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1. Introduction

An affine Hecke algebra is associated to a based root datum # = (X, Y, Ry, Ry, Fy),
where X, Y are lattices with a perfect pairing, Ry = X is a reduced root system, Ry < Y is
the coroot system and Fj is a basis of Ry, together with a length multiplicative function ¢ of
the affine Weyl group associated to Z. It is denoted by #(Z%, q) or simply . It admits a
natural prehilbertian structure (provided ¢ has values in R, which we assume throughout),
and it acts on its completion L,(#’) through bounded operators. With this structure # is a
Hilbert algebra in the sense of [9], a remark that gives rise to natural questions from an
harmonic analytic and operator algebraic point of view.

The main motivation for considering such matters is the role of affine Hecke algebras
in the harmonic analysis of reductive p-adic groups. The most general point of view in this
context is provided by the theory of types (see [6]). This theory seeks to describe a given
block in the Bernstein decomposition of the category of smooth representations of a
p-adic reductive group G via Morita equivalence as the representation category of the
Hecke algebra of an associated “type”. In many cases this is known, and in many impor-
tant cases it was shown that the emerging Hecke algebras associated to types are isomor-
phic to affine Hecke algebras in the above sense (see e.g. [15], [24], [20]). These Morita
equivalences respect the harmonic analysis: The spectral measure of the Hilbert algebra of
the affine Hecke algebra J# arising as the Hecke algebra of a type of G can be transferred
(up to a known positive factor) by the Morita equivalence to the Plancherel measure of G
restricted to the corresponding Bernstein block [7]. In this way the affine Hecke algebra
may be considered as a tool to disclose parts of the Plancherel measure of a reductive
p-adic group, a point of view that was advocated by several authors (e.g. [28], [29], [14]).

Thus we would like to compute the spectral measure of the Hilbert algebra attached
to # (called the “Plancherel measure of #” in the sequel) explicitly. This entails in partic-
ular a full description of the set of irreducible representations of # in the support of the
Plancherel measure. From Theorem 3.22 and Theorem 4.3 it follows that the support of
the Plancherel measure of s coincides with the set of irreducible tempered representations
of J, i.e. the irreducible representations of s which extend continuously to the Fréchet
algebra completion & = ¥ (Z, q) (the so-called Schwartz algebra, introduced in [26]) of
A . According to Corollary 3.8 this set of irreducible representations of # can alternatively
be described by Casselman’s criterion.

The Schwartz algebra % is instrumental to analyze the set of tempered representa-
tions of . First of all the study of .% gives a detailed understanding of the decomposition
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in irreducibles of tempered standard modules via the theory of analytic R-groups, similar to
the role played by the Harish-Chandra Schwartz algebra € (G) in the harmonic analysis of
a reductive p-adic group G. This type of application follows closely classical arguments due
to Harish-Chandra, Knapp-Stein and Silberger. The novelty consists in the fact that the
same machinery works equally well for arbitrary ¢ in our space of continuous parameters,
a fact that becomes important for the deformation arguments mentioned below. The sec-
ond application of ¥ is a comparison theorem of the second author with Solleveld (to
appear) stating that for tempered representations V', W there is a natural isomorphism
Ext,(V, W) ~ Ext’,(V, W). This applies directly to the study of the space of elliptic tem-
pered characters of J# (in the case of reductive p-adic groups see [32], [23]). Finally we
mention an important result of Solleveld [34] stating that the g-parameter family of algebra
structures on the Fréchet space % is continuous with respect to the Fréchet topology. This
allows, in combination with the above and with the results of this paper, to study the set of
irreducible tempered representations by deformation arguments. We claim that for non-
simply laced affine Hecke algebras these techniques are essentially sufficient to classify the
set of tempered representations and compute the Plancherel measure (to appear elsewhere).

The main theorem of this article is the characterization of the image of % by the
Fourier transform % . This result is reminiscent to Harish-Chandra’s results for p-adic
groups (see e.g. [36] (but we remark that the proofs of these results are necessarily very dif-
ferent from Harish-Chandra’s proofs). We refer the reader to the Appendix 10 for the con-
nection between our Schwartz algebra % and the Harish-Chandra Schwartz algebra %(G)
in the special case where G is a split semisimple p-adic group and # = #(G, B) is the
Iwahori-Matsumoto Hecke algebra.

The description of # (%) has some immediate consequences which are described in
Section 5. Let us briefly discuss these applications.

First of all, we obtain the analog of Harish-Chandra’s Completeness Theorem for
generalized principal series of real reductive groups. The representations involved in the
spectral decomposition of L,(#) are, as representations of #, subrepresentations of cer-
tain finite dimensional induced representations from parabolic subalgebras (which are sub-
algebras of # which themselves belong to the class of affine Hecke algebras). We call these
the standard tempered induced representations. There exist standard interwining operators
(see [26]) between the standard induced tempered representations. The Completeness The-
orem states that the commutant of the standard tempered induced representations is gener-
ated by the self-intertwining operators given by standard intertwining operators.

Next we determine the image of the center of . and, as a consequence, we obtain the
analog of Langlands’ Disjointness Theorem for real reductive groups: two standard tem-
pered induced representations are either disjoint, i.e., without simple subquotient in com-
mon, or equivalent.

Then we discuss the characterization of the Fourier transform, and of the set of min-
imal central idempotents of the reduced C*-algebra 4 (#") of A .

Finally we observe that the dense subalgebra . = %" is closed for holomorphic cal-
culus. In the case of Hecke algebras .%(G, K) associated with a compact open subgroup K
of a reductive p-adic group G this was shown by Vignéras [35].
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Let us finally comment on the proof of the Main Theorem. As it is familiar since
Harish-Chandra’s work on real reductive groups [11], [12], [36], the determination of the
image of ¥ by Z requires a theory of the constant term for coefficients of tempered
representations of . This theory is fairly simple using the decomposition of these linear
forms on # along weights of the action of the abelian subalgebra .o/ of s#. This sub-
algebra admits as a basis, the family 6,, x € X, which arises in the Bernstein presentation
of #.

There is a natural candidate & for the image of & by #. The inclusion % (¥) < S is
easy to prove, using estimates of the coefficients of standard induced tempered representa-
tions.

The only thing that remains to be proved at this point, is that the inverse of the Four-
fer transform, the wave packet operator ¢, maps & to . For this a particular role is
played by normalized smooth family of coefficients of standard tempered induced represen-
tations: these are smooth families divided by the c-function. Of particular important is the
fact that the constant terms of these families are finite sums of normalized smooth families
of coefficients for Hecke subalgebras of smaller semisimple rank. This is a nontrivial fact
which requires the explicit computation of the constant term of coefficients for generic stan-
dard tempered induced representations. If .# is the maximal ideal of the center 2 of #
which annihilates such a representation, its coefficients can be viewed as linear forms on
Lusztig’s formal completion of s associated to .#. This allows to use Lusztig’s First Re-
duction Theorem [19] which decomposes this algebra. Some results on Weyl groups are
then needed to achieve this computation of the constant term.

Once this property of normalized smooth family is obtained, it is easy to form wave
packets in the Schwartz space, by analogy with Harish-Chandra’s work for real reductive
groups [11]. Simple lemmas on spectral projections of matrices and an induction argument,
allowed by the theory of the constant term, lead to the desired result.

The paper is roughly structured as follows. First we discuss in Sections 2 to 4 the
necessary preliminary material on the affine Hecke algebra and the Fourier transform on
L>(#). We formulate the Main Theorem in Section 5, and we discuss some of its conse-
quences. In Section 6 we compute the constant terms of coefficients of the standard induced
representations and of normalized smooth families of such coefficients. Finally, in Section 7
we use this and the material in the Appendix on spectral projections in order to prove the
Main Theorem. In two separate appendices we have collected useful fundamental proper-
ties of spectral projections and of the Macdonald c-function on which many of our results
ultimately rely.

Acknowledgements. It is a pleasure to thank Maarten Solleveld for some useful
comments. We also thank the referee for interesting suggestions (see Section 11).
2. The affine Hecke algebra and the Schwartz algebra
This section serves as a reminder for the definition of the affine Hecke algebra and

related analytic structures. We refer the reader to [26], [19] and [25] for further background
material.
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2.1. The root datum and the affine Weyl group. A reduced root datum is a 5-tuple
A= (X,Y,Ro, Ry, Fy), where X, Y are lattices with perfect pairing (-, >, Rp = X is a re-
duced root system, Ry = Y is the coroot system (which is in bijection with R, via the map
a— aV), and Fy = Ry is a basis of simple roots of R,. The set F; determines a subset
Ry, + = Ry of positive roots.

The Weyl group Wy, = W(Ry) = GL(X) of Ry is the group generated by the reflec-
tions s, in the roots o € Ry. The set Sy := {s, |« € Fy} is called the set of simple reflections
of Wy. Then (W), Sy) is a finite Coxeter group.

We define the affine Weyl group W = W (%) associated to # as the semidirect pro-
duct W = W, <X X, which acts as a group of affine transformations on @ ®, X. The lat-
tice X contains the root lattice Q, and the normal subgroup W2 .= Wy x Q< W is a
Coxeter group whose Dynkin diagram is given by the affine extension of (each component
of) the Dynkin diagram of Ry. The affine root system of W3 is given by
R = Ry x Z = Y x Z, whose elements will be denoted (&,n), or & + n, viewing them as
affine functional on @ ®, X. Note that W acts on R*T,

Let Rff be the set of positive affine roots defined by
R = {(a¥,n)|n >0, orn=0and « e Ry}

Let F2 denote the corresponding set of affine simple roots. Observe that F cF aff 1f gaff
denotes the associated set of affine simple reflections, then (W27, $3) is an affine Coxeter

group.

In this paper we adhere to the convention N = {1,2,3,...} and Z, ={0,1,2,...}.
We define the length function /: W — Z, on W as usual, by means of the formula
I(w) == |R¥M A w1 (RAT)|. Let Q = W denote the set {w e W |I(w) = 0}. It is a subgroup
of W, complementary to W27, Therefore Q ~ X/Q is a finitely generated abelian sub-
group of W.

Let X < X denote the cone of dominant elements
Xt ={xeX|VaeRyy:<{x,a") =0}
We put X~ :=—-X" <X for the cone of anti-dominant elements in X. Then
Zy :=X"nX < X is a sublattice which is central in W. In particular it follows that
Zy < Q. The quotient Qr ~ Q/Zy is a finite abelian group which acts faithfully on S aff

by means of diagram automorphisms.

We choose a basis z; of Zy, and define a norm || - || on the rational vector space
Q®z Zy by || > lizi]| :=>_ |li|- We now define a norm ./" on W by

(2.1) N (w) = 1(w) + [w(0)°],
where w(0) is the image by the affine transformation w of 0 € @ ®; X, and where w(0)°

denotes the projection of w(0) onto Q ®; Zy along Q ®; Q. The norm ./ plays an impor-
tant role in this paper. Observe that it satisfies



64 Delorme and Opdam, The Schwartz algebra of an affine Hecke algebra
(2.2) N (ww") < N (w) + A (W),

and that 4"(w) = 0 if and only if w is an element of Q of finite order.
We call # semisimple if Zy = 0.

2.2. Standard parabolic subsystems. A root subsystem R’ = Ry is called parabolic if
R' = QR’ n Ry. The Weyl group W} acts on the collection of parabolic root subsystems.
Let £ be the power set of Fy. With P € 2 we associate a standard parabolic root subsystem
Rp = Ry by Rp := ZP n Ry. Every parabolic root subsystem is #-conjugate to a standard
parabolic subsystem.

