations we have the following

equality of rational functions of x:

f d
a;bðx; hÞ ¼ f d 0

pðg;x�1ÞðaÞ;pðg;xÞðbÞ

�
gðxÞ; h

�
;ð6:2Þ

where x�1 :¼ ðP; d; tP�1Þ.

Proof. This equation follows from the special case x A XP; d;u because the left-hand
side and the right-hand side are obviously rational functions of x. In this special case the
equation simply expresses the unitarity of the intertwiners (cf. Theorem 3.16). r

Lemma 6.12. Let P;Q A P. Then H has the following direct sum decomposition in

left HQ-right HðWPÞ-submodules:

H ¼
L

d ADQ;P

HQ;PðdÞ;ð6:3Þ

where HQ;PðdÞ :¼ HQNdHðWPÞ.

Proof. Using the Bernstein presentation of HQ and the definition of the multiplica-
tion in HðW0Þ we easily see that

HQ;PðdÞ ¼
L

w AWQdWP

ANw:ð6:4Þ

The result thus follows from the Bernstein presentation of H. r

After these preparations we will now concentrate on an important special case.

Definition 6.13. Let pd
Q;P : H ! HQ;PðdÞ denote the projection according to the

above direct sum decomposition. Given Q A P, denote by wQ ¼ w0wQ the longest element
of W Q, and by Q 0 ¼ wQðQÞ ¼ �w0ðQÞ A P. Then wQ 0 ¼ ðwQÞ�1 A DQ;Q 0

, and

HQ;Q 0 ðwQ 0 Þ ¼ HQNwQ 0 ¼ ANwQ 0HðWQ 0 Þ:ð6:5Þ

Let pQ : H ! HQ be the left HQ-module map defined by

pQðhÞ :¼ pwQ 0

Q;Q 0 ðhÞN�1
wQ 0 :ð6:6Þ

(Observe that this map indeed has values in HQ by (6.4).)

In (6.5) we have used that NwQ 0 Nw 0 ¼ NwNwQ 0 if w A WQ, where w 0 ¼ wQwwQ 0
A WQ 0 .
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Theorem 6.14. Let P;Q A P be such that PHQ. We put P 0 :¼ wQðPÞHQ 0 A P and

x 0 ¼ wQðxÞ :¼ ðP 0; d 0; tP 0 Þ.

Let a 0 A iðVd 0 Þ ¼ HðW P 0 ÞnVd 0 , b 0 A HðW P 0
Q 0 ÞnVd 0 H iðVd 0 Þ and let h A H. We in-

troduce the unitary isomorphism

s :¼ cwQ n ~ddwQ : HðW P
Q ÞnVd ! HðW P 0

Q 0 ÞnVd 0 ;ð6:7Þ

(see Section 3.5 for the explanations of cwQ and ~ddwQ) and the orthogonal projection

r : iðVdÞ ! HðW P
Q ÞnVd:ð6:8Þ

With these notations, put

a : ¼ r
�
pðwQ; x�1Þ�1ða 0Þ

�
A HðW P

Q ÞnVd;ð6:9Þ

b : ¼ s�1ðb 0Þ A HðW P
Q ÞnVd:

We then have, with cQðxÞ :¼
Q

a AR0;þnRQ;þ

caðtÞ, the equality of rational functions of x

f wQ 0

a 0;b 0 ðx 0; hÞ ¼ qðwQÞ1=2
cQðxÞ fQ;a;b

�
x; pQðhÞ

�
;ð6:10Þ

where pQðhÞ has been defined in (6.6). Here fQ;a;bðx; hÞ ¼ fa;bðx; hÞ (with h A HQ,
a; b A HðW P

Q ÞnVd) is the matrix coe‰cient (associated to the pair a, b) of the repre-

sentation

pQðxÞ :¼ IndHQ

HP dtPð6:11Þ

of HQ (which is tempered and unitary if x A Xu).

Proof. Choose rP A TP such that WPrP is the central character of d, and write
t 0 ¼ wQðtÞ with t ¼ rPtP. Since we are dealing with rational functions of x it is su‰cient
to assume that x is regular, i.e., that t is RP-regular. We then extend pðx 0Þ to the com-
pletion Ht (recall 2.6.3) and study pðx 0Þ in the light of the isomorphisms (2.13) and
(3.6).

We combine, in the decomposition (2.13) applied to the parabolic P 0 ¼ wQðPÞ
and parameter t 0, the idempotents according to left cosets of WQ 0 . In other words,
we partition W0t into the sets wðWÞ with w A W Q 0

and W ¼ WQ 0t 0 ¼ W P 0
Q 0 $ 0 (with

$ 0 ¼ wQð$Þ ¼ WP 0t 0). These sets are evidently unions of the original equivalence classes
in formula (2.13) (with respect to P 0 and t 0), the left WP 0-cosets acting on t 0. We denote
the corresponding idempotents by (for all w A W Q 0

)

eKw :¼
P

x AW
w QðPÞ

Q 0

ewx$ 0 :

Note that t 0 is P 0-generic, and thus certainly Q 0-generic. The structure formula (2.13)
holds therefore, also in terms of the idempotents eKw , where we replace in (2.13) the para-
bolic P 0 by Q 0.
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Remark that eK
wQ 0

W
NweKW ¼ 0 for any w A W0 with length of less than jR0;þnRQj

(¼ the length of wQ 0
). Note by the way that eK

wQ 0
W
¼ eKWQt. Thus for all d A DQ;Q 0

, d 3wQ 0

we see that eKWQtH
Q;PðdÞeK

wQWQt
¼ 0.

Hence for all h A H, a 0 A iðVd 0 Þ and b 0 A HðW P 0
Q 0 Þ we have

f wQ 0

a 0;b 0 ðx 0; hÞ ¼ fa 0;b 0
�
x 0; pQðhÞeKWQtNwQ 0 eK

wQWQt

�
:ð6:12Þ

Since f wQ 0

a 0;b 0 ðx 0;HItÞ ¼ 0 we can use the analog of formula (4.58) of [26] (we use here that
the c-function cQðtÞ is WQ-invariant, together with the argument in the proof of the Pro-
position 6.4. This makes that we can evaluate the c-factors at t 0):

f wQ 0

a 0;b 0 ðx 0; hÞ ¼ qðwQÞ1=2
cQðtÞ fa 0;b 0

�
x 0; pQðhÞi0wQ 0

�
:ð6:13Þ

We use Lemma 6.10 and then rewrite the result using (2.13) and Definition 3.8. Assume
that b 0 ¼ x 0 n v 0 and b ¼ s�1ðb 0Þ ¼ xn v. Then

i0
wQ 0 ðb 0Þ ¼ i0

wQ 0 ðx 0eKWQ 0 t 0 n v 0Þ

¼ eKWQt

�
cwQ 0 ðx 0Þi0

wQ 0 n v 0�
¼ eKWQtpðwQ; xÞðxn vÞ

¼ pðwQ; xÞðbÞ:

(In the first equality we used the identification (3.6), and in the second equality we used
equation (2.14).) Thus we obtain

f wQ 0

a 0;b 0 ðx 0; hÞ ¼ qðwQÞ1=2
cQðxÞ fa 0;pðwQ;xÞðbÞ

�
x 0; pQðhÞ

�
ð6:14Þ

¼ qðwQÞ1=2
cQðxÞ fðpðwQ;x�1Þ�1ða 0ÞÞ;b

�
x; pQðhÞ

�
¼ qðwQÞ1=2

cQðxÞ fQ;a;b

�
x; pQðhÞ

�
:

In the second step we used the unitarity of the intertwining operators pðwQ; xÞ to rewrite
the matrix coe‰cient as a coe‰cient of the induced representation pðxÞ (extended holo-
morphically as in Lemma 6.11; in fact it is a simple special case of this lemma). Since
b A HðW P

Q ÞnVd and pQðhÞ A HQ, we can project the vector pðwQ; x�1Þ�1ða 0Þ onto
HðW P

Q ÞnVd, and consider the result as a matrix coe‰cient of pQðxÞ. r

Theorem 6.15. Fix P A P and d A DP;WPrP
. We recall that XP; d HX is the collection of

standard induction data of the form ðP; d; tPÞ with tP A T P, and we denote by XP; d;u HXP; d

the subset of such triples with tP A T P
u . Then for all d A DQ;P such that dðPÞHQ and for all

a; b A iðVdÞ, the rational function

x 7! cðxÞ�1
f d
a;bðx; hÞð6:15Þ

is regular in a neighbourhood of XP; d;u.
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Proof. We apply Lemma 6.11 with

g ¼ wQd A WðP;P 0Þ where P 0 ¼ wQ
�
dðPÞ

�
HQ 0:

Notice that d 0 ¼ wQ 0
. Put x 0 ¼ gðxÞ and

a 0 ¼ pðg; x�1ÞðaÞ;ð6:16Þ

~bb 0 ¼ pðg; xÞðbÞ:

We obtain

cðxÞ�1
f d
a;bðx; hÞ ¼ cðxÞ�1

f wQ 0

a 0; ~bb 0 ðx 0; hÞ:ð6:17Þ

Now we can uniquely decompose ~bb 0 in the following way:

~bb 0 ¼ pðx 0; ~hhÞðb 0Þð6:18Þ

with ~hh A HðW Q 0 Þ and b 0 A HðW P 0
Q 0 ÞnVd 0 H iðVd 0 Þ. With the help of Lemma 6.10 we get

cðxÞ�1
f d
a;bðx; hÞ ¼ cðxÞ�1

f wQ 0

a 0;b 0 ðx 0; h~hhÞ:ð6:19Þ

We can now apply Theorem 6.14 with respect to dðPÞHQ. We put

ad :¼ r
�
pðwQ; dx�1Þ�1ða 0Þ

�
A HðW dðPÞ

Q ÞnVCdðdÞ;ð6:20Þ

bd :¼ s�1ðb 0Þ A HðW dðPÞ
Q ÞnVCd ðdÞ

to obtain:

cðxÞ�1
f d
a;bðx; hÞ ¼ qðwQÞ1=2

cðxÞ�1
cðdxÞcQ

�
ðdxÞQ

��1
fQ;ad ;bd

�
dx; pQðh~hhÞ

�
;ð6:21Þ

where in general for QIP and x A XP; d we denote

cQðxQÞ :¼
Q

a ARQ;þnRP;þ

caðtÞ:ð6:22Þ

The regularity of the normalization factor cQ

�
ðdxÞQ

��1
as a function of dx (and thus as a

function of x) follows from [26], Theorem 3.25, when we consider the tempered residual
coset rPT P

u HT for the Hecke algebra HQ (instead of H itself). It is a simple special case
of Proposition 9.8(v). Similarly, the regularity of cðxÞ�1

cðdxÞ is asserted by Proposition
9.8(iv). By the regularity of the various intertwining operators we have used (cf. Theorem
3.16) it is clear that also ad , bd are rational and regular on XP; d;u. We have finished the
proof. r

We keep the hypothesis and notations of Theorem 6.14 (with P replaced by dðPÞHQ)
and of Theorem 6.15. Define

ax;d : V
x�1 ! HðW dðPÞ

Q ÞnHdðPÞ VCdðdÞ;dt�1 ;ð6:23Þ

a ! hðwQ 0
; gÞr

�
p
�
d; x�1ðaÞ

��
;
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where h denotes the cocycle (3.7), and

bx;d : Vx ! HðW dðPÞ
Q ÞnHdðPÞ VCd ðdÞ;dt;ð6:24Þ

b ! ~ppx;d;Q
�
pðg; xÞðbÞ

�
;

where ~ppx;d;Q denotes the HQ-module map defined by

~ppx;d;Q : Vgx ¼ HnHgðPÞ VCgðdÞ;gt ! HðW dðPÞ
Q ÞnHdðPÞ VCd ðdÞ;dt;ð6:25Þ

hn v ! pQðhÞn gCgðdÞCgðdÞwQ 0 ðvÞ:

This last map is well defined in view of the following property of the projection map pQ:
For all h A H and hQ A HQ we have

pQðhÞhQ ¼ pQ

�
hcwQðhQÞ

�
:ð6:26Þ

The formula for the constant term of fa;b can now be expressed in terms of the maps
ax;d and bx;d . The resulting formula is the analogue for Hecke algebras of the formula for
the weak constant of coe‰cients of tempered representations of reductive p-adic groups, cf.
[36], Proposition V1.1.

Corollary 6.16. Using the above notations, and assuming the hypotheses of Theorem

6.15, we have obtained the following formula for the constant term along Q of the matrix co-

e‰cients of pðxÞ. For all h A HQ and x A XP; d;u:

cðxÞ�1
f

Q
a;bðx; hÞ ¼

P
d ADQ;P:dðPÞHQ

cx;d fQ;ax; d ðaÞ;bx; d ðbÞ
�
ðdxÞQ; h

�
ð6:27Þ

where ðdxÞQ is the induction datum dx, considered as an induction datum for the Hecke alge-

bra HQ, and

cx;d ¼ qðwQÞ1=2
cðxÞ�1

cðdxÞcQ

�
ðdxÞQ

��1
:ð6:28Þ

In equation (6.27) we identify the target spaces of ax;d and bx;d with the vector spaces of the

‘‘compact realization’’ of the induced representation p
�
ðdxÞQ

�
of HQ (notice that by our as-

sumption x A XP; d;u we have x�1 ¼ x). The expressions fQ;ax; d ðaÞ;bx; dðbÞ
�
ðdxÞQ; h

�
and the coef-

ficients cx;d of equation (6.27) extend to rational functions of x A XP; d, regular on XP; d;u. The

map bx;d is an HQ-module map. This property determines the map bx;d uniquely up to a sca-

lar function (since the multiplicity of p
�
ðdxÞQ

�
as a subquotient of the restriction to HQ of

pðxÞ is one).

Proof. This is merely a reformulation of the previous theorem in view of the for-
mula

f
Q

a;bðx; hÞ ¼
P

d ADQ;P:dðPÞHQ

f d
a;bðx; hÞð6:29Þ

using the definition of the maps ax;d and bx;d . Indeed, it is straightforward to see that
ax;dðaÞ ¼ ad (in the notations of the proof of Theorem 6.15) and that bx;dðbÞ ¼ pQð~hhÞbd .
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The map bx;d is a HQ-module morphism by the properties of pQ, see Definition 6.13. The
last assertions follow from Corollary 11.3 and Proposition 3.18(i). r

Corollary 6.17. In particular, for all h A H, P A P, d A DP, and a; b A iðVdÞ fixed, the

function

XP; d;u �HQ C ðx; hQÞ 7! cðxÞ�1
f

Q
a;bðx; h

QhÞð6:30Þ

is a linear combination with coe‰cient functions which are regular rational functions on

XP; d;u, of normalized matrix coe‰cients

cQ

�
dðxÞ

��1
fQ;a 0;b 0

�
ðdxÞQ; h

Q
�

ð6:31Þ

of induced representations of HQ of the form pQ
�
ðdxÞQ

�
(where d ranges over the Weyl

group elements d A DQ;P such that dðPÞHQ).

7. Proof of the Main Theorem

7.1. Uniform estimates for the coe‰cients of p(x). Recall that Xþ is the cone
fx A X j hx; a4if 0 for all a A R1;þg. We put ZX ¼ XþXX�. This is a sublattice of
elements in X with length 0. Recall that Q denotes the root lattice. The sublattice
QlZX HX has finite index in X . If x ¼ xQ þ xZ A QlZX then

NðxÞ ¼ xQð2r4Þ þ kxZk:ð7:1Þ

Let us show that Qþ :¼ QXXþ is finitely generated over Zþ. For each fundamental weight
di, let qi ¼ midi be the least multiple of di such that qi A Q (thus mi A N ¼ f1; 2; 3; . . .g is
a divisor of the index of Q in the lattice generated by fundamental weights). These

multiples generate over Zþ a cone CþHQþ. Let F ¼
�P

i

tiqi

���� ti A ½0; 1Þ
�

and let

FQ ¼ F XQHQþ (a finite set). Clearly FQ and the fqig generate Qþ over Zþ. Let
x1; . . . ; xm; xmþ1; . . . ; xN A Xþ such that x1; . . . ; xm is a set of Zþ-generators of Qþ and
that xmþ1; . . . ; xN A ZX is a Z-basis of ZX . By (7.1) we see that there exists a constant
K > 0 such that for all x A Qþ þ XZ and all decompositions x ¼

P
lixi with li f 0 if

iem, we have

P
jlijeKNðxÞð7:2Þ

( just observe that xið2r4Þf 1 if i ¼ 1; . . . ;m). We fix such a K > 0.

We define a function n on Trs by

nðtÞ ¼ max
��

jxiðtÞj
�� i ¼ m þ 1; . . . ;N

	
W
�
jxiðwtÞj

�� i ¼ 1; . . . ;m;w A W0

	�
:ð7:3Þ

The positive real cone spanned by the elements wxi ðw A W0; i ¼ 1; . . . ;mÞ and Gxi

ði ¼ m þ 1; . . . ;NÞ is the full dual of LieðTrsÞ. Therefore the function logðnÞ � exp is a
norm on LieðTrsÞ.
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Theorem 7.1. Let R > 1, P A P, and d A DP be given. Choose a set xi A Xþ as

above and let K and n be as above. We use the notation nðjxjÞ :¼ nðjtPjÞ for

x ¼ ðP; d; tPÞ A XP; d. Define a compact neighbourhood DPðRÞHXP; d of XP; d;u HXP; d by

DPðRÞ ¼ fx A XP; d j nðjxjÞeRg.