We denote by Wp = W(Rp) = W) the Coxeter subgroup of W) generated by the re-
flections in P. We denote by W7’ the set of shortest length representatives of the left cosets
Wo/Wp of Wp (e Wo.

Given P € 2 we define a sub root datum #* < % simply by #” := (X, Y, Rp, R}, P).
We also define a “quotient root datum” %p of R»° by Zp = (Xp, Yp, Rp, R}, P) wWhere
Xp=X/(Xn (RIV,)L) and Yp = Y n QRy. The root datum Zp is semisimple.

2.3. Label functions and root labels. A positive real label function is a length
multiplicative function ¢: W — R,. This means that g(ww’) = g(w)g(w’) whenever
[(ww") =I(w) + [(w), and that ¢(w) = 1 for all w € Q.

Such a function ¢ is uniquely determined by its restriction to the set of affine simple
reflections ST, By the braid relations and the action of Q; on ST it follows easily that
q(s) = q(s") whenever s, s’ € S*T are W-conjugate. Hence there exists a unique W-invariant
function @ — ¢, on R*" such that ¢,.; = q(s,) for all simple affine roots a € F il

We associate a possibly non-reduced root system R, with # by

(2.3) Ry = Ryu{20|a" e Ry n2Y}.
If «e Ry then 20 € Ry, if and only if the affine roots a = o¥ and a = «¥ + 1 are not
W -conjugate. Therefore we can also characterize the label function ¢ on W by means of

the following extension of the set of root labels ¢,  to arbitrary o € Ry If « € Ry with
20 € Ry, then we define

Gov+1
(2.4) Quojp 1=
o

With these conventions we have for all w € W

(2.5) q(w) = I g

o€ Ry« W Ry

We denote by R; < X the reduced root system

(2.6) Ry :={o € Ry |20 ¢ Ry}
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2.3.1. Restriction to parabolic subsystems. Let P e 2. Both the non-reduced root
system associated with 2% and the non-reduced root system associated with %p are equal
to Rp n := QRp N Ry. We define a collection of root labels gp o = qfv for o € Rp o by re-
stricting the labels of Ry, to Rp nr = Ryr. Then gp denotes the length-multiplicative function
on W(%p) associated with this label function on Rp ,, and g? denotes the associated
length multiplicative function on W (7).

2.4. The Iwahori-Hecke algebra. Given a root datum £ and a (positive real) label
function ¢ on the associated affine Weyl group W, there exists a unique associative complex
Hecke algebra # = #(%,q) with C-basis N,, indexed by w € W, satisfying the relations:

(i) Nyw = NN,y for all w,w’ € W such that I(ww') = I(w) + [(w').
(i) (Ns+ q(s)_l/z) (N, — q(s)l/z) =0 for all s € S?T,

Notice that the algebra 5# is unital, with unit 1 = N,. Notice also that it follows from the
defining relations that N,, € # is invertible, for all w e W.

By convention we assume that the label function ¢ is of the form

(2.7) q(s) = q”.
The parameters f; € R are fixed, and the base q satisfies q > 1.

2.4.1. Isomorphisms between Hecke algebras. Suppose that ¢: W — W' is a
length preserving isomorphism between two affine Weyl groups W = Wy X X and
W' = Wjx X' Then ¢(Q) = Q' and ¢(S*T) = S’3T. We define an affine Dynkin diagram
isomorphism (also denoted by ¢) from F*T to F™*T by requiring that ¢(s,) = S4(q) for all
a e F*T_ Suppose that we are given label functions ¢ for W and ¢’ for W'. Clearly,
if ¢'(¢(s)) =q(s) for all seS, then ¢ induces an isomorphism of Hecke algebras
U A (R, q) — H (R, q') by Y(N) = Ny,

Observe that X < W is precisely the set of elements in W which have finitely many
conjugates. Therefore ¢(X) = X', and u := ¢|, : X — X' is an isomorphism of lattices. Let
a = a" + n be an affine root, and let x € X be arbitrary. Using the relation saxs;1 = syv(X)
it is easy to see that there exists an integer n’ such that ¢(s,) = $,()47» Where u* denotes
the inverse transpose of u. Hence there exists a weight 4 of Ry such that the action of ¢ on
affine roots is given by ¢(a)(x) = a(u~"(x) + A). The weight 7 is uniquely determined by u.
Since ¢ and  are thus completely determined by u, we will write ¢, and y,,.

In the special case where u(Fy) = F; we have 2 = 0. In this case u determines an iso-
morphism between the root data # = (X, Y, R, Ry, Fy) and %' = (X', Y’,R(),RSV,FO/)
(with the action on Y and on Ry being given by u") which is compatible with the label
functions. The restriction of ¢ to F*T is now an isomorphism of affine Dynkin diagrams
which is obtained by the unique affine extension of the isomorphism «" of finite type Dyn-
kin diagrams. Conversely, every isomorphism u between two root data determines a length
preserving isomorphism ¢, between the associated affine Weyl groups.

2.4.2. Bernstein presentation. There is another, extremely important presentation of
the algebra ., due to Joseph Bernstein (unpublished). Since the length function is additive
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on the dominant cone X, the map X 3 x — N, is a homomorphism of the commuta-
tive monoid X with values in #*, the group of invertible elements of .#°. Thus there ex-
ists a unique extension to a homomorphism X 3 x — 6, € #™ of the lattice X with values
in A,

The abelian subalgebra of # generated by 6., xe€ X, is denoted by .o7. Let
Ho = A (Woy,qo) be the finite type Hecke algebra associated with 1 and the restriction
qo of g to Wy. Then the Bernstein presentation asserts that both the collections 6, N,, and
N0, (we Wy, x € X) are bases of #, subject only to the cross relation (for all x € X and
s =5, With a € Fy):

(28) 0N, — Ny

6 x Hs X .
R R if 200 ¢ Ru,
a “12 —1)2 2 1) O — Oy)

12 1/2 .
((qw//zqa( - Clav/z qov ) + (%V — 4y )H—M) 1— 07201 if 20 € Rnr-
2.4.3. The center & of . An immediate consequence of the Bernstein presentation
of A is the description of the center of ¢

Theorem 2.1. The center % of A is equal to </ "°. In particular, # is finitely gener-
ated over its center.

As an immediate consequence we see that irreducible representations of # are finite
dimensional by an application of (Dixmier’s version of) Schur’s Lemma.

We denote by T the complex torus 7= Hom(X,C™) of complex characters of the
lattice X. The space Spec(Z’) of complex homomorphisms of Z is thus canonically isomor-
phic to the (geometric) quotient Wy\T.

Thus, to an irreducible representation (V',7) of # we attach an orbit Wyt € Wy\T,
called the central character of 7.

2.4.4. Parabolic subalgebras and their semisimple quotients. We consider another
important consequence of the Bernstein presentation of 5

Proposition 2.2. (i) The Hecke algebra #° .= #(RT,qF) is isomorphic to the subal-
gebra of A generated by .o/ and the finite type Hecke subalgebra # (Wp) := A (Wp,q|y,).

(i) We can view H#p:= H(Rp,qp) as a quotient of H'' via the surjective homo-
morphism ¢, : #F — Hp characterized by (1) ¢, is the identity on the finite type sub-
algebra A (Wp) and (2) ¢,(0y) := Oz, where X € Xp is the canonical image of x in
Xp=X/(X(Rp)").

Let 77 denote the character torus of the lattice X/(X nQRp). Then T? = T is a
subtorus which is fixed for all the elements w € Wp and which is inside the simultaneous
kernel of the o € Rp. The next result again follows simply from the Bernstein presenta-
tion:
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Proposition 2.3.  There exists a family of automorphisms \y, (t € T) of #, defined
by y,(0«N,,) = x(1)0N,.

We use the above family of automorphisms to twist the projection ¢, : # 7 — #p.
Given t € T”, we define the epimorphism ¢, : #* — #p by ¢, := ¢, o Y,

2.5. Intertwining elements. Let s =5, € Sy with « € F|. We define an “intertwining
element” 1, € A as follows:

1/2 1/2 1/2 1/2 1/2
= (1—0_ )N+ (3200 — a2l + (g5, — qzév)e_x/z)
= N(1 = 0,) + (@' 200" = 6220, + (65, — 302)0,2).

(If /2 ¢ X then we put ¢»,» = 1; see Remark 9.1.) We recall from [25], Theorem 2.8 that
these elements satisfy the braid relations, and they satisfy (for all x € X))

(2.9) 150, = Oy

Let 2 denote the quotient field of the centre Z of s, and let ,# denote the 2-algebra
2 H = 2 R4 A . Inside # we normalize the elements z; as follows.

We first introduce

(2.10) ny = @2 aa (0 + 42 20_0) (1 — 4 a5 00_0) € 1.
Then the normalized intertwiners 10 (s € Sy) are defined by (with s = s,, o € R)):

(2.11) 2 i=nl € 0.
It is known that the normalized elements :° satisfy (:°)* = 1. In particular, 10 € ,#*, the
group of invertible elements of ,5#. In fact we have:

Lemma 2.4 ([26], Lemma 4.1). The map Sy > s+ 10 € y 4 extends (uniquely) to a
homomorphism Wy 3w — 1% € , . Moreover, for all f € ./ we have that lg,flg,l = f"

2.6. Formal completion of #° and Lusztig’s Structure Theorem. Let 7€ 7', and let .4,
denote the maximal ideal of & associated with the orbit Wyt. We denote by Zy,, the
J-adic completion of Z. In [19] Lusztig considered the structure of the completion

(2.12) T, = Ty @y H

We will use Lusztig’s results on the structure of this formal completion (in a slightly
adapted version) for so called Rp-generic points t € 7.

2.6.1. Rp-generic points of T. Let Rp = Ry be a parabolic subset of roots, i.e.,
Rp = RRp n Ry. Let us recall the notion of an Rp-generic point ¢ € T (cf. [26], Definition
4.12). To t € T we associate Rp() = Ry, the smallest parabolic subset containing all roots
a € Ry for which one of the following statements holds (where ¢, denotes the Macdonald
c-function, cf. equation (9.2)):
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(i) ¢y ¢ O (the invertible holomorphic germs at ¢).

(i) aft) = 1.
(i) o(r) = —1 and o ¢ 2X.

We say that 71,7 € T are equivalent if there exists a w e Wp(,) :== W(Rp(,)) such that
t» = w(t1). Notice that in this case Rp(,) = Rp(,), so that this is indeed an equivalence re-
lation. The equivalence class of 7 € T is equal to the orbit @ = Wp(,t = Wot.

We define P(7) as the basis of simple roots of Rp(, inside Ry, |, and we sometimes use
the notation P(w) instead of P(?).

Definition 2.5. We call e T an Rp-generic point if wt € w (with w € W) implies
that w e Wp.

Remark 2.6. Notice that if 7€ T is Rp-generic then Rp; = Rp, but not con-
versely.

2.6.2. Lusztig’s First Reduction Theorem. Let P < Fjy, and let ¢ be Rp-generic such
that P(z) = P. This implies in particular that w = Wpt. Lusztig ([19], Subsection 8.7) asso-
ciates idempotents e, € #, with the equivalence classes ww e Wyt (in the notation of
Lusztig these elements are denoted by 1,,). By Lusztig’s First Reduction Theorem (cf.
[19]) we know that if u,v e WT, then 1e,,1°, is a well defined element of /#;, and that we

e

have the decomposition (compare with [26], equation (4.46))

(2.13) H= @ Qe )L,
u,ve WP
where 7, denotes the completion of #” at @ = Wpt. Moreover, the subspace 10e.#,/17,
is equal to e, #e,,. When u = v then this is a subalgebra of J#;, and when u = v = e then
this subalgebra reduces to ew%”,P , which is isomorphic to %,P via X — enx(= xey).