There exists a d A N, and there exists a constant c > 0 (depending on R only) such that

for all w A W , for all a; b A iðVdÞ, and for all x A DPðRÞ, the matrix coe‰cient fa;bðx;NwÞ
satisfies

j fa;bðx;NwÞje ckak kbk
�
1 þNðwÞ

�d
nðjxjÞKNðwÞ:ð7:4Þ

Proof. Using [26], equation (2.27) (also see the proof of Lemma 7.14) we see that it
is equivalent to show that fa;bðx;NuyxNvÞ can be estimated by the right-hand side of (7.4)
with w ¼ x, for all u; v A W0 and x A Xþ. By applying right (resp., left) translations of the
matrix coe‰cient fa;bðxÞ by Nv (resp., Nu) and by a set of representatives of the finite quo-
tient X=ðQ þ ZX Þ we see that we may further reduce to proving the estimates (7.4) for
w ¼ x A Qþ þ ZX .

Recall (cf. [26], Proposition 4.20 and its proof) that the eigenvalues of the matrix of
pðx; yxÞ are of the form x

�
wiðrjt

PÞ
�
. Here the rj A TP are the generalized XP-eigenvalues of

the discrete series representation d. By Casselman’s criterion we know therefore that for all
x A Xþ, x

�
wiðrjÞ

�
e 1. This implies that for all i A 1; . . . ;m, and for all x A XP; d, the eigen-

values of pðx; yxi
Þ are bounded by nðjxjÞ. Then Lemma 8.1 allows one to estimate the norm

of pðx; ylixi
Þ, by dividing pðx; yxi

Þ by nðjxjÞ.

Taking into account the fact that DRðPÞ is compact, one sees that the norm of
pðx; yxi

Þ is bounded if x is in DRðPÞ. By a simple product formula, one estimates the norm
of pðx; yxÞ. These estimates together with equation (7.2) imply the desired result. r

Corollary 7.2. For all constant coe‰cient di¤erential operators D on XP; d there ex-

ist constants d A N and c > 0 such that for all x A XP; d;u, for all a; b A iðVdÞ, and for all

w A W

jDfa;bðx;NwÞje ckak kbk
�
1 þNðwÞ

�d
:ð7:5Þ

Proof. This is a standard application of the Cauchy integral formula, starting with
equation (7.4). Choose a basis x1; . . . ; xp of the character lattice X P of T P, and let
y1; . . . ; yp be the dual basis. Let C� :¼ fv A LieðT PÞ j Ei : jxiðvÞj ¼ �g. We may assume that
D is of the form D ¼ Da :¼ ya1

1 . . . y
ap
p . By the holomorphicity of fa;b we have, for a suit-

able constant Ca > 0 and any choice of a sequence of radii �ðwÞ:

Dafa;bðx;NwÞ ¼ Ca

Ð
v AC�ðwÞ

fa;b

�
expðvÞ � x;Nw

�
Q

i

xiðvÞaiþ1
dx15� � �5dxp:ð7:6Þ

Now use the estimates of Theorem 7.1 with the sequence �ðwÞ chosen such that
rðwÞ :¼ max

�
n
�
jexpðvÞj

�
j v A C�ðwÞ

	
is equal to

1 þ 1=
�
1 þNðwÞ

�
:ð7:7Þ
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But logðnÞ � exp is a norm on LieðT PÞ, as well as Sup
i

jxiðvÞj. They are equivalent. More-

over logð1 þ xÞf k 0x for x A ½0; 1�, for some k 0 > 0. Together with (7.7) this implies that
there exists a constant k > 0 such that �ðwÞf k=

�
1 þNðwÞ

�
. So equation (7.6) yields the

estimate (for some constant c 0 > 0)

jDafa;bðx;NwÞje c 0kak kbk
�
1 þNðwÞ

�dþjaj�
1 þ 1=

�
1 þNðwÞ

��KNðwÞð7:8Þ

for all w A W and for all multi-indices a. This easily leads to the desired result. r

Corollary 7.3. We have FðSÞHCy
�
Xu;EndðVXÞ

�W
. The restriction FS of F to

S defines a continuous map FS : S ! Cy
�
Xu;EndðVXÞ

�W
.

Proof. The equivariance of the sections in the image is clear. Recall that
FðNwÞ A Pol

�
Xu;EndðVXÞ

�
is defined by FðNwÞðxÞ ¼ pðx;NwÞ.

Hence by the estimates of Corollary 7.2 we see that for any continuous semi-
norm p on Cy

�
Xu;EndðVXÞ

�
there exist constants C > 0 and d A Zþ such that

p
�
FðNwÞ

�
eC

�
1 þNðwÞ

�d
.

Let b A Zþ be such that 0 < Cb :¼
P

w AW

�
1 þNðwÞ

��b
< y, and let q ¼ qp denote

the continuous seminorm on S defined by qðxÞ :¼ CCb sup
w

jðx;NwÞj
�
1 þNðwÞ

�dþb
. Then

p
�
FSðxÞ

�
e qðxÞ for all x A H, implying that FS is a continuous map as claimed. r

7.2. Smooth and normalized smooth families of coe‰cients and their constant

terms. We introduce the important notion of a (normalized) smooth family of coe‰cients:

Definition 7.4. Let P A P and let d A DP be an irreducible discrete series of HP with
central character WPrP A WPnTP. We put x ¼ ðP; d; tPÞ A XP; d;u. A smooth family of coef-
ficients of pðxÞ, x A XP; d;u is a family of linear functionals on H of the form

H C h 7! Tr
�
sðxÞpðxÞðhÞ

�
;ð7:9Þ

where s is a section of Cy
�
XP; d;u;EndðVXÞ

�
.

A smooth section s A Cy
�
XP; d;u;EndðVXÞ

�
is called normalized smooth when it

is divisible (in the CyðXP; d;uÞ-module Cy
�
XP; d;u;EndðVXÞ

�
) by the smooth function

fx 7! c�1ðxÞg A CyðXP; d;uÞ (cf. Proposition 9.8).

A normalized smooth family of coe‰cients of pðxÞ, x A XP; d;u is a smooth family of
coe‰cients (7.9) for which s is normalized smooth.

Remark 7.5. We frequently use tP rather than x ¼ ðP; d; tPÞ as the parameter of a
family of coe‰cients.

Corollary 7.6. It follows directly from the definitions that smooth (resp., normalized

smooth) families of coe‰cients of pðxÞ, x A XP; d;u, are stable under left and right translations

by elements h A H.
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Remark 7.7. Using the smoothness of the induction functor (Theorem 3.16) we
can exhibit the following equivariance property of smooth families of coe‰cients with re-
spect to the action of W. Let g ¼ k � w A WP and let Fs

x , x A XP; d;u denote the smooth
family of coe‰cients associated with the smooth section s A Cy

�
XP; d;u;EndðVXÞ

�
. Let

gðsÞ A Cy
�
XwðPÞ;CqðdÞ;u;EndðVXÞ

�
be the smooth section defined by (with h A XwðPÞ;CgðdÞ;u)

gðsÞðhÞ ¼ pðg�1; hÞ�1s
�
g�1ðhÞ

�
pðg�1; hÞ:ð7:10Þ

By the intertwining property of p
�
g�1; gðxÞ

�
we have

F
gðsÞ
gðxÞ ¼ Fs

x :ð7:11Þ

7.2.1. Constant term of (normalized) smooth families of coe‰cients. We start with a
general result about the constant terms of smooth and of holomorphic families:

Proposition 7.8. Let Fx, x A XP; d;u, be a smooth family of coe‰cients for H. Let

Q A P.

(i) The constant term HQ C h 7! F
Q
x ðhÞ is identically equal to 0, unless there exists a

w A W P such that wðPÞHQ.

(ii) Assume PHQ. The constant term HQ C h 7! F
Q
x ðhÞ is a smooth family of coe‰-

cients for HQ. Here we view XP; d;u both as a collection of tempered standard induction data

for H and for HQ.

(iii) As in (ii). If Fx is actually holomorphic in a neighbourhood of XP; d;u HXP; d, then

HQ C h 7! F
Q
x ðhÞ is holomorphic in a neighbourhood of XP; d;u as well.

Proof. (i) Let t denote a generalized weight for pðxÞ, x A XP; d;u. By Proposition 6.1,
t ¼ wðrtPÞ for some w A W P and r A TP a weight of d. Suppose that jtjeQ 1. By the argu-
ment at the end of the proof of Proposition 6.2 this implies that wðPÞHQ.