Finally, assume that u = ve W7 is such that u(P) = Q = Fy. Then u naturally ex-
tends to an isomorphism u : #° — %9 of root data which is compatible with the label
functions ¢” and ¢? (since u € W). By 2.4.1 there exists an isomorphism of affine Hecke
algebras vy, : #F — #°. This isomorphism gives rise, by continuity, to an isomorphism
(also denoted by y,) ¥, : #F — %’u%). Lusztig’s Theorem also asserts that for all x € #F,
we have the formula

(2.14) 12(emx)1) | = ey, (X).

We will use these results of Lusztig in the situation that ¢ € T is of the form ¢ = rpt? with
Wprp < Tp the central character of a discrete series representation (Vs,0) (see Definition
2.7), and ¢t € T? (this is the case if Wyt = T is the central character of a representation
which is induced from (Vj;,d)). In this situation rp € Tp is a so-called (Rp,gp)-residual
point (see Definition 9.3, Theorem 2.10). Therefore, Rp) > Rp ([26], Proposition 7.3),
and Rp() = Rp for an open dense subset of T (the complement of a subvariety of codi-
mension 1 in 77). Thus if ¢ = rpt” is Rp-generic in this situation, then indeed P(7) = P, as
required.
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2.6.3. Application. We will use the above result (2.13) when analyzing a finite func-
tional f € A (cf. section 3.2) or a representation n of # which contains a power .7 of .4, in
its kernel.

We can then view f (or x) as a linear function on the quotient /4" # . Since this
quotient is finite dimensional (by Theorem 2.1), we have

(2.15) H|I'H = H,) I T,

In this way we can view f (resp., ) as a functional (resp., representation) of the completion
. For example, this applies when Wt is the central character of an irreducible represen-
tation 7. We can view 7 as a representation of the quotient #' := #°/ 4,4 (the case n = 1
of (2.15)), and the matrix coefficients of 7 can be viewed as functionals on #".

2.7. Hilbert algebra structure on #. The anti-linear map 4 +— h* defined by
<ZCWNW> =Y ¢,1N, is an anti-involution of . Thus it gives # the structure of an

w
involutive algebra.

In the context of involutive algebras we can also arrange Schur’s Lemma for topolog-
ically irreducible representations (cf. [9]). Thus the topologically irreducible representations
of the involutive algebra (#, x) are finite dimensional by Theorem 2.1.

The linear functional 7 : # — C given by r(chNw> = ¢, 1s a positive trace for

the involutive algebra (#,x). The basis N,, of # is orthonormal with respect to the pre-
Hilbert structure (x, y) := t(x*y) on #. We denote the Hilbert completion of # with re-
spect to (-,-) by L,(#°). This is a separable Hilbert space with Hilbert basis N,, (w e W).

Let xe#. The operators A(x): # — # (given by A(x)(y):=xy) and
p(x) : A — A (given by p(x)(y) := yx) extend to B(L,(#')), the algebra of bounded op-
erators on Ly (). This gives # the structure of a Hilbert algebra (cf. [9]).

The operator norm completion of A(#) = B(L»(#)) is a C*-algebra which we call
the reduced C*-algebra C;(#’) of # (cf. [26], Definition 2.4). The natural action of C(#)
on Ly(#) via A (resp., p) is called the left regular (resp., right regular) representation of
Cr (). Since it has only finite dimensional irreducible representations by the above re-

mark, C() is of type L.

The norm ||x||, of x € C; () is by definition equal to the norm of A(x) € B(L2(#)).
Observe that the map x — A(x)N, defines an embedding

(2.16) CH(H) < Lo(H).

r

2.8. Discrete series representations.

Definition 2.7. We call an irreducible representation (V5,0) of (#, ) a discrete se-
ries representation if (V,6) is equivalent to a subrepresentation of (L,(#°), A). We denote
by A = Az , a complete set of representatives of the equivalence classes of the irreducible



70 Delorme and Opdam, The Schwartz algebra of an affine Hecke algebra

discrete series representations of (#,x). When r € T is given, Ay,, < A denotes the subset
of A consisting of irreducible discrete series representations with central character Wyr
(refT).

Corollary 2.8 (of Theorem 2.1). Ay, is a finite set.

There is an important characterization of the discrete series representations due to
Casselman. This characterization has consequences for the growth behaviour of matrix
coefficients of discrete series representations. Recall that 7" denotes the complex algebraic
torus of characters of the lattice X. It has polar decomposition 7' = T,;T, where T, is the
real split form of 7', and 7, the compact form. If z € T we denote by |7| € T, its real split
part.

Theorem 2.9 (Casselman’s criterion for discrete series representations, cf. [26], Lemma
2.22). Let (V5,0) be an irreducible representation of #. The following are equivalent:

(i) (Vs,0) is a discrete series representation.
(i) All matrix coefficients of 6 belong to L ().
(iii) The character y of 0 belongs to Ly(A).

(iv) The weights t € T of the generalized </-weight spaces of Vs satisfy: |x(t)| < 1, for
all0 + xe X,

(v) Zxy = {0}, and there exists an € > 0 such that for all matrix coefficients m of o,
there exists a C > 0 such that the inequality |m(N,,)| < Cq~™) holds.

We have the following characterization of the set of central characters of irreducible
discrete series representations. For the notion of “residual points” of T" we refer the reader
to Definition 9.3.

Theorem 2.10 (cf. [26], Lemma 3.31 and Corollary 7.12).  The set Ay, is nonempty if
and only if r € T is a residual point. In particular, A is finite, and empty unless Zy = 0.

2.9. The Schwartz algebra; tempered representations. We define norms p,
(neZy ={0,1,2,...}) on & by

(2.17) palh) = sup [N, )| (1 4+ 4°()".

weW

and we define the Schwartz completion .% of # by
(2.18) S = {x:waNweéf* pn(x) < ooVneZ+}.
w

In [26], Theorem 6.5, it was shown that the multiplication operation of # is continuous
with respect to the family p, of norms. The completion .% is a (nuclear, unital) Fréchet al-
gebra (cf. [26], Definition 6.6).
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As an application of [26], Theorem 6.1, it is easy to see that there exist constants
D e 7, and C > 0 such that ||k||, < Cpp(h) for all h € #. Thus we have a continuous em-
bedding

(2.19) S CHH).

The subalgebra % is clearly dense and symmetric (i.e., ¥* = .%). The Main Theorem 5.3
can be viewed as a structure theorem for this Fréchet algebra via the Fourier transform.

Definition 2.11. The topological dual .%" is called the space of tempered functionals.
A finite dimensional, continuous representation of % is called a tempered representation.
By abuse of terminology, we call a finite dimensional representation of J# tempered if it
extends continuously to &.

In particular, a finite dimensional representation (1, ) of # is tempered if and only
if the matrix coefficient /i — ¢(n(h)v) extends continuously to & forall g € V* andve V.

Remark 2.12. By the proof of Corollary 5.9 the group of units %> is open in the
Fréchet algebra .#. Therefore automatic continuity applies so that actually any finite di-
mensional representation of & is continuous (compare the reasoning in the Appendix by
Schneider and Stuhler of [31], p. 205).

Observe that the involution x of # extends continuously to . As a consequence we
have:

Proposition 2.13. Let (V,7) — (V°,7°) denote the duality functor defined on the cat-
egory of finite dimensional modules of A as follows: V° denotes the conjugate linear dual of
V, equipped with the A -action defined by n°(h)($)(v) := ¢(rn(h*)v). This functor is contra-
variant exact, and V°° ~ V. The duality restricts to a duality on the category of tempered
modules.

3. Tempered representations

In this section we collect general facts about tempered representations and their ma-
trix coefficients, the tempered finite functionals. We first discuss Casselman’s criterion for
temperedness, and then parabolic induction for tempered representations.

3.1. Finite functionals.

3.1.1. Algebraic dual of #. We identify the algebraic dual #* of # with

formal linear combinations f = >  d,N, via the sesquilinear pairing (-,-) defined by
weW

(x,y) =1(x*y). Thus f(x) = (f*,x) and d, = f(N,-1). For x,y e # and f € #* we de-

fine R,(f)(y) := f(yx) and L(f)(») := f(xy) (a right representation of #’). Note that in

terms of multiplication of formal series we have: R.(f) = x.f and L.(f) = f.x.

3.1.2. Finite functionals. Let A(#) or simply A denote the subspace of #* consist-
ing of finite linear functionals on
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Definition 3.1. The space A consists of all the elements f € 2" such that the space
Vi = A .f. A is finite dimensional.

Remark 3.2. f e A is a coefficient of (7, R). Hence A is the space of (or equiva-
lently set of) coefficients of finite dimensional representations of .

Since # is finitely generated over its center &%, f is finite if and only if
dim(f.Z) < co. Recall that .7 denotes the abelian subalgebra of # spanned by the ele-
ments 6, with x € X. Since 2 < .o/ we see that f € A if and only if dim(.«Z.f) < co if and
only if dim(f..«7) < co.

3.2. Exponents of finite functionals.

Definition 3.3. We say that # € T is an exponent of f € A if the X-module on the
finite dimensional space V' = f.J# (the space of left translates of f) defined via x — Ly |,
contains a (generalized) weight space with weight 7.

Proposition 3.4. Let f € A and let € denote the set of exponents of f. There exist
unique functions Ef (tee€)on H x X, polynomial in X, such that

(3.1 S(0sh) = 32 E/ (h,x)1(x).
€€
Proof. Uniqueness: Suppose that we have a finite set ¢ of exponents and for each
t € € a polynomial function x — E;(x) of X such that

ST E(x)t(x) = 0.

lee
Suppose that there exists a ¢ € e such that x — FE,(x) has positive degree. We apply the dif-
ference operator A, , (7 € €, y € X) defined by

Ay (1)) = 1) f(x + y) = ().

It is easy to see that for a suitable choice of y this operator lowers the degree of the coeffi-
cient of 7 by 1, and leaves the degrees of the other coefficients invariant. Hence, if we as-
sume that not all of the coefficients E; are zero, we obtain a nontrivial complex linear rela-
tion of characters of X, after applying a suitable sequence of operators A, .. This is a
contradiction.

Existence: We fix he # and we decompose f according to generalized Ly-
eigenspaces in V. We may replace f by one of its constituents, and thus assume that
e = {r}. We may replace the action of X by the action L’ = t(x)"'L,. Therefore it is
enough to consider the case t = 1. Let N denote the dimension of V. By Engel’s theorem
applied to the commuting unipotent elements L,_acting in V/, we see that any product of N
or more difference operators of the form A, = Ly, — 1 is equal to zero in V. By induction
on N this implies that for any 4, the function x — f(6,/) is a polynomial in x of degree at
most N —1. [

Corollary 3.5. We have E-f(@xh, y) = Z(x)E',f(h,x + y). In particular, the degree of
the polynomial Ef (h, x) is uniformly bounded as a function of h.
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Corollary 3.6. Put fi(h) = Ef (h,0). Then f; is the component of f corresponding to
the generalized Ly-eigenspace with eigenvalue t in V. Observe that f;(0xh) = t(x)E] (h, x),
and that fye f-of = Lx(f) < V < A.