(ii) and (iii) Clearly it is enough to prove (iii) for the case where FxðhÞ ¼ fa;bðx; hÞ for
some a; b A iðVdÞ. Let k A N be such that kPðR0ÞHX . Let ðdaÞa AF0

be the fundamental
weights. Thus for any t A T one has: jtjeQ 1 if and only if jtjeF0

1 and jtðkdaÞj ¼ 1 for
all a A Q. By definition of the constant term we have

f
Q

a;bðx; hÞ ¼ hPxa; pðx; hÞbi;ð7:12Þ

where Px is the product of the spectral projections of the commuting operators pðx; yk daÞ
�,

a A Q corresponding to the eigenvalues of modulus 1. By Proposition 6.1, the eigenvalues
of pðx; y�

kda
Þ are of the form wðtPrÞðkda 0 Þ, with a 0 ¼ �w0a, r a weight of d, and w A W P

(we use the well known formula y�
x ¼ Nw0

y�w0xN�1
w0

). Observe that the moduli of these
eigenvalues are constant for x A XP; d;u. We divide the eigenvalues in two disjoint subsets:
those which are of modulus one for x A XP; d;u and the others, which are of modulus
strictly less than 1 for x A XP; d;u. Thus if e > 0 is su‰ciently small, there exists a neigh-
bourhood U of XP; d;u such that the moduli of the eigenvalues of the first (resp., sec-

97Delorme and Opdam, The Schwartz algebra of an a‰ne Hecke algebra

Brought to you by | Universite Mediterranee-Aix Marseille II
Authenticated

Download Date | 6/30/16 11:16 AM



ond) subset are strictly larger (smaller) than 1 � e if x A U . The proposition follows using
holomorphic functional calculus to express the spectral projections as in Corollary 8.2
(iii). r

Remark 7.9. We may generalize Proposition 7.8(ii) to the case where P is associated
with a subset of Q by using Remark 7.7. Choose g ¼ k � w A WP such that wðPÞHQ.
Then (by Remark 7.7 and Proposition 7.8(ii)) HQ C h 7! F

Q

g�1ðhÞðhÞ, h A XwðPÞ;CgðdÞ;u is a
smooth family of coe‰cients for HQ. Here we view XwðPÞ;CgðdÞ;u both as a collection of
tempered standard induction data for H and for HQ.

For the constant term of a normalized smooth family we have the following conse-
quence of Corollary 6.17:

Proposition 7.10. The restriction to HQ of the constant term of a normalized smooth

family of pðxÞ ¼ pðP; d; tPÞ, tP A T P
u , along Q A P is a finite sum of terms, each of these be-

ing a normalized smooth family of coe‰cients of pQ
�
dðxÞ

�
, where d is some Weyl group ele-

ment with dðPÞHQ.

7.2.2. Uniform estimates of the di¤erence of a smooth family of coe‰cients and its

constant term.

Lemma 7.11. Assume ZX ¼ f0g. Let XP; d; tP C x 7! Fx be a smooth family of coe‰-

cients.

Let a A F0, and put Q ¼ F0nfag.

Let k � k denote a norm which comes from a W0-invariant euclidean structure on

X nZ R.

Let a > 0 and let Xþ
a denote the cone (over Zþ) Xþ

a ¼ fx A Xþ j hx; a4i > akxkg.

Then there exists C; b > 0 such that

jðFx �F
Q
x ÞðNuyxNvÞjeCe�bkxk;ð7:13Þ

for all x A Xþ
a , x A XP; d;u, u A WQ, and v A W0.

Proof. Recall that the lattice X contains the root lattice QðR0Þ, and hence an inte-
gral multiple of the weight lattice PðR0Þ, say kPðR0Þ. We put X 0 ¼ kPðR0ÞHX and we
identify X 0 with Z l via a basis of X 0 consisting of the elements ðkdbÞ, b A F0 (where the db
are the fundamental weights), ordered in such a way that e1 ¼ kda. The temperedness of
pðP; d; tPÞ, tP A T P

u , and the fact that its central character is given by t ¼ rPtP imply that
the possible eigenvalues of pðP; d; tPÞðykdbÞ are among the wtðkdbÞ with w A W0 such that
jwtðkdbÞje 1. Moreover the modulus of wtðkdbÞ, hence of wtðe1Þ, does not depend on
tP A T P

u .

Hence if u ¼ v ¼ e and x A X 0 ¼ kPðR0Þ, (7.13) follows, in view of the definition of
the constant term, from Lemma 8.3.
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Let us now derive the general case of (7.13) from this special case. Since ZX ¼ f0g,
X 0 is of finite index in X . One can assume that a is small enough, in such a way that Xþ

a

is nonempty, otherwise there is nothing to prove. Let x A Xþ
a and let y be the orthogonal

projection of x on the line Rda. By definition of XQ we have x � y A XQ, and since
hx � y; b4i ¼ hx; b4i for all b A Q we find that in fact x � y A Xþ

Q . Thus x � y is a non-
negative linear combination of the fundamental weights d

Q
b of RQ. It is a basic fact

that the fundamental weights of a root system (with given basis of simple roots) have
nonnegative rational coe‰cients in the basis of its simple roots (indeed, this statement
reduces to the case of an irreducible root system, in which case the indecomposability
of the Cartan matrix implies that these coe‰cients are in fact strictly positive).
Hence we have x � y A Xþ

Q HQþQ. Since hb; a4ie 0 for all b A Q, we see that
hy; a4if hx; a4i > akxkf akyk. Hence kda A Xþ

a .

Let ðx1; . . . ; xrÞ be a set of representatives in X of X=X 0. Let us show that one can
choose the xi in �Xþ

a . Our claim is a consequence of the following fact. If y A X , one has
y þ nda A Xþ

a for n large. In fact by the triangle inequality one has:

hy þ nda; a
4i� aky þ ndakf nðhda; a4i� akdakÞ þ hy; a4i� akyk:

Thus, if x A Xþ
a and x ¼ x 0 þ xi, for some x 0 A X 0 and some i, one has x 0 A X 0þ

a . To get the
estimates, one applies the previous estimates to the translates of the family Fx by the Nu

(from the left), and by yxi
Nv (from the right), which are smooth families of coe‰cients

themselves (cf. Corollary 7.6), taking into account Corollary 3.26. r

7.3. Wave packets. Recall that J was introduced as the adjoint of F. Thus if
s A L2

�
XP; d;u;EndðVXÞ; mPl

�
then JðsÞ A L2ðHÞ, and is completely characterized by the

value of
�
JðsÞ; h

�
where h A H. We have, using Theorem 4.3, that

JðsÞðhÞ :¼
�
JðsÞ�; h

�
¼

�
h�;JðsÞ

�
ð7:14Þ

¼
�
Fðh�Þ; s

�
¼ mR; d

Ð
XP; d; u

Tr
�
sðxÞpðx; hÞ

�
jcðxÞj�2

dx;

where mR; d ¼ qðwPÞ�1jWP=KPj�1mRP;PlðfdgÞ > 0.

Recall Definition 5.1. Assume that ~ss ¼ cðwP�Þs A C
�
Xu;EndðVXÞ

�
(in other words,

s A Cy
�
XP; d;u;EndðVXÞ

�
).

Denote by Fs the smooth family of coe‰cients Fs
x ðhÞ ¼ Tr

�
sðxÞpðx; hÞ

�
associated

with s. Then by (7.14) (with h A H), we have

Jð~ssÞðhÞ ¼ mR; dWsðhÞ;ð7:15Þ

where for any s A Cy
�
XP; d;u;EndðVXÞ

�
, we put

WsðhÞ :¼
Ð

XP; d; u

Fs
x ðhÞc�1ðxÞ dxð7:16Þ

¼
Ð

XP; d; u

Tr
�
sðxÞpðx; hÞ

�
c�1ðxÞ dx:
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Theorem 7.12. For every k A Zþ, there exists a continuous seminorm pk on

Cy
�
XP; d;u;EndðVXÞ

�
such that

jWsðNuyxNvÞje ð1 þ kxkÞ�k
pkðsÞ;ð7:17Þ

for all x A Xþ, u; v A W0 and s A Cy
�
XP; d;u;EndðVXÞ

�
.

Proof. First, by using right and left translations by the Nw, w A W0, and Corol-
lary 7.6, it is enough to prove (7.17) for u ¼ v ¼ 1. Thus, we assume u ¼ v ¼ 1 in the fol-
lowing.

The proof is by induction on the rank of X . The statement is clear if the rank of
X is zero. One assumes the theorem is true for lattices of rank strictly smaller than the rank
of X .

For the induction step we consider two cases, namely the case where ZX 3 0 (first
case), and the case where ZX ¼ 0 (second case).

First case. In this case the semisimple quotient HF0
of H ¼ HF0 has smaller rank

than H. Recall the results of Proposition 2.2 and Proposition 2.3. Let us denote the semi-
simple quotient HF0

of H by H0, its root datum RF0
by R0, etc.

We have TP HT0 and T P IT 0. Let T P
0 ¼ ðT0ÞP be the connected component of e

of the intersection T0 XT P. Then the product map TP � T P
0 ! T0 is a finite covering, as

is the product map T P
0 � T 0 ! T P. Let x ¼ ðP; d; tPÞ and suppose that tP ¼ tP

0 t0 for
tP
0 A T P

0;u and t0 A T 0
u . Let x0 ¼ ðP; d; tP

0 Þ A XR0;P; d;u denote the standard induction datum
for H0. Recall the epimorphism ft0 : H ! H0 of Proposition 2.3. It is easy to see that
pðxÞ ¼ pðx0Þt0 , the pull back of the representation pðx0Þ of H0 to H via ft0 . This implies
that

pðxÞðyxÞ ¼ t0ðxÞpðx0Þðyx0
Þð7:18Þ

for all x A X , where x0 A X0 is the canonical image of x in X0 :¼ X=ZX .

Hence, since cðxÞ ¼ cðx0Þ (indeed, use Definition 9.7 and observe that
aðtÞ ¼ aðrPtPÞ ¼ aðrPtP

0 t0Þ ¼ aðrPtP
0 Þ for all a A R0) and since

Ð
T P

u

f ðtPÞ dtP ¼
Ð

T P
0; u

�T 0
u

f ðtP
0 t0Þ dtP

0 dt0ð7:19Þ

for all integrable functions f on T P
u , we have

WsðyxÞ ¼ W0;sx
ðyx0

Þ;ð7:20Þ

where W0;sx
denotes the wave packet (7.16) for the smooth section

sx A Cy
�
XR0;P; d;u;EndðVX0

Þ
�

with respect to the root datum R0, defined by
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sxðx0Þ ¼
Ð

T 0
u

t0ðxÞsðtP
0 t0Þ dt0ð7:21Þ

¼
Ð

T 0
u

t0ðx0ÞsðtP
0 t0Þ dt0;

where x0 is the canonical image of x in X 0 :¼ X=X BF0.

From equation (7.21) it is clear, by harmonic analysis on the torus T P
0;u � T 0

u , that for
all k A Zþ and all continuous seminorms q on Cy

�
XR0;P; d;u;EndðVX0

Þ
�
, there exists a con-

tinuous seminorm p ¼ pq;k on Cy
�
XP; d;u;EndðVXÞ

�
such that

qðsxÞe ð1 þ kx0kÞ�k
pðsÞð7:22Þ

for all x A X and for all s A Cy
�
XP; d;u;EndðVXÞ

�
.

Now apply the induction hypothesis to W0;sx
. In view of (7.20) and (7.22) this yields

the induction step in the first case.

Second case. We now consider the case ZX ¼ 0. If a A F0 and a > 0, one defines
Xþ

a;a ¼ fx A Xþ j hx; a4i > akxkg. We first prove that:

S
a AF0

Xþ
a;a ¼ Xþnf0g; for all a small enough:ð7:23Þ

Let x A Xþnf0g. We write

x ¼
P
a AF0

hx; a4ida;

where da are the fundamental weights. For a > 0 small enough, one has, by equivalence of
norms in finite dimensional vector spaces:

2akxke sup
a AF0

jhx; a4ij; x A Xþ:ð7:24Þ

Then, for x A Xþnf0g, choose a A F0 with hx; a4i maximal. From (7.24), one has
hx; a4if 2akxk, hence, as kxk3 0:

hx; a4i > akxk; i:e:; x A Xþ
a;a

which proves (7.23).

Hence it is enough to prove the estimates for x A Xþ
a;a. Let Q ¼ F0nfag. Then it fol-

lows from Lemma 7.11, that for some b > 0, and C > 0, one has

jFs
tPðyxÞ �F

s;Q
tP ðyxÞjeCe�bkxk; for all x A Xþ

a;a; tP A T P
u :

By integration of this inequality over T P
u against the continuous function jc�1ðxÞj it su‰ces

to prove the estimates (7.17) after replacing Fs
tP by F

s;Q
tP . But by Proposition 7.10, the

restriction to HQ of the constant term F
s;Q
tP c�1ðxÞ of the normalized smooth family

Fs
tPc�1ðxÞ of coe‰cients is a sum of normalized smooth families of coe‰cients for
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RQ ¼ ðX ;Y ;RQ;R
4
Q;QÞ. This brings us back to the first case of the induction step, thus

finishing the proof. r

Corollary 7.13. It follows from Theorem 7.12, (7.15) and Lemma 7.14 that JðsÞ A S
for all s A C

�
XP; d;u;EndðVXÞ

�
, and that JC : C

�
XP; d;u;EndðVXÞ

�
! S is continuous.

In particular, by Lemma 5.2 we see that JðsÞ A S for all s A Cy
�
XP; d;u;EndðVXÞ

�
.

7.4. End of the proof of the Main Theorem. We start with a basic technical
lemma:

Lemma 7.14. Let n A Z. There exists a constant Cn with the following property. For

all f A H� for which there exists C > 0 such that

j f ðTuyxTvÞjeCð1 þ kxkÞ�n; u; v A W0; x A Xþð7:25Þ

one has

j f ðNwÞjeCnC
�
1 þNðwÞ

��n
; w A W :

Proof. As in [26], (2.25), one writes, for w ¼ uxv, with u; v A W0, x A Xþ,

Nw ¼
P

u; v AW0

cw; ðu 0; v 0ÞTu 0yxTv 0 ;ð7:26Þ

where the real coe‰cients cuxv; ðu 0; v 0Þ and cuyv; ðu 0; v 0Þ are equal if x and y belong to the same
facets of the cone Xþ. The number of facets being finite, one sees, by using the assumption
(7.25), that there exists C 0 such that

j f ðNuxvÞjeC 0Cð1 þ kxkÞ�n; u; v A W0; x A Xþ:ð7:27Þ

But, from [26], (2.27), one deduces the existence of r0 f 0 such that:

NðxÞ � r0 eNðuxvÞeNðxÞ þ r0; u; v A W0; x A Xþ:ð7:28Þ

But one has: NðxÞ ¼ hx; 2r4iþ kx0k, x A Xþ where x0 is the projection of x A X nR on
ZX nR along ZR0 nR. Let us define

kvk0 ¼ sup
u AW0

jvð2ur4Þj þ kv0k; v A X nR:

Then k � k0 is a norm on X nR, which is equivalent to k � k. Moreover

NðxÞ ¼ kxk0; for all x A Xþ:

Hence there exists C 00 > 0 such that:

C 00�1NðxÞe kxkeC 00NðxÞ:ð7:29Þ

Taking into account (7.27), (7.28) and (7.29), one gets the result. r
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End of the proof of the Main Theorem. By Corollary 7.3, the image of FS is con-

tained in the space of smooth W-equivariant sections Cy
�
Xu;EndðVXÞ

�W
, and FS is con-

tinuous.

Corollary 7.13 states that the image of JC is contained in S, and that
JC : C

�
Xu;EndðVXÞ

�
! S is continuous.

Since Cy
�
Xu;EndðVXÞ

�W
HC

�
Xu;EndðVXÞ

�
(see Lemma 5.2) and SHL2ðHÞ (see

(2.16), (2.19)), Corollary 4.5 implies that JCFS ¼ idS. It follows that the map JC in (5.5)
is surjective, and that FS is injective.

Since CHL2

�
Xu;EndðVXÞ; mPl

�
(see Lemma 5.2), Corollary 4.5 also implies that

FSJC ¼ pW;C. It follows, since pW;C is the identity on

Cy
�
Xu;EndðVXÞ

�W
HC

�
Xu;EndðVXÞ

�
;

that FS is also surjective in (5.4). This finishes the proof of the Main Theorem. r

8. Appendix. Some applications of spectral projections

The following lemma was suggested by [1], Lemma 20.1 and its proof.

Lemma 8.1. Let V be a complex normed vector space of dimension p. There exists

C > 0 such that for all A A EndðVÞ with eigenvalues of modulus less than or equal to 1:

kAnkeCð1 þ kAkÞp�1ð1 þ nÞp; n A Zþ:ð8:1Þ

Here kAk is the operator norm of A.