3.3. The space A*™ of tempered finite functionals. If / € A, we can express the con-
dition f € &’ (temperedness) or f € L,(#) (square integrability) in terms of a system of
inequalities on the set of exponents € of f. This is the content of the Casselman conditions
for temperedness ([26], Lemma 2.20). We will formulate these results below, adapted to suit
the applications we have in mind (Section 3.7).

Given P € 2 we define a partial ordering <p on exponents as follows:

Definition 3.7. Let Pe 2, and let Rp be the standard parabolic subsystem with
that subset. For real characters 7, ©» on X we say that ¢, <pt, if and only if

H(x) £ n(x) for all xe X+ :={xe X |Vae P:{x,a") = 0}. In other words, 1 <p, 1

means that 7(x) < 6(x) for all xe X*, and in general t; <pt, if and only if both
t =g tand |y pe = blyqp-

Thus 1; <pt ifand only if 11,1 = ] (d, ® o¥) with 0 < d, < 1, where d @ a¥ € T),
ae P

is the real character defined by d ® o¥(x) = d<**"”,

Let (V,n) be a finite dimensional representation of J#. It follows easily from Defini-
tion 3.3 that the union of the sets of exponents of the matrix coefficients /1 — ¢(n(h)v) of n
coincides with the set of weights ¢ of the generalized .«/-weight spaces of V. Using [26],
Lemma 2.20, we get:

Corollary 3.8 ([26], Lemma 2.20, Casselman’s criterion for temperedness). Let
(V,7) be a finite dimensional representation of #. The following statements are equivalent:

(i) (V, =) is tempered.

(ii) The weights t of the generalized </-weight spaces of V satisfy |t| <p, 1.

(i) The exponents t of the matrix coefficients h — ¢(7z(h)v) of m satisfy |t| <p, 1.

Let f € A. The space of matrix coefficients of the finite dimensional representation

(Vf =Ry (f), R) is the space - f - #. Hence the union of the sets of exponents of the
matrix coefficients of V' is equal to the set of exponents of f. Hence we obtain:

Corollary 3.9 (Casselman’s temperedness condition for functionals). We have
[ e A .= A~ if and only if the real part 1| of every exponent t of f satisfies |t| <p, 1.

Definition 3.10. We put A ,0q4c for the subspace of A™™P consisting of those f such
that all exponents ¢ of f satisty |f| = [] (d, ® «¥) with 0 < d, < 1.

aeFy

In other words, f € Ay modc if and only if /€ AP and for any of the exponents 7 of
f the following statement holds: If P € 2 is such that |¢| <p 1 then P = Fj.
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Then Theorem 2.9 implies that:

Corollary 3.11. (i) Ay:=ANnLy(A#)+0 only if Zx =0, and in this case,
A2 = A2,modc-

(i) Let weT™. Suppose that [ e A(K) factors through the morphism
¢, A — Hrg, defined after Proposition 2.3 in an element f, € A(HF). Then
S € Agmodc () if and only if f,, € Ay(HF,) and w € TF.

3.4. Induction from standard parabolic subquotient algebras. In this subsection we
discuss the technique of parabolic induction of tempered representations.

Let P < Fy and let Wp = W, be the standard parabolic subgroup of W, gener-
ated by the simple reflections s, with ae P. Let #F < # be the subalgebra
HP = H(Wp)-of  #, and let #p denote the quotient of # 7 by the (two sided) ideal
generated by the central elements 6, — 1 where x € X is such that {x,«")» = 0 for all « € P.
Then #p is again an affine Hecke algebra, with root datum %p = (Rp, Xp, R}, Yp, P),
where Xp = X/PV'+ and Yp = Y nRPY, and root labels gp that are obtained by restric-
tion from Ry, to Rp py.

There exists a parameter family of homomorphisms ¢, : #* — #p with
t? € TP = T, the subtorus with character lattice X? = X/(X nRP), defined by
$,»(0<T,) = x(¢£)0;T,, where X € Xp denotes the canonical image of x in Xp. The kernel
of ¢, is the two-sided ideal generated by elements of the form x(” )_lﬁx —1, with xe X
such that <{x,«¥> = 0 for all « € P.

Let (V5,0) be a discrete series representation of the subquotient Hecke algebra #p.
Let Wprp be the central character of d. It is known that rp is a residual point of 7p (cf.
[26], Lemma 3.31), the subtorus of 7" with character lattice Xp.

Theorem 3.12 ([26], Proposition 4.19 and Proposition 4.20). Let t" € T, and let §,»
denote the lift to # of 5 via ¢,». Then the induced representation © = n(Rp, Wprp,d,tF)
from the representation 6,» of #'T to A is a unitary, tempered representation.

Remark 3.13. If (V,6) is a finite dimensional representation of #7 let us denote by
(ip(V),ip(0)) the induced representation of (¥,d) to #. Then one sees, as in the references
for the previous theorem, that, if J is tempered, then ip(J) is tempered.

3.4.1. Compact realization of n(Rp, Wprp,6,t"). Put #(W?T) < # for the finite
dimensional linear subspace of # spanned by the elements N,, with w e W . Then

(3.2) H = H WY T,

where the isomorphism is realized by the product map. Therefore we have the isomorphism
(3.3) HRyr Vs ~i(Vs) = A (W) V.

We will use this isomorphism to identify the representation space of 7(P, Wprp,d,t¥) with

i(Vs). This realization of the induced representation is called the compact realization, by
analogy with induced representations for reductive groups.
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According to [26], Proposition 4.19, the representation 7(P, Wprp,d,t¥) is unitary
(i.e., a x-representation) with respect to the Hermitian inner product

(3.4) <h1 ® Ul,hz ® U2> = T(hfhz)(vl, 1)2),

where (v, v;) denotes the inner product on the representation space ¥ of the discrete series
representation (V5,0).

More generally, for ¢ € T* the Hermitian form -, -) on i(¥;) defines a nondegener-
ate sesquilinear pairing of J#-modules as follows:

(3.5) n(P, Wprp,0,tP~Y) x a(P, Wprp,d,t7) — C.

3.5. Groupoid of tempered standard induction data. Let & denote the power set of
Fy. Let E (respectively Z,) denote the set of all triples ¢ = (P,d, t¥) with P € 2, 6 an irre-
ducible discrete series representation of #p (with underlying vector space V), and t¥ e T?
(respectively ¥ € T'7). We denote the central character of 6 by Wprp.

Let %" denote the finite groupoid whose set of objects is & and such that the
set of arrows from P to Q (P,Q e 2) consists of Ko x W(P,Q), where Ky =Ton T2
and W(P,Q)={we Wy|w(P) = Q}. The composition of arrows is defined by
(ki, wi)(ka, wa) = (kywi(k2), wiw). This groupoid acts on Z as follows. An element
g=kxneKgx W(P,Q) of #z defines an algebra isomorphism v, : #p — #y as fol-
lows. An element n € W (P, Q) defines an isomorphism from the root datum (%p, qp) to
(Z0,q0) compatible with gp and go, which determines a Hecke algebra isomorphism y,,
as in 2.4.1. On the other hand, if k € Ky then y, : #p — H#p is the automorphism de-
fined by ¥, (0xN,,) = k(x)0;N,,. Then l,bg is defined by the composition of these isomor-
phisms. We obtain a bijection ¥, : Ay,,, — A,erQn(,,P) (where Aw,,, = Ap w,, denotes
a complete set of representatives for the equivalence classes of irreducible discrete series
representations of #p with central character Wprp) characterized by the requirement
W,(0) ~Jo,'. The action of ¥ on E is defined by: g(P,d,1") = (Q,¥,(5),9(:")),
with g(¢7) = kn(¢?).

Definition 3.14. The fibred product #'z = # x5 E is called the groupoid of stan-
dard induction data. The full compact subgroupoid #'=z, = #" x» Z, is called the groupoid
of tempered standard induction data.

Definition 3.15. An element & = (P,d,t7) € E is called generic if ¢ = rpt? is Rp-
generic (cf. Definition 2.5), where rp € Tp is such that Wprp is the central character of o.
Notice that the set of non-generic ¢ € Ep 5 is a proper Zariski-closed subset of Zp ;.

The groupoid #=, was introduced in [26] (but was denoted by # = there) and plays
an important role in the theory of the Fourier transform for #. It is easy to see that #'z is
a smooth analytic, étale groupoid, whose set of objects is equal to E. Thus # = is a union of
complex algebraic tori, and therefore we can speak of polynomial and rational functions on
E and on #=. This also applies to the full compact subgroupoid # =

=u*

[26], Theorem 4.38 states that there exists an induction functor

T WEM - PRepunit,temp(%%
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where the target groupoid is the category of finite dimensional, unitary, tempered represen-
tations of # in which the morphisms are given by unitary intertwining isomorphisms
modulo the action of scalars. The image of ¢ = (P,6,t7) e E, is the representation
n(&) == n(P, Wprp,6,tF) of A, in its compact realization, as was defined in subsection
34.1.

The intertwining isomorphism (g, &) : i(Vs) — i(V,(s)) associated with
g=kxneKyx W(P,Q)

is the operator A(g, Zp, Wprp,d, t¥) which was defined in [26] (equation (4.82)). In order to
explain its construction we need to use Lusztig’s Theorem on the structure of the formal
completion of # at the central character of 7(&) (cf. Subsection 2.6). The central character
of n(¢&) (¢ = (P,6,t7)) is equal to Wyt with ¢ = rpt”, where Wprp denotes the central char-
acter of 6. Recall that we can then extend (&) to the formal completion #, of # with re-
spect to the maximal ideal .7, of & at Wyt (cf. 2.6.3).

First we consider the case where & is generic (Definition 3.15). For we W, w # e,
the idempotent e, (cf. equation (2.13)) vanishes on 1 ® Vs < i(V;), where the action is
through 7(&) (extended to the completion). Therefore we have the natural isomorphisms
of vector spaces:

(36) i(V(;) ~ Jf@MP Vs
jad % ®6I_}/ZP V(S

0
= @ luew® V57

ueWw?r

where e, #" ~ A acts on Vj via J,», extended to the formal completion at the central
character Wpz. We will often suppress the subscript e, #, of ® .

Let us now define the unitary standard intertwining operators 7(g,¢) in this case
where £ is generic. First we choose a unitary isomorphism 5g : Vs — Vy,(s) Intertwining the
representations ¢ o w;l and W, (0). These choices are not canonical, but give rise to a co-
cycle 7, with values in S' of the finite groupoid # = #" x» A (constructed in a similar
way as #z) such that

(3.7) ¥,(0), 00y = 175 (1t, 0)0.

The cohomology class [14] € H*(#7, S') is independent of the choices of the intertwiners
04. Then we define

(3.8) (g, &)+ i(Vs) = i(Vip, @),

0 -
h ®v— hlg—legw ®C’J 9P 55/(1))7
9= g(1)

where we use the isomorphism of equation (3.6) to view the right-hand side as an element
of i(Vy, (). It follows easily that n(g,¢) is an intertwining operator between n(¢) and
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n(g&). The composition of these normalized intertwining operators clearly satisfy (for com-
posable arrows u, v of the groupoid #=, with source of v being &):

(3.9) n(u,v(é))n(v, &) = n(ua, va)m(uv, &)

(Where up, va are the images of u, v in #’» under the natural homomorphism #=z — #A).
The appearance of # implies that = is only a projective representation of #z (see
below).