Proof. Let Dn be the disk of center 0 and radius 1 þ ð1 þ nÞ�1. Then

An ¼ 1=2ip
Ð

qDn

znðz Id � AÞ�1
dz:ð8:2Þ

From the Cramer rules, there exists a polynomial function from EndðVÞ into itself,
B 7! MðBÞ, of degree p � 1, such that for any invertible B, one has:

B�1 ¼
�
detðBÞ

��1
MðBÞ:ð8:3Þ

Hence, there exists C 0 > 0 such that:

kMðBÞkeC 0ð1 þ kBkÞp�1; B A EndðVÞ:

Hence, taking into account:

1 þ kz Id � Ake 2 þ ð1 þ nÞ�1 þ kAke
�
2 þ ð1 þ nÞ�1�ð1 þ kAkÞ; z A Dn;

one has
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kMðz Id � AÞkeC 0�2 þ ð1 þ nÞ�1�p�1ð1 þ kAkÞp�1; z A Dn:ð8:4Þ

Now the eigenvalues of z Id � A, z A qDn are of modulus greater or equal to ð1 þ nÞ�1.
Hence

jdetðz Id � AÞjf ð1 þ nÞ�p; n A Zþ:ð8:5Þ

The length of qDn is 2p
�
1 þ ð1 þ nÞ�1�. From equations (8.1) to (8.4), one gets:

kAnke
�
1 þ ð1 þ nÞ�1�1þn

C 0�2 þ ð1 þ nÞ�1�p�1ð1 þ nÞpð1 þ kAkÞp�1:

One gets the required estimate with:

C ¼ C 0e3p�1: r

Corollary 8.2. (i) Let r 0 > r > 0. There exists Cr; r 0 such that for all A A EndðVÞ with

eigenvalues of modulus less or equal to r, one has

kAnkeCr; r 0 ðr 0Þnð1 þ kAkÞp�1:

(ii) Let � > 0 and let W� be the set of elements in EndðVÞ whose eigenvalues are either

of modulus one or of modulus less or equal to 1 � �. Let P<1 be the sum of the spectral

projections corresponding to the eigenvalues of modulus strictly less than 1. Then

P<1An ¼ ðA<1Þn, where A<1 ¼ P<1A. Let b > 0 such that 1 � � < e�b. There exists C de-

pending on b, � and V such that

kP<1AnkeCð1 þ kP<1AkÞp�1
e�bn; n A N; A A W�:

(iii) If AðtÞ is a continuous (resp., holomorphic) function with values in W�, then A<1ðtÞ
has the same property.

Proof. (i) One applies the previous result to r 00�1
A, where r < r 00 < r 0 and one uses

the fact that ð1 þ nÞpðr 0=r 00Þ�n is bounded.

(ii) follows from (i) applied to A<1, r ¼ 1 � �, r 0 ¼ e�b.

(iii) follows from the formula

A<1 ¼ 1=2ip
Ð
qD

zðz Id � AÞ�1
dz;

where D is the disc of center 0 and radius 1 � �=2. r

Lemma 8.3. Let �; a > 0, p; l A N. Let V a normed complex vector space of dimen-

sion p and X ¼ Z l . Let p be a finite dimensional complex representation of X. One de-

notes by ðe1; . . . ; epÞ the canonical basis of X. One sets A1 ¼ pðe1Þ; . . . ;Al ¼ pðelÞ. If

n ¼ ðn1; . . . ; nlÞ A X , one sets: knk ¼ jn1j þ � � � þ jnl j, and An ¼ pðnÞ. Assume that the mod-

ulus of the eigenvalues of the Ai are less or equal to one, and the eigenvalues of A1 are either

of modulus one or of modulus less or equal to 1 � �. Let us denote by P<1 (resp., P1) the sum
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of the spectral projections of A1 corresponding to the eigenvalues of moduli strictly less than 1
(resp., of moduli 1). Set Xþ

a ¼ fn A Z l
þ j n1 > aknkg.

Then there exist a 0 and C 0, independent of the representation p of X in V , such that

kP<1AnkeC 0
� Q

i¼1;...; l

ð1 þ kAikÞp

�
e�a 0knk; n A Xþ

a :

Proof. From Corollary 8.2(i), (ii), one deduces that, for b > 0 such that 1 � � < e�b,
and b 0 > 0, there exists a constant C > 0, depending only on �, b, b 0 and V such that:

kP<1AnkeC 0
� Q

i¼1;...; l

ð1 þ kAikÞp

�
e�bn1þb 0ðn2þ���þnlÞ; n A Xþ:

If n A Xþ
a , one has

bn1 � b 0ðn2 þ � � � þ nlÞf ðab � b 0Þknk;

b being chosen, one takes b 0 ¼ ab=2. Then the inequality of the lemma is satisfied for
a 0 ¼ ab=2. r

9. Appendix. The c-function

In this appendix we have collected some of the properties of the Macdonald
c-function. These properties play a prominent role throughout this paper, and are closely
related with the properties of residual cosets as discussed in [26], Appendix: residual cosets
(Section 7).

We now define the Macdonald c-function c element of QA ¼ QnZ A the quotient
field of A. Set

c :¼
Q

a AR0;þ

ca ¼
Q

a AR1;þ

ca;ð9:1Þ

where ca for a A R1 is equal to

ca :¼
ð1 þ q

�1=2
a4 y�a=2Þð1 � q

�1=2
a4 q�1

2a4y�a=2Þ
1 � y�a

A QA:ð9:2Þ

If a A R0nR1 then we define ca :¼ c2a.

Remark 9.1. We have thus associated a c-function ca to each root a A Rnr, but ca
only depends on the direction of a. This convention was used in [26], but di¤ers from the
one used in [25]. If a A R1 and a=2 B R0, then the formula for ca should be interpreted by
setting q2a4 ¼ 1, and then rewriting the numerator as ð1 � q�1

a4 y�aÞ. Here and below we use
this convention.

We view c as a rational function on T via the isomorphism of A and the ring of reg-
ular functions on T sending yx to the complex character x of T .
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Since the numerator and the denominator of c both are products of irreducible
factors whose zero locus is nonsingular (a coset of a codimension 1 subtorus of T), it is
straightforward to define the pole order it of

�
cðtÞcðw0tÞ

��1
at a point t A T (see [26], Defi-

nition 3.2).

Let Q ¼ QðR0Þ denote the root lattice of R0. The following theorem is the main prop-
erty of the c-function:

Theorem 9.2 ([26], Theorem 7.10; [27], Theorem 7.1). We have: it e rankðQÞ for all

t A T.

We define the notion of a ‘‘residual point’’ of T (with respect to ðR; qÞ) as follows:

Definition 9.3. A point t A T is called residual if it ¼ rankðXÞ.

Remark 9.4. There is a complete classification of the residual points [13], [26]. The
results on the c-function used in this section can either be proved using this classification
(see [13], [26]) or using harmonic analysis (see [27]).

Corollary 9.5. There exist only finitely many residual points in T , for every root datum

R and label function q for R, and the set of residual points is empty unless ZX ¼ 0.

Proof. Let n ¼ rankðR0Þ. From equation (9.1) it is clear that for any k A Z, the set
Sk :¼ ft j it ¼ kg is a finite (possibly empty) union of nonempty Zariski open subsets of co-
sets L of subtori of T , whose Lie algebra is an intersection of root hyperplanes a ¼ 0 of
CnY . If L is such a coset with codimðLÞ ¼ d, then RL :¼

�
a A R0

�� ajL is constant
	

is a
parabolic subsystem of rank d. Moreover, the projection tL of L onto TL is a point with
iRL
tL

¼ k. Applying Theorem 9.2 to TL with respect to ðRL; qLÞ we obtain k e d.

Hence if Sn is not finite, then there exists a proper parabolic root subsystem RL HR0

of rank m < n say, such that nem, which is clearly absurd. The remaining part of the cor-
ollary is straightforward from Theorem 9.2. r

Another fact of great interest is the following.

Theorem 9.6 ([26], Theorem 7.14; [27], Theorem 7.4). Let r ¼ sc A T be residual,
with s A Tu and c A Trs. Then r� :¼ sc�1 A WðRs;1Þr, where Rs;1 is the root subsystem of R1

defined by Rs;1 :¼ fa A R1 j aðsÞ ¼ 1g.

We extend the definition of the c-function to arbitrary standard induction data. First
recall Theorem 2.10, stating that the central character of a residual discrete series represen-
tation is residual.

Definition 9.7. Let x ¼ ðP; d; tPÞ be a standard induction datum, and let rP A TP be
such that WPrP is the central character of d (thus rP is a ðRP;TPÞ-residual point). Put
t ¼ rPtP A T . We define:

cðxÞ :¼
Q

a AR0;þnRP;þ

caðtÞ:ð9:3Þ
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Notice that we recover the original c-function defined on T as the special case where P ¼ j
and d is the trivial one dimensional representation.

The next proposition goes back to [13], Theorem 3.13 (also see [26], Theorem
3.25).

Proposition 9.8. Let PHF0 and let x ¼ ðP; d; tPÞ A XP; d;u. Choose rP A TP such that

WPrP is the central character of d, and let t ¼ rPtP A T.

(i) cðx�1Þ ¼ c
�
wPðxÞ

�
¼ cðxÞ.

(ii) The function x 7! jcðxÞj2 on Xu is W-invariant.

(iii) The function cðxÞ is K-invariant.

(iv) Let P 0 A P and d A KP 0 � W ðP;P 0Þ. The rational functions cðdxÞcðxÞ�1
and

cðdxÞ�1
cðxÞ (of x A XP; d) are regular in a neighbourhood of XP; d;u.

(v) The rational function cðxÞ�1
is regular in a neighbourhood of Xu.

Proof. (i) A straightforward computation from the definitions, using Theorem 9.6
(cf. [26], (3.58)).

(ii) The W-invariance follows simply from the definitions if we write (using (i))
jcðxÞj�2 ¼

�
cðxÞcðx�1Þ�1� (cf. [26], Proposition 3.27).

(iii) This follows trivially from the definition of the action of K on x: If k A KP

then kx ¼ kðP; d; tPÞ ¼
�
P;CkðdÞ; ktP

�
. The central character of CkðdÞ is equal to

k�1WPrP ¼ WPðk�1rPÞ, thus we need to evaluate the ca in the product cðkxÞ at the point
k�1rPktP ¼ t, or any of its images under the action of WP. Hence cðkxÞ ¼ cðxÞ.

(iv) By (i) and (ii) it is clear that these rational functions have modulus 1 on XP; d;u

(outside their respective singular sets).

The singular sets of these rational functions are of the following form. Choose rP A TP

such that WPrP is the central character of d. Then the singular set of cðdxÞcðxÞ�1 is the
union of the zero sets of the functions

Q
a AR1;þnRP; 1;þ

ð1 � a�1
P; dÞð9:4Þ

and

Q
a AR1;þnRP; 1;þ

ð1 þ q
�1=2
a4 a

�1=2
P; d Þð1 � q

�1=2
a4 q�1

2a4a
�1=2
P; d Þð9:5Þ

on XP; d, where aP; d denotes the function on XP; d defined by aP; dðxÞ ¼ aðrPtPÞ.

In the case of cðwPxÞ�1
cðxÞ the answer is the same, but we need to take the products

over the set a A d�1R1;þnRP;1;�.
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The intersection of a component of this hypersurface with XP; d;u is either empty or it
has (real) codimension 1 in XP; d;u.

By the boundedness of cðdxÞcðxÞ�1 on XP; d;u, this implies that the pole order of
this function at a component of the singular set which meets XP; d;u is in fact equal to
zero. Hence the poles are removable in a neighbourhood of XP; d;u. Similarly for
cðdxÞ�1

cðxÞ.

(v) The proof of [13], Theorem 3.13 may be adapted to the present situation. Or we
may argue as in (iv) as follows.

Since jcðxÞj�2 ¼
�
cðxÞc

�
wPðxÞ

���1
is smooth on Xu (cf. [26], Theorem 3.25, equation

(3.53), Proposition 3.27 and equation (3.58)), it follows that cðxÞ�1 is bounded on XP; d;u.
Hence the argument that was used in the proof of (iv) applies. r

10. Appendix. Relation with the Harish-Chandra Schwartz algebra

In this section we say some words about the explicit interpretation of the Schwartz
algebra S in the situation where H arises as the algebra of compactly supported spherical
functions of a compact open subgroup of a reductive p-adic group G.

We start this discussion with an (admittedly indirect) argument explaining the role of
S for the representation theory of G. Let G be a reductive p-adic group and let s ¼ ðK ; rÞ
be a type for a Bernstein block B of the category of smooth representations of G (cf. [6]).
Let H be the Hecke algebra of compactly supported s-spherical functions. Assume further
that H is isomorphic (in the sense of involutive algebras) to an a‰ne Hecke algebra with
parameters HðR; qÞ in our sense. We assume moreover that via this isomorphism the trace
of H corresponds to a suitable positive multiple of the tracial state t of the a‰ne Hecke
algebra HðR; qÞ (all this is known e.g. for level zero types of split semisimple groups of
adjoint groups, see [24], [14]). In this situation the functor V ! V s taking s-spherical vec-
tors defines a Morita equivalence m from B to the category of H-modules. It is known that
m preserves the Plancherel measure [7]. On the other hand, it is known that the support of
the Plancherel measure of G consists of the irreducible tempered representations of G

(cf. [36]). Finally, Corollary 4.4 shows that the support of the Plancherel measure of
HFHðR; qÞ is the set of irreducible representations of the Schwartz algebra SðR; qÞ (re-
stricted to HðR; qÞ). Using the well known fact that irreducible smooth representations of
G are admissible these arguments yield the following result:

Theorem 10.1. Let G be a p-adic reductive group and suppose that H is the Hecke

algebra of a type s of a Bernstein block B of G. Suppose that H is isomorphic (as involutive

algebra) to an a‰ne Hecke algebra of the form HðR; qÞ such that the trace of H corre-

sponds to a positive multiple of the trace t of HðR; qÞ. The functor V ! V s induces an

equivalence from the category of admissible tempered representations in the block B to the

category of tempered modules of finite length of HFHðR; qÞ (i.e. the category of finite di-

mensional SðR; qÞ-modules).

In the special case of the Iwahori-Matsumoto Hecke algebra H ¼ HðG;BÞ ([15], [4])
of a split semisimple p-adic group G we will show more precisely that the Schwartz com-
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pletion S of H is isomorphic to the algebra CðG;BÞ of B-biinvariant Schwartz functions in
the sense of Harish-Chandra.

Let K be a non archimedean local field, q the number of elements of its residue field.
Let G the group of K-points of a semisimple algebraic group defined and split over K. Let
ðY ;X ;R; �RRÞ its root datum with respect to a split torus A. Let K the isotropy group of a
special point of the apartment of the Bruhat-Tits building of G corresponding to A and B

an Iwahori subgroup G contained in K . Then K is a maximal compact subgroup of G. The
Weyl group of G with respect to A has a set of representative W0 in K , by definition of
special points and one has

K ¼ BW0B:ð10:1Þ

The Iwahori subgroup of G determines a set of simple roots of �RR, F , and also a minimal
parabolic subgroup of G, P0, which contains B, and a Weyl chamber Aþ in A. We denote
by R the reduced based root datum ðX ;Y ;R;R4;FÞ.

We keep the notation of Section 2.4. Then every element, w, of the Weyl group
W determines a double coset of BwB of B in G. We denote by 1BwB its characteristic
function on G. We denote by HðG;BÞ the convolution algebra of compactly sup-
ported functions on G which are biinvariant under B. It is endowed with the L2-scalar
product.

We denote also by q the mulitiplicity function on W , w 7! qlðwÞ. Then (see [15], Sec-
tion 3, for Chevalley groups, and [4], Section 3, in general), there is an isomorphism, F,
between HðR; qÞ and HðG;BÞ such that

FðTwÞ ¼ 1BwB; w A W :ð10:2Þ

Moreover [15], Prop. 3.2, shows that:

The square norm of Tw is equal to the square of the L2-norm
of 1BwB; qlðwÞ; for w A W :

(10.3)

The lattice X is identified to a subgroup of A. We denote by Xþ the set of its P0-dominant
elements. One has

G ¼ BWB ¼ BW0XþW0B:ð10:4Þ

We denote by d0 the modulus function of P0. It is a biinvariant function under B on P0.
One has (cf. [21], Corollary 3.2.5 and Remark 3.2.11):

d0ðxÞ ¼ qlðxÞ; x A X :ð10:5Þ

If X nZ R is endowed with a norm; its restriction to the set Xþ

of P0-dominant elements; is an equivalent function to
the restriction to Xþ of the length function l:

(10.6)

(See (7.1).)

109Delorme and Opdam, The Schwartz algebra of an a‰ne Hecke algebra

Brought to you by | Universite Mediterranee-Aix Marseille II
Authenticated

Download Date | 6/30/16 11:16 AM



The transpose, F�, of the isomorphism F determines an isomorphism of the dual
HðG;BÞ� of HðG;BÞ with the dual H� of H :¼ HðR; qÞ. The scalar product allows to
identify HðG;BÞ (resp. H) as a subspace of HðG;BÞ� (resp. H�).