For general & we need the following regularity results from [26]. The matrix elements
of 7(g, &) are meromorphic in &, with possible poles at the nongeneric £. However, it was
shown in [26], Theorem 4.33, that for Rp-generic ¢ = rpt” with t© € T, n(g, &) is unitary
with respect to the Hilbert space structures of i(¥;) and i(Vy, () (which are independent of
t* € TF, cf. equation (3.4)). Together with a description of the locus of the possible singu-
larities of 7(g,¢&) (as a rational function on Zp s, the set of induction data of the form
(P,5,t?) with t¥ € T*), this implies (according to a simple argument, cf. [2], Lemma 8)
that 7(g, &) has only removable singularities in a tubular neighbourhood of Zp ;5 , (the sub-
set of triples in Zp 5 with ¥ € TF). Thus n(g, ) has a unique holomorphic extension to a
tubular neighbourhood of Zp ; ,. This finally clarifies the definition of 7(g, ¢) for general
& e Epys,u (and in fact in a “tubular neighbourhood” of this subset of Zp ;).

We conclude with the following summary of the above:

Theorem 3.16. The induction functor m: ¥z, — PRePyyi( temp(#) is rational and
smooth.

By this we simply mean that on each component Zp 5 , of Z,, the representations 7(¢)
can be realized by smooth rational matrices as a function of £ € Ep 5 ,, and also the ma-
trices of the 7(g, &) are both rational and smooth in & € Zp 5 ,. We note that the matrices
(& h) = n(&)(h) (for h e A fixed) are in fact even regular functions of £, and that the ma-
trices n(k, &) (for k € Kp) are constant.

3.6. The constant part of a tempered representation. Let (7, 7) denote a tempered
representation of #, and let P € 2. Given t € T we denote by ¢p the restriction of the char-
acter ¢ to the sublattice P+ n X. We define the constant part V'? of V along P by

(3.10) vi= @ V.
te Tt p=1
and its complement

(3.11) vt =@ v
teT:|t]p*1

where V; denotes the generalized t-eigenspace for the representation x — 7(x) of the lattice
X on V. Recall the partial ordering <p introduced in Definition 3.7. Then, because V' is
tempered, one has

(3.12) rt= @ .

teT:|t]<pl
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Since the sets 1€ T defined by |f|, =1 and |#|, + 1 are Wp-invariant it is clear that
VP <V and VP* < IV are subrepresentations of the restriction of (¥, ) to the subalgebra
AP (recall that C[X]"" is the center of #°7).

Definition 3.17. Let (V' ,n”) denote the representation of #* on V'’ described
above. We call this representation the constant part of V' along P. We denote by
pp.v : V — VT the projection of ¥ to V¥ along V7*. Observe that this is an #“-module
morphism.

The following proposition is elementary.

Proposition 3.18. (i) V is the direct sum of the #*-submodules V¥ and V '+ which
have no irreducible subquotient in common. In particular V" is the unique complementary
H*-submodule of V¥ in V.

(i) The #" representation V' is tempered. It is the unique maximal tempered H# -
subrepresentation of the restriction V| ,» to H Pofv.

(iit) V'? is a direct summand of V| ,».
(iv) The assignment V — V¥ is functorial, and is an exact functor.
(v) Transitivity: If P < Q, then VF = (V)"

Let w be a unitary character of the lattice Zy, and let (7', 7) be a finite dimensional
representation of # such that the central subalgebra .o/, = Clf; : x € Zx| ~ C[Zy] acts on
V via the character w. We call (V,n) an w-representation. Choose a character o’ e T/f0
such that @', = w. By definition (using the notations introduced in Subsection 3.4) the
representation 7 factors through the quotient map ¢,,. Hence there exists a representation
(V,p) of the semisimple quotient affine Hecke algebra /#, such that = = p,,.. It is easy to
check that the following definition is independent of the choice of the lift @’ of w:

Definition 3.19. In the above situation we say that (V/,n) is an w-representation
which is square integrable modulo Zy if all matrix coefficients of (¥, p) belong to L,(#,)
or equivalently, if all matrix coefficients of (7, 7) belong to Az modc.

Proposition 3.20. Let w be a unitary character of Zy and let (V,n) be an w-
representation. Then (V. 7) is square integrable modulo Zy iff (V,n) is tempered and
VP =0 for all proper subsets P = F,.

In this case (V,7) is a direct sum of representations of the form (U,0. ) where the
(U,0) are irreducible discrete series representations of Hr,.

Proof. By the text above Definition 3.19 this reduces to the situation where Zy = 0.
So we may and will assume that # = #, is semisimple from now on.

In view of Definition 3.10, the observation just above Corollary 3.8, and Corollary
3.11 we have V'? = 0 for all proper subsets P — F; if and only if all the matrix coefficients
of V belong to AP = A n Ly(#). In particular (V,7) is tempered, and all irreducible
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subquotients of V' are discrete series representations. This implies the first claim of the
proposition. The discrete series representations are projective as modules over .%° by [26],
Proposition 6.10. Using this fact an easy induction argument on the dimension of V' shows
that (7, ) is actually a direct sum of discrete series representations. []

Taking the constant part of " along P is a right adjoint of the induction functor from
tempered representations of #” to # (see [26], Proposition 4.20):

Proposition 3.21 (Frobenius reciprocity). Let (W,0) be a tempered representation of
HF, and let (V, 1) be a tempered representation of #. Then

(3.13) Hom (Ind»(W), V) ~ Hom ,»(W, V7).

Proof. By Proposition 3.18(i) we have Hom ,»(W, V) = Hom (W, V). Now
use Frobenius reciprocity for induction from #% to #. [

3.6.1. Irreducible tempered representations. In this paragraph we prove that the irre-
ducible tempered representations of # are exhausted by the irreducible summands of the
representations 7(¢) (€ € By).

Theorem 3.22. Let (V,n) be an irreducible tempered # representation. There exists a
tempered standard induction datum & such that (V,n) is a summand of n(&).

Proof. By Theorem 3.12, 7(&) is unitary (in particular, self-dual). Hence it suffices
to show that there exists a tempered standard induction datum & = (P,d,¢) such that
Hom (V,n(¢)) is nonzero. By Proposition 2.13 (duality) it is equivalent to show that
Hom  (n(&), W) is nonzero, where W = V°. By Proposition 3.21 (Frobenius reciprocity)
we need to find a standard parabolic subset P — Fjy, and an irreducible square inte-
grable modulo Zy(%p) = X n P+ representation of the form J, for #%  such that
Hom , »(J,, W) is nonzero. For this, take P minimal such that W’ is nonzero. By Propo-
sition 3.18 it follows that if Q is a proper subset of P and if U is any submodule of W7,
then U2 = 0. Take any irreducible submodule (U, ) of WF. Then there exists a unitary
character @ of X n P+ such that (U,o) is an o representation. Hence by Proposition
3.20, (U, o) is of the form (U,d,) where (U,J) is an irreducible discrete series representa-
tion for #p. Hence & = (P,0,1¢) is a tempered standard induction datum with the desired
properties. []

Corollary 3.23. An irreducible tempered representation is unitarizable. In particular,
it is self-dual in the sense of Proposition 2.13.

3.7. Definition of the constant terms of f € A*®™, In this subsection we define the
constant term of a tempered finite functional f € AP along a standard parabolic subalge-
bra # " of # . Recall the notion of exponents (3.2) and the Casselman criteria for tempered
finite functionals.

Definition 3.24 (Constant term). Let P e 2 and f € AP, Then we define the con-
stant term of f along P by

frhy = > fih),

teelt| <pl
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where (in the notation of Corollary 3.6) f,(h) := E/(h,0), and the coefficients E; and the
set € are defined by the expansion (3.1). We say that an exponent ¢ € € of f is P-tempered if
it satisfies the condition [7| <p 1.

Hence we have the following characterization of the subspace Aj modc (cf. Definition
3.10):

Corollary 3.25. Let f e AP, Then f € Ay mode if and only if f¥ =0 for every
proper P e 2.

Observe the following elementary properties of the constant term:
Corollary 3.26. (i) /7 e A'™P,

(i) L. commutes with f — [T if x e #".

(iii) R, commutes with f — [T for all y e A#.

(V) ST eLx(f)=f o =] .

(v) If V is a finite dimensional complex Hilbert space and T € End(V') then we denote
the adjoint of T by T*. Now assume that V is a tempered unitary module of . Given
a,beV we define the matrix coefficient f,, € A*™ by f,,(h) = {a,hb) (he H). For
he #* we have

(3'14) fan(h) = f(PP. V)*(“)PP.V(b) (h)

The projection of f to f¥ can be made explicit using an idempotent e’ in a formal
completion of .o/ < #. Such completions were introduced and studied by Lusztig [19] (cf.
Subsection 2.6). This will be applied to the case were f is a matrix coefficient of a paraboli-
cally induced representation in the Section 6.

4. Fourier transform

In this section we briefly review the Fourier transform on L,(#) as formulated in
[26]. The spectral data are organized in terms of the induction functor on the groupoid of
tempered standard induction data %z, .

4.1. Fourier transform on L(#°). Let V: denote the representation space of 7(&),
EeE. Thus V: = i(Vs) if £ = (P,6,t"), and this vector space does not depend on the pa-
rameter /© € T?. We denote by 7= the trivial fibre bundle over Z whose fibre at & is V7,
thus

(4.1) "VE = U Epﬁ X i(Vg)
(P,0)

where Ep 5 denotes the component of Z associated to P € 2, and (V;,0) € Ap. Recall that
Ap 1s a complete set of representatives of the irreducible discrete series representations
of #p. We denote by End(7z) the endomorphism bundle of 7=, and by Pol(E, End(7=))
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the space of polynomial sections in this bundle. Similarly, let us introduce the space
Ratreg(Eu, End(7: E)) of rational sections which are regular in a neighbourhood of Z,,.

There is an action of #~ on End(7=) as follows. If (P,g) € #p (the set of elements
of " with source Pe 2) with g=k xne Ko x W(P,0Q), (€Zp, and 4 € End(V;) we
define g(A4) :=n(g,)0oAon(g,&) " e End(V,). A section of f of End(7z) is called
¥ -equivariant if we have f(¢&) = g~! (f(g(f))) forall e ZE and g € #: (Where W := Wp
if & = (P,6,1%)).

Definition 4.1. We define an averaging projection p,  onto the space of # -
equivariant sections by:

(4.2) P (N =177 3 g7 (f(9(9)):

geW:

Notice that this projection preserves the space Rat™(E,,End(7z)), but not the space
Pol(E,End(7%)).

If he#: then Wiye="W:o h~'. Using this one checks simply that
pw(f)(h(&) = h(py(f)(&)) for all he W; or in other words, that py(f) is ¥~
equivariant. It is obvious that p,- restricts to the identity on the space of # -equivariant
sections. Hence py- is indeed a projection onto the space of # -equivariant sections.

The Fourier transform %, on # is the following algebra homomorphism

(4.3) Ty« H — Pol(E,, End(7%))”,
h— {&w— n(&h)}

where Pol(E,End(% 5))%' denotes the space of # -equivariant polynomial sections of
El’ld(“/g)

We will now describe a # -invariant measure up; on Z, whose push forward to #'\E,
will be the spectral measure of the positive trace t of # ([26], Theorem 4.43) (we will call
this measure the Plancherel measure of #). Put & = (P,0, tP ) €&, and let 1 = rptf. We
write d¢ := |Kp s| di” where di” denotes the normalized Haar measure of 7.7 and where
Kp 5 denotes the stabilizer of 0 under the natural action of Kp on Ap. Let 4" <1 ¥/ denote
the normal subgroupoid whose set of objects is 2, and with Hom (P, Q) = 0 unless
P = Q, in which case we have Hom (P, P) = Kp. Thus #p/ A4 p = {we Wy|w(P) < Fy}.
Let 4, pi({6}) denote the Plancherel mass of d with respect to #p (and its trace tp). It is
known that u,, p({5}) > 0 (see [26], Theorem 2.25) and an explicit product formula for
Uz, p1({0}) (up to a multiplicative constant independent of q) is known (see [26], Corollary
3.32). We now define the Plancherel measure up;:

Definition 4.2.

(4.4) dppy (&) = g™ W o) Hp|™ 1y, i ({SD)]e(€) 77 dE

where ¢(&) is the Macdonald c-function, see Definition 9.7.
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This measure is smooth on E, (Proposition 9.8(v)), and it is invariant for the action of
#" on E,, by Proposition 9.8(ii).

With these notations we have:

Theorem 4.3 ([26], Theorem 4.43). (i) F extends to an isometric isomorphism
4.5) T Ly(#) — Ly (E4, End(72), tpr)”
where the Hermitian inner product (- ,-) on L>(E,, End(7 =), ,uP,)W is defined by integrating

the Hilbert-Schmidt form (A, B) := tr(A*B) in the fibres End(V:) against the above measure
Up; on the base space E,,.

(ii) If x € C;(AH) = Lo(H) then F(x) is an element of the space C(Z,, End(”Vg))W
of continuous sections of the trivial bundle End(7=).

(ii) Let C*(A)° denote the opposite C*-algebra of C}(A). Let
(x,y) € CH(A) x CH(AH)°

act on L(A') via the regular representation A(x) X p(y), and on L(E,, End( —),/JP,)W

=

through fibrewise multiplication from the left with F (x) and from the right with F (y).

o

Then 7 intertwines these representations of C:(A) x C}(H)".
Proof.  As to (ii), first recall that according to equation (4.3),
- Ve
97/,/)(9{)) [ Pol(.:u,End(“//E)) .
By [26], Theorem 4.43(iii), one easily deduces that ||A||, = || Zx (h)||s, for all h € #, where
olsyp := sup [[a(S)l|, (Where |lo(&)][, denotes the operatornorm of o(¢) € End(V)). Hence

eE,

F(C}(#)) = C(E,, End(¥5))” .
Now (iii) follows from (ii) and [26], Theorem 4.43(iii). [

The following result is an immediate consequence of Theorem 4.3 and Theorem 3.22:

Corollary 4.4. The support of the Plancherel measure is the set of irreducible tem-
pered representations of J.

The following easy corollary is important in the sequel:

Corollary 4.5 ([26], Corollary 4.45). The averaging operator py- defines an orthogo-
nal projection onto the space of W -equivariant sections in L; (Eu, End(77%), ,uP,). Moreover,

if
(4.6) S+ Ly (8, End(V5), ) — Lo(H)

=

denotes the adjoint of F (the wave packet operator), then §F =id and F,§ = py-.
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Proof. Theorem 4.3 implies that #% :=id and that Z ¢ is equal to the orthogonal
projection onto the space of # -equivariant L,-sections of End(7z).

On the other hand, since the action of #" on End(7z) is defined in terms of in-
vertible smooth matrices (cf. Theorem 3.16), py- preserves the space of L,-sections. By the
W -invariance of up, the projection py- on L,(Z,, End(7=), up) is in fact an orthogonal

projection. This finishes the proof. []

5. Main Theorem and its applications

The space of smooth sections of the trivial bundle End(7z) on &, will be denoted by
Cc® (Eu, End(7 5)). We equip this vector space with its usual Fréchet topology. The collec-
tion of semi-norms inducing the topology is of the form p(o) := sup ||Da(&)||,, where D is

a constant coefficient differential operator on E, (i.e., one such opgeerzlutor for each connected
component of Z,), acting entrywise on the section ¢ of the trivial bundle End(7%), and
where || - ||, denotes the operatornorm. It is obvious from the product rule for differentia-
tion that C* (E,, End(7z)) is a Fréchet algebra.

The projection p- is continuous on C* (Eu, End(7z )), since it is defined in terms of
the action of # on &, ar}ﬂcj conjugations with invertible smooth matrices. Thus the sub-
algebra C® (Eu, End(7" 5)) of ¥ -equivariant sections is a closed subalgebra.

We now define the vector space

Definition 5.1.

(5.1) %(Z,, End(7z)) := ¢C* (E,,End(¥)),
where ¢ denotes the c¢-function of Definition 9.7 on Z,. We equip %(Z,,End(7%))
with the Fréchet space topology of C® (Eu,End(“/ E)) via the linear isomorphism

C*(Z,,End(7%)) — ¢ (E4, End(7%)) defined by o — co.

Lemma 5.2. The complex vector space € (Eu, End(7 5)) is closed for taking ( fibre-
wise) adjoints, and

(52) (g(Eu, End("/;)) c Lz (Eu, End(”/;), ,Ltpl).
Moreover,
(5.3) C”(Ey, End(7%)) = ¢(E4, End(7%))

is a closed subspace.
Proof. It is closed for taking adjoints by Proposition 9.8(iv) (applied to
d =wPe W(P,P’)), and it is a subspace of L>(Z,, End(¥z),up) by Proposition 9.8(i).

The last assertion follows from Proposition 9.8(v). [

Now we are prepared to formulate the main theorem of this paper.



84 Delorme and Opdam, The Schwartz algebra of an affine Hecke algebra

Theorem 5.3. The Fourier transform restricts to an isomorphism of Fréchet algebras

(5.4) Fy: S — C* (8, End(z))" .

The wave packet operator ¢ restricts to a surjective continuous map
(5.5) Fo %(Eu,End("//E)) — .

We have ¢,%y =idy, and Fy 4, = py ¢ (the restriction of py to %(Eu,End("//'g))).
In particular, theﬂy}_ map py ¢ is a continuous projection of € (Eu,End("V 5)) onto
Cc* (Eu,End(%E))

5.1. Applications of the Main Theorem. Before we embark on its proof we discuss
some immediate consequences of the Main Theorem. The following corollary of the Main
Theorem is the analog for affine Hecke algebras of Harish-Chandra’s completeness theo-
rem for real reductive groups.

Corollary 5.4 (Harish-Chandra’s completeness Theorem, cf. [12], and [18],
Theorem 14.31). Let (€ ZE, The complex linear span Cg of the set of operators
{n(g,&)|g € Endy. (&)} is a unital, involutive subalgebra of End(7:). For all &€ E, we
have Cz = End (7).

Proof. Let & = (P,6,t") and denote by C; = End(77;) the complex linear span of
the set of operators {7n(g,&)|g € Endy~(£)}. By Theorem 3.16, C: is an involutive (i.e.,
s-invariant), unital subalgebra of End(77%). Let us show that Theorem 5.3 implies that
n(&, ) is equal to the commuting algebra, C!, of Ce. First observe that the inclusion
n(&, A) = CL is obvious. Since V; is finite dimensional and since 7(¢, ) extends continu-
ously to ¥ we have n(&, #) = n(&,.%). By Theorem 5.3 this last algebra is equal to the
algebra of values at & of C® (Eu,End(“//'E))W. If A€ C. then we can find a section
oe C*(Z,,End(7z)) such that o(¢)=A and o(gé) =0 for all ge#i such that
g(&) + & Then py (o) € C*(E,, End(7z)) " and py-(0)(&) is a non zero scalar multiple
of A. We conclude that 4 € n(&, 7).

The Bicommutant Theorem therefore implies that C; is equal to the commutant
n(& ) of n(&, ). O

Corollary 5.5. The center Zg of & is, via the Fourier transform F, isomorphic to
the algebra C*(E,) " of smooth W -invariant functions on &,

Proof. The algebra of scalar sections of C*(Z,,End(7* Eu))% is isomorphic to
C’“(Eu)w , and is contained in Zy (%) by Theorem 5.3. To show the equality, observe
that Corollary 5.4 implies that an element of Z(Z) is scalar at all fibers End(V%) with
¢ € E, generic (since End (V) = C in this case). By the density of the set of generic points
in 2, we obtain the desired equality. []

Notice that Z is in general larger than the closure in % of the center & of .
Corollary 5.6 (Langlands’ disjointness Theorem, cf. [18], Theorem 14.90). Let

& E e B, If n(&) and n(&') are not disjoint, then the objects &, &' € B, of W'z, are isomorphic
(and thus, n(&) and (') are actually equivalent).
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Proof. Corollary 5.5 implies that & separates the # -orbits of E,. Whence the
result. [

Corollary 5.7. The Fourier transform F restricts to a C*-algebra isomorphism

W

(5.6) Fe: CH(AH) — C(E, End(7%))”
where C}(A’) denotes the reduced C*-algebra of A (cf. 2.7).

Proof. By Theorem 4.3, the restriction of % to C(#’) is an algebra homomor-
phism. It is a homomorphism of involutive algebras since 7(&; x*) = n(&; x)" (cf. Subsec-
tion 3.4).

The reduced C*-algebra C;(#°) of # is defined in [26] as the norm closure of
MHA) = B(Ly(A)). By Theorem 4.3, the norm ||x]|, of C;(#) is equal to the supremum
norm || (x)l|g,, of the ¥ -invariant continuous function & — ||n(¢;x)[|, on &, (where
|m(&; h)||, denotes the operator norm for operators on the finite dimensional Hilbert space
V: =i(V5)). Notice that, by the regularity of the standard intertwining operators, the pro-
jection operator p- restricts to a continuous projection on the space of continuous sections
of End(7z).

By Theorem 5.3, the closure of (%) with respect to ||

T [lsgp 18 equal to
C(Z.,End(75))

. In view of Theorem 4.3(ii) this finishes the proof. []

Corollary 5.8.  The set of minimal central idempotents of C;(A’) is parameterized by
the (finite) set of W -orbits of pairs (P,0) with P € 2 and 6 € Ap. The central idempotents
e(p,s) are elements of .

Proof. This is immediate from Theorem 5.3 and Corollary 5.7. []

Corollary 5.9. The dense subalgebra & < C}(A) is closed for holomorphic func-
tional calculus.

Proof. The Fréchet subalgebra & < C;(#') is dense, symmetric, and the embed-
ding is continuous (see (2.19)). In addition, Theorem 5.3 and Corollary 5.7 imply that .¥
is also spectrally closed, i.e., if a € & is invertible in C*(#’), then a~! € . Hence ¥ is a
W*-algebra, and thus closed under holomorphic functional calculus [10]. Alternatively, one
may verify directly from Theorem 5.3 and the definition of f(a) that f(a) € & foralla e &
and all f holomorphic on the spectrum of a. []

6. Constant terms of matrix coefficients of (&)
In the remainder of this paper we will prove the Main Theorem, Theorem 5.3. A
main tool is the notion of the constant term % of a functional f € A*™P with respect to a

standard parabolic subset P € 2 (see Subsection 3.7).

6.1. Constant terms of coefficients of n(£) for & € E, generic. In this subsection we as-
sume that & is generic unless stated otherwise.
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We will compute the constant terms of a matrix coefficient of 7 = 7(&) in the case
where & = (P,,tF) e B, is generic. Choose rp € Tp such that Wprp is the central character
of 5. We thus assume that ¢t = rpt? € T is Rp-generic in this subsection.

Let a,b €i(Vs), and denote by f = f,» = fu.5(&) the matrix coefficient defined by
S (h) = {a,n(& h)(b)). By [26], Lemma 2.20 and Proposition 4.20, we have: If ¥ e T
then f, , € A“™ for all a,b e #(W?') ® V5. More precisely:

Proposition 6.1.  The exponents of f (cf. 3.3) are of the form wt' where w runs over the
set WP and where t' runs over the set of weights of 5,r, thus t* times the set of X p-weights

of 0.

Now let Q = Fy be another standard parabolic. By the proof of [26], Proposition 4.20
we deduce:

Proposition 6.2. Let we WT and let ue Wp such that wut is an exponent of f. If
wult| <o 1, then w(P) = Rg ..

Proof. The equivalence class @ of ¢ = rpt” is equal to Wpt (since we assume ge-
nericity). If wut is an exponent then wut = w't’ with ¢ an X-weight of 6,» and w’ € WZ.
Thus ¢’ and ut are both in @, the equivalence class of 7. Hence by genericity, w’ = w and

thus ut = ¢, a weight of d,». But ¢ is discrete series for #p, hence |ut| = [ d, ® «” with all
oaeP

0 <dy, < 1. Thus wult| = [] d, @ w(") <o 1 implies (since for all x e P: w(a¥) € Ry )
that w(P) « Rp+. O *¢€P '

Corollary 6.3. Recall that the equivalence classes in Wyt are of the form ww with
w= Wpt and we WT. If an exponent wt' of f (with we W¥ and t' a weight of J,») is
O-tempered, then all exponents of f in its class ww are Q-tempered. The class ww
(we WP) is Q-tempered if and only if w(P) = Ry +.

Proof. Since w(P) = Rg,+ we have wWpw™! = Wj. Hence weo = Wowi, so that the
moduli of all elements of wzw have trivial restriction to X n Q+. [

Now we will express the constant term of a matrix coefficient of #(¢) in terms of the
idempotents e, of the completion J#;. Recall the material of Subsection 2.6.

We will use the analog of Lusztig’s First Reduction Theorem (2.13) for #,, in combi-
nation with the results in [26], Section 4.3 on the Hilbert algebra structure of #, the quo-
tient of #' by the radical of the positive semi-definite Hermitian pairing (x, ), := y,(x*y),
in order to express and study the constant term (see Subsection 3.7).

Proposition 6.4. We have that

fOh) = 2. S (ewzh).

weWP:w(P)cRyp +

Proof. Let us denote by J,, the ideal in .7 " of elements in this ring vanishing at
weo. Clearly .#, < J,, for all w. By some elementary algebra (similar to proof of [25], Pro-
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position 2.24(4)) we see that for every x € J,, and k € N there exist a X € ., and a unit e in

o/, such that

ex e X + mfz,
where m,, denotes the ideal of all functions in .7 which vanish at the points of wez. (To be
sure, we construct ¥ by first adding an element u € J* such that x + u is nonzero at the
other classes w'cw with w' e W* w’ + w. Take X equal to the product of the translates
(x4 u)" where w runs over the set of left cosets W,/ W, p). Let e be equal to the product
of these factors (x 4+ u)" where w runs over the set of left cosets W/ W,,p) with w & W,,p).)
Let M be the ideal of functions in .o/ vanishing at Wyz. Then M = [[m,, and by genericity
the ideals m,, are relatively prime. So .&7/y = @&/_m by the Chinese Remainder Theo-
rem. Then e, is the unit of the summand <7, (see [19], 8.7(b)). Let &, be the unit of
R := </, | F.4,, (the canonical image of e, €./, ). Note that R is finite dimensional
over C, and thus R is Artinian. By definition of m,,, m,é, is contained in all the maximal
ideals of R. Hence m,,é,, is contained in the intersection of the maximal ideals of R, which
is nilpotent in R (see the proof of [22], Theorem 3.2). In particular, for sufficiently large k,
mkey < I1t,,, whence

Xeyw € 1.y, -

But then the right-hand side is in the kernel of 7z, thus we conclude that J,,e, is in the ker-
nel of 7. In particular, the element (for any z € X) ©.:= [ ((wt) (z)_lﬁy —1) e J, acts

yeWypz
by zero on the finite dimensional space of left .«Z-translates of / +— f(e,,/1). Thus the expo-
nents of /' +— f(e,h) are contained in weo.

We obviously have

Sh)y= > flewsh)

weW?

(splitting of 1 according the decomposition of .«/j;). By the results in this paragraph,
an exponent of /& +— f(e,h) is Q-tempered if and only if all exponents of this term are
O-tempered if and only if w(P) = Rp 1. Hence the result. []

Corollary 6.5. The constituents f(e,h) depend on the induction parameter t¥ as a
rational function.

Proof. In the proof of Corollary 6.4 we can equally well work over the field K of
rational functions on 7'* instead of C. Then é,, € /(K),,;/ %/ (K),, = </ (K)/ I/ (K).
Hence the result. []

6.2. Some results for Weyl groups. We want to work with standard parabolics only,
and w(P) < Rg,+ does not need to be standard. We resolve this by combining terms ac-
cording to left Wy cosets. We use the following results (see [6], Section 2.7).

Proposition 6.6. Let P, Q € 2. The set D2 .= (W)™ ~ WP intersects every dou-
ble coset WowWp in precisely one element d = d(w), which is the unique element of shortest
length of the double coset.
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Proposition 6.7 (Kilmoyer). Let d € D@F. Then Wo n Wy p) is the standard para-
bolic subgroup of Wy corresponding to the subset L = Q nd(P).

Let t € rpT? be Wp-generic as before, where Wprp < Tp is the central character of a
discrete series representation 0 of J#p. Let ww = Wt be the equivalence class of ¢.

Corollary 6.8. (i) Let we W7 be such that we is Q-tempered. Then w(P) <= Rg .
We can write w = ud with d = d(w) € D%” and ue Wy. Then d(P) = Q, and u e WS(P).

Conversely, if d € D2 ¥ is such that d(P) = Q, then for all u € WS(P) we have |ud(w)| <g 1
(in other words, is Q-tempered ).

(i) The classes w, 4 =: ud(ww) with d € D% such that d(P) = Q and u e Wél(P), are
mutually disjoint.

Proof. (i) According to a result of Howlett (cf. [6], Proposition 2.7.5), we can
uniquely decompose w as a product of the form w =udv with d =d(w)e D27,
ue Won Wt (with L= Q nd(P)), and v e Wp. In fact v = e, since otherwise there would
exist a o € Rp 1 with v(«) = —a, € P. But then ud(x,) < 0, which implies (according to [6],
Lemma 2.7.1) that d(a,) = o, € L. Hence u(x,) < 0, which contradicts the assumption
ue Won Wk, Thus we have d(P) =u'w(P) = Rg 4, whence Wyp = Wo. By Kil-
moyer’s result it now follows that Wyp) = Wo~qp). Hence d(P) = Q and L = d(P). The
converse is clear.

(ii) Suppose that w, s N, 4 + 0. The Weyl group W, permutes equivalence
classes, thus this implies that (ud) 'u'd’(f) € . Since 1 is generic, there exists a v e Wp
such that u'd’ = udv. By Howlett’s result [6], Proposition 2.7.5 this implies that v =1,
u=uandd=d. [

Corollary 6.9. For all d € D2 with d(P) = Q we write

eWde = E Cudew-
ue ng

This is a collection of orthogonal idempotents of #,. The constant term of f = f, (&) equals

ey = > fn),

deD2P:.d(P)cQ

where we define f4(h) := f(ewya=h). This is the contribution to the constant term f© of f
whose exponents have the same restriction to X n Q* as d(1).

6.3. The singularities of 4. In this subsection we take the formulae of Corollary 6.9
as a definition of £ and 9, even when t” € T* is not in TF.

We will now bound the possible singularities of the individual contributions f¢ to
f2, viewed as functions of t* € T*. We have seen in Corollary 6.5 that /¢ extends to a
rational function of & € E. To stress this dependence we sometimes write £ (&, h). We write
&= (P,6,t") and put 1 = t(¢) = rpt?, where rp € Tp is such that Wprp is equal to the cen-
tral character of 9.
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Lemma 6.10. Let P,Q e 2 and let d € D27 be such that d(P) = Q. Let h,h' € H#,.
Then

(6.1) ﬁfb(f; hh') = fzf’n(f;h’)(b)(i;h)'
Proof. This follows immediately from Corollary 3.26. []

Lemma 6.11. As in Lemma 6.10. Let g € Wp and put P’ = g(P). According to Corol-
lary 6.8 we can write dg~' =u'd’" with d' e D2 and u' e Wg’. We put t' = g(t) and
w' = Wpt' = g(w), so that ew,iw = ewyarw. With these notations we have the following
equality of rational functions of &:

d (s _ ¢d' :
(62) Janl&) = L @ mtg.om 9 H);
where =1 .= (P,9,tP71).
Proof. This equation follows from the special case ¢ € ZEp s, because the left-hand
side and the right-hand side are obviously rational functions of &. In this special case the

equation simply expresses the unitarity of the intertwiners (cf. Theorem 3.16). []

Lemma 6.12. Let P,Q € 2. Then S has the following direct sum decomposition in
left A C-right A (Wp)-submodules:

(6.3) H = ) EBN%Q’P(QI)’

where Ho p(d) = H Ny H (Wp).

Proof. Using the Bernstein presentation of # ¢ and the definition of the multiplica-
tion in (W) we easily see that

we WQd Wp

The result thus follows from the Bernstein presentation of »#. []

After these preparations we will now concentrate on an important special case.

Definition 6.13. Let né, p:H — Ho p(d) denote the projection according to the
above direct sum decomposition. Given Q € 2, denote by w? = wow, the longest element
of W2, and by 0’ = w2(Q) = —wo(Q) € 2. Then w2 = (w2)™' € D22’ and

(65) ij’Q/(WQ/) - c}fQZVwQ' = ‘Q{NWQ“%(WQ/)'
Let po : A — H 2 be the left #2-module map defined by

wo' -

(6.6) pQ(h) = nQ,Q/(h)Nwl/.

(Observe that this map indeed has values in # ¢ by (6.4).)

In (6.5) we have used that N, o' N,,» = N,,N, o if w € Wy, where w' = wlww? € W
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Theorem 6.14. Let P, Q € 2 be such that P = Q. We put P' := w2(P) = Q' € 2 and
EN=we(¢) = (P, 7).

Leta' €i(Vy) = A (W)@ Vy, b' e #(WE)® Vy = i(Vy) and let he #. We in-
troduce the unitary isomorphism

(6.7) 0= 0 ®by0: H(WL) @ Vs — H (W)@ Vi,
(see Section 3.5 for the explanations of 0 and 5wg) and the orthogonal projection
(6.8) pi(Vs) = A (W) ® Vs.
With these notations, put
(6.9) a:=p(rw2, &N 7)) e (W) & Vs,
b:=c'(b")e A£(W))® Vs.

We then have, with ¢2(&) = I ¢y(1), the equality of rational functions of &
%€ Ry, +\Ro, +

(6.10) WoELR) = g 2e(E) fo.0n (& Polh),

where po(h) has been defined in (6.6). Here fp ap(E,h) = fup(E,h) (with he #9,
a,be A (Wé) ) ® V) is the matrix coefficient (associated to the pair a, b) of the repre-
sentation

(6.11) 72(&) :=Ind %7 6,0
of A2 (which is tempered and unitary if & € E,).

Proof. Choose rp € Tp such that Wprp is the central character of J, and write
t' = w@(¢) with ¢ = rpt®. Since we are dealing with rational functions of ¢ it is sufficient
to assume that & is regular, i.e., that ¢ is Rp-regular. We then extend 7(¢') to the com-
pletion #, (recall 2.6.3) and study #(¢’) in the light of the isomorphisms (2.13) and
(3.6).

We combine, in the decomposition (2.13) applied to the parabolic P’ = w2(P)
and parameter ¢, the idempotents according to left cosets of Wy. In other words,
we partition Wyt into the sets w(Q) with we W2 and Q= Wyt = Wé’w’ (with
w' = w@(w) = Wpit'). These sets are evidently unions of the original equivalence classes
in formula (2.13) (with respect to P’ and t’), the left Wp/-cosets acting on 7. We denote
the corresponding idempotents by (for all w e W 2"

# .
e, = Z Cyxw!-

Xe Wg,Q(P)

Note that ' is P’-generic, and thus certainly Q’-generic. The structure formula (2.13)
holds therefore, also in terms of the idempotents e, where we replace in (2.13) the para-
bolic P’ by Q.
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Remark that e NweQ =0 for any w e Wy with length of less than |Ry ;\Rg|
(= the length of we' ) Note by the way that e eW .- Thus for all d € D O d+w?

we see that eW H P(d)eMQW ,=0.

Hence for all he #, a’ €i(Vy) and b’ € %(Wé’/) we have

(612) a’ b’(f h) fa b/(é pQ( )eWQerQ ej:QWQz)
Since f ‘1’%(5 A J,) =0 we can use the analog of formula (4.58) of [26] (we use here that

the ¢-function c9(1) is Wy-invariant, together with the argument in the proof of the Pro-
position 6.4. This makes that we can evaluate the c-factors at t'):

(6.13) L ) = qw2) PeC(t) for (', po)il ).

We use Lemma 6.10 and then rewrite the result using (2.13) and Definition 3.8. Assume
that ' = x' ® v’ and b = ¢! (b') = x ® v. Then

0o (b)) = o (Xel @)
= eﬁ@z(‘h@’ (x/)’gya’ ®v')
= ¢y, m(w2, &) (x ® v)
= n(w2,¢)(b).

(In the first equality we used the identification (3.6), and in the second equality we used
equation (2.14).) Thus we obtain

(6.14) FE(E ) = qw2)2e@(E) fur nwo. iy (€ Po(B)
= Q(WQ)I/2CQ(§)f( (we, &1y (é polh ))
= q(wQ>”2cQ<é>fQ7a,b(é,pQ<h>)-

In the second step we used the unitarity of the intertwining operators (w2, &) to rewrite
the matrix coefficient as a coefficient of the induced representation z(&) (extended holo-
morphically as in Lemma 6.11; in fact it is a simple special case of this lemma). Since
be A(WE)® Vs and po(h) e #9, we can project the vector n(w€,¢")" '(a') onto
H( WQ) ® Vs, and consider the result as a matrix coefficient of 72(¢). [

Theorem 6.15. Fix P € 2 and 6 € Ap,w,+,. We recall that Ep 5 = Z is the collection of
standard induction data of the form (P,6,t") with t¥ € T?, and we denote by Ep 5, = Ep s
the subset of such triples with t* € T'. Then for all d € D®" such that d(P) = Q and for all
a,b € i(Vy), the rational function

(6.15) & e(&) (D)

is regular in a neighbourhood of Ep s .
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Proof. We apply Lemma 6.11 with
g=wl e W(P,P") where P'=w?(d(P)) =
Notice that d’ = w?'. Put &’ = g(&) and

(6.16) a' =n(9,& ") (a),

We obtain
(6.17) () (&) = &) (E ).
Now we can uniquely decompose b’ in the following way:
(6.18) b' = n(&' h)(b)
with h e #/(W2') and b’ € #( Wé’,’) ® Vs < i(Vy). With the help of Lemma 6.10 we get
(6.19) (&)l (& k) = (&) E ).
We can now apply Theorem 6.14 with respect to d(P) = Q. We put
(6.20) aq = p((w?, dé*l)”( ") e A (W) ® Ve
by =0 ') e #(WID) @ V()
to obtain:

(621) (&) (ER) = qw?) (&) e(d€)eo((dE) o) ™ foranbi (dE, po(hh)),

where in general for Q > P and & € Ep 5 we denote

(6.22) e =TI el

a€Rgp, +\Rp, +
The regularity of the normalization factor ¢ ((d¢) Q)fl as a function of d¢ (and thus as a
function of &) follows from [26], Theorem 3.25, when we consider the tempered residual
coset rpT'" = T for the Hecke algebra # 2 (mstead of J/ itself). It is a simple special case
of Proposition 9.8(v). Similarly, the regularity of ¢(&) '¢(d¢) is asserted by Proposition
9.8(iv). By the regularity of the various intertwining operators we have used (cf. Theorem
3.16) it is clear that also a4, b, are rational and regular on Zp 5,. We have finished the
proof. []

We keep the hypothesis and notations of Theorem 6.14 (with P replaced by d(P) < Q)
and of Theorem 6.15. Define

(6.23) g d - Vg,l — yf( Wg(m) ®(#7¢1(1)) V‘{’d(é)Adt_*lv

a—nw?, g)p(n(d, & (a))),
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where # denotes the cocycle (3.7), and

(624) ﬁf,d : Vé — W( WS(P)) ®y/d(P) V‘Pd(é),dta
b — ﬁ@,d,Q(n<ga é)(b))v

where p;: , o denotes the # 2-module map defined by

(6.25) ﬁi,d,Q Ve =H Qpar V‘P;/((i).gz - %(WQd(P)) Qi) V‘I’d(ﬁ)-ﬂlf7
h®v— po(h) @ ¥4(9),,0 (v).

This last map is well defined in view of the following property of the projection map po:
For all 1 € # and h€ € # ¢ we have

(6.26) po(hyhg = po(p,o(h?)).

The formula for the constant term of f, , can now be expressed in terms of the maps
azq and B¢ ;. The resulting formula is the analogue for Hecke algebras of the formula for
the weak constant of coefficients of tempered representations of reductive p-adic groups, cf.
[36], Proposition V1.1.

Corollary 6.16. Using the above notations, and assuming the hypotheses of Theorem
6.15, we have obtained the following formula for the constant term along Q of the matrix co-
efficients of n(&). For all he #2 and & e Epou

627)  «&O7T'EEN = X ccafomatapam (@) h)

deD2P.d(P)cQ

where (df)Q is the induction datum d¢, considered as an induction datum for the Hecke alge-
bra #2, and

(6.28) ce.a = qw2)'Pe(&) e(dE)eo((dE) ).

In equation (6.27) we identify the target spaces of o 4 and B ; with the vector spaces of the
“compact realization” of the induced representation n((df) Q) of #2 (notice that by our as-
sumption & € Ep 5, we have E~' = &). The expressions J0,5.a(a). B 4(b) ((dé)Q, h) and the coef-
ficients c¢ 4 of equation (6.27) extend to rational functions of & € Ep s, regular on Zp s . The
map P 4 is an A C_module map. This property determines the map B 4 uniquely up to a sca-
lar function (since the multiplicity of n((dé) Q) as a subquotient of the restriction to #° of

n(&) is one).

Proof. This is merely a reformulation of the previous theorem in view of the for-
mula

(6.29) feEn = X faEh

deD2P:d(P)cQ

using the definition of the maps o, and f; ;. Indeed, it is straightforward to see that
g d(a) = aq (in the notations of the proof of Theorem 6.15) and that B: ,(b) = po(h)ba.
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The map f: , is a A 2-module morphism by the properties of po, see Definition 6.13. The
last assertions follow from Corollary 11.3 and Proposition 3.18(i). []

Corollary 6.17. In particular, for allhe #, P e 2,0 € Ap, and a, b € i(Vj) fixed, the
function

(6.30) Epoux H23(Eh0) = c(&) 7[5 (&, h%h)

is a linear combination with coefficient functions which are regular rational functions on
Ep.s.us 0f normalized matrix coefficients

(6.31) co(d(©)) fo.upr ((dE) g, 1)

of induced representations of #C of the form nQ((df)Q) (where d ranges over the Weyl
group elements d € D%* such that d(P) < Q).

7. Proof of the Main Theorem

7.1. Uniform estimates for the coefficients of m(£). Recall that X is the cone
{xeX|<{x,0¥)=0forallae R +}. We put Zy = X" nX". This is a sublattice of
elements in X with length 0. Recall that Q denotes the root lattice. The sublattice
O ® Zy < X has finite index in X. If x = xp +x7 € Q ® Zx then

(7.1) () = x0(20") + [lxzll

Let us show that O™ := O n X" is finitely generated over Z, . For each fundamental weight
0;, let g; = m;0; be the least multiple of J; such that ¢; € Q (thus m; e N = {1,2,3,...} is
a divisor of the index of Q in the lattice generated by fundamental weights). These

ti €10, 1)} and let

Fo=FnQc Q" (a finite set). Clearly Fyp and the {¢;} generate Q" over Z.. Let
X1yeooy XmyXmals---, Xy € X1 such that xi,...,x,, is a set of Z -generators of Q" and
that x,,41,...,Xy € Zy is a Z-basis of Zy. By (7.1) we see that there exists a constant
K > 0 such that for all xe Q" + Xz and all decompositions x =Y [ix; with [; =20 if
i £ m, we have

multiples generate over Z, a cone CT < Q. Let F —{Zz,-q,-
i

(7.2) 2l = KA (x)
(just observe that x;(2pY) 2 1if i=1,...,m). We fix sucha K > 0.
We define a function v on T,; by
(7.3)  v() =max({|x;(t)||i=m+1,.... N} O {|x(wo)| |[i=1,....m;we Wy}).

The positive real cone spanned by the elements wx; (we Wy,i=1,...,m) and +x;
(i=m+1,...,N) is the full dual of Lie(7,). Therefore the function log(v)cexp is a
norm on Lie(7y).
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Theorem 7.1. Let R>1, Pe P, and 6 € Ap be given. Choose a set x;e X+ as
above and let K and v be as above. We use the notation v(|&|) :=v(|tF|) for
&= (P,0,t") € Eps. Define a compact neighbourhood DY(R) = Eps of Epsu < Eps by
DP(R) = (£ Epy | v(|¢]) < R).

There exists a d € N, and there exists a constant ¢ > 0 (depending on R only) such that
for all we W, for all a,b € i(V;), and for all & € DY(R), the matrix coefficient f, »(&, N,,)
satisfies

(7.4) s (& N < ellall 1] (1 + A7 () Do K.

Proof. Using [26], equation (2.27) (also see the proof of Lemma 7.14) we see that it
is equivalent to show that f, (&, N,0.N,) can be estimated by the right-hand side of (7.4)
with w = x, for all u,v € Wj and x € X". By applying right (resp., left) translations of the
matrix coefficient f, ,(&) by N, (resp., N,) and by a set of representatives of the finite quo-
tient X/(Q + Zy) we see that we may further reduce to proving the estimates (7.4) for
w=xeQ" +Zy.

Recall (cf. [26], Proposition 4.20 and its proof) that the eigenvalues of the matrix of
(&, 0x) are of the form x(w;(r;z”)). Here the r; € Tp are the generalized Xp-eigenvalues of
the discrete series representation . By Casselman’s criterion we know therefore that for all
x € X, x(wi(r;)) < 1. This implies that for all i € 1,...,m, and for all £ € Zp 5, the eigen-
values of 7(¢, 0,,) are bounded by v(|¢|). Then Lemma 8.1 allows one to estimate the norm

i

Ofﬂ,’(f, Olixi)7 by leldlIlg n(éa 0\1) by V(|é|)

Taking into account the fact that DR®(P) is compact, one sees that the norm of
n(&,0,,) is bounded if ¢ is in D®(P). By a simple