The Harish-Chandra Schwartz algebra of G is the space CðGÞ of functions, f , on G

which are biinvariant under some compact open subgroup of G and such that for all n A N:

sup
g AG

j f ðgÞjXðgÞ�1�1 þ logðkgkÞ
�n

< þy:

Here the functions k � k and X are the biinvariant functions under K, defined for example in
[36], I.1, II.1.

From the fact that f is biinvariant under some open compact subgroup of K , hence
of B, and from the decomposition (10.4), this is equivalent to

sup
x AXþ

j f ðbwxw 0b 0ÞjXðxÞ�1�1 þ logðkxkÞ
�n

< þyð10:7Þ

for all b; b 0 A B, w;w 0 A W0, n A N. From [36], Lemme II.1.1, there exist C1;C2 > 0, d A N

such that

C1d
1=2
0 ðaÞeXðaÞeC2d

1=2
0 ðaÞ

�
1 þ logðkakÞ

�d
; a A Aþ

0 :ð10:8Þ

Using equations (10.8), (10.5), (10.4), (10.6), and taking into account equation [36], I.1 (6),
one sees that (10.7) is equivalent to

sup
x AXþ

j f ðbwxw 0b 0ÞjqlðxÞ=2
�
1 þ lðxÞ

�n
< þyð10:9Þ

for all b; b 0 A B, w;w 0 A W0, n A N. Using the L2 scalar product, the algebra of B-biinvariant
elements of CðGÞ, CðG;BÞ, might be viewed as a subspace of HðG;BÞ�.

Proposition 10.2. The image of CðG;BÞ by the transpose, F�, of F is equal to SðHÞ.

Proof. The Schwartz algebra SðHÞ is defined by (2.17). Here N is just the length
function, as G is semi-simple: ZX is reduced to f0g.

Using our equation (2.2), one sees that, equivalently, SðHÞ is the space of h A H�

such that

sup
x AXþ

jðNwxw 0 ; hÞj
�
1 þ lðwÞ

�n
< yð10:10Þ

for all w;w 0 A W0, n A N. Let f be a B-biinvariant function on G, that one views as a linear
form on HðG;BÞ. Let us denote by h A H� its image by F�. Then a simple computation,
using (10.2) and (10.3), shows that

ðh;NwÞ ¼ f ðwÞqlðwÞ; w A W :

Then conditions (10.9) for f is equivalent to the condition (10.10) for h. The proposition
follows. r
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11. Appendix. Geometric lemma and the constant term

The referee suggested that our results on the constant term of coe‰cients should be
expressed in terms of representations. The referee mentioned the use of the basic geometric
lemma and the reference [36] for similar results for reductive p-adic groups. We will follow
the suggestion of the referee and briefly indicate how the results of subsection 6.3 could be
viewed in this perspective.

The first result we would like to mention here is the appropriate version in our con-
text of the basic geometric lemma for tempered representations, analogous to [36], Lemme
III.3.3:

Lemma 11.1 (Geometric lemma for tempered representations). Let P;Q A P and

let ðVd; dÞ be a tempered representation of HP. Recall the set DQ;P HW0 of minimal length

representatives of the double cosets WQwWP. For t A T P
u let iPðVd; tÞ denote the tempered

representation of H obtained by inducing dt from HP to H (see [26], Proposition 4.20).
There exists a filtration of the constant part iPðVd; tÞQ

of iPðVd; tÞ along Q such that

gr
�
iPðVd; tÞQ

�
F

L
d ADQ;P

i
Q
QXdP

�
dðVd; tÞd�1QXP

�
ð11:1Þ

where dðVd; tÞd�1QXP
denotes the pullback of ðVd; tÞd�1QXP

by the algebra isomorphism

c�1
d : HQXdP ! Hd�1QXP (see Subsection 3.5 for the meaning of cd ).

Proof. We choose a filtration O1 HO2 H � � �HON ¼ W0 of W0 by left WQ and
right WP invariant subsets such that (with O0 ¼ j)

OinOi�1 ¼ WQdiWPð11:2Þ

for di A DQ;P such that the length of di is increasing with i. For all w A WQXdiP we have

NwNdi
¼ Ndi

Nd�1
i

wdi
¼ Nwdi

ð11:3Þ

since lðwÞ ¼ lðd�1
i wdiÞ and lðwdiÞ ¼ lðwÞ þ lðdiÞ. Using Lustig’s relation (2.8) and induc-

tion with respect to the length of di we see easily that for all x A X :

yxNdi
¼ Ndi

yd�1
i

x þ
P

wk AOi�1;xk AX

akNwk
yxk

:ð11:4Þ

We define a filtration of iPðVd; tÞ by putting

iPðVd; tÞi :¼
P

j¼1;...; i

HQNdi
ð1nHP Vd; tÞ:ð11:5Þ

By (11.3) and (11.4) we see that this is a filtration by HQ-submodules, and that

iPðVd; tÞi=iPðVd; tÞi�1 F i
Q
QXdiP

�
diðVd; tj

H
d�1
i

QXPÞ
�
:ð11:6Þ

Therefore by Proposition 3.18(iv) it is enough to prove that for all di:

i
Q
QXdiP

�
diðV

d�1
i QXP;þ

d; t Þ
�Q ¼ 0:ð11:7Þ
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The weights t A T of diðV
d�1

i QXP;þ
d; t Þ are of the form

t ¼ t 0
Q

a A diPnQXdiP

da n a4ð11:8Þ

with jt 0jQXdiP
¼ 1 and where for all a A diPnQX diP, jdaje 1 and jdaj < 1 for at least one

a. From Kilmoyer’s result Proposition 6.7 it follows that if a A diPnQX diP then
a A R0;þnRQ;þ. Using the inequalities satisfied by the jdaj it now follows easily that

jtjQ 3 1 for any weight t of diðV
d�1

i QXP;þ
d; t Þ. The weights t A T of i

Q
QXdiP

�
diðV

d�1
i QXP;þ

d; t Þ
�

are

WQ translates of the weights of diðV
d�1

i QXP;þ
d; t Þ, hence these weights also all satisfy jtjQ 3 1.

This proves (11.7) and finishes the proof. r

Corollary 11.2. If d is a discrete series representation of HP and x ¼ ðP; d; tÞ A XP a

standard tempered induction datum, then there exists a filtration of pðxÞQ
such that

gr
�
pðxÞQ�F L

d ADQ;P:dPHQ

i
Q
dPðd:Vd; tÞ:ð11:9Þ

Proof. This is an easy special case of the previous lemma, using Proposition 3.20.
r

Corollary 11.3. Same conditions as in the previous corollary, but now assume that

t A T P
u is such that the induction datum x is RP-generic, i.e. such that trd A T is RP-generic

where rd is such that WPrd is the central character of d. Then pðxÞQ
is semisimple and

pðxÞQ F
L

d ADQ;P:dPHQ

i
Q
dPðd:Vd; tÞð11:10Þ

is the decomposition in irreducibles, all of them being inequivalent to each other.

Proof. Under the assumption of genericity we know that the modules i
Q
dPðd:Vd; tÞ

with d A DQ;P such that dPHQ are irreducible (see [26], Corollary 4.18) and their central
characters are mutually distinct by Corollary 6.8(ii). Then (11.10) follows by the preceding
corollary. r

The decomposition of Corollary 11.3 can be easily compared to the decomposition
(3.6), by observing that

i
Q
dPðd:Vd; tÞFHQði0

d eo nVd; tÞ:ð11:11Þ

Now let Q 0 ¼ �wQðQÞ and put P 0 ¼ �wQðPÞ. Consider also the decomposition (still
assuming that we are in the generic case)

pðxÞQ 0
F

L
d 0 ADQ 0 ;P 0 :d 0ðP 0ÞHQ 0

i
Q 0

d 0ðP 0Þðd
0:Vd; tÞ:ð11:12Þ

Notice that this is the geometric lemma for a‰ne Hecke algebras. With respect to the Her-
mitian inner product on pðxÞ defined by (3.4) the subspaces of pðxÞQ 0

and pðxÞQ defined by

NwQi
Q 0

d 0ðP 0Þðd
0:Vd; tÞð11:13Þ
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and

i
Q
dPðd:Vd; tÞð11:14Þ

respectively are mutually orthogonal unless wQd 0 ¼ d, as one can easily see from the well
known formula y�

x ¼ Nw0
y�w0ðxÞN

�1
w0

and Corollary 6.8(ii). The results of Subsection 6.3,
in particular the explicit formula in Corollary 6.16 for the constant term, are based on
this orthogonality together with explicit formulas relating the inner products ha; bi for

a A NwQi
Q 0

d 0ðP 0Þðd 0:Vd; tÞH pðxÞ and b A i
Q
dPðd:Vd; tÞH pðxÞ (where wQd 0 ¼ d) in terms of stan-

dard inner products in standard induced modules of HQ.
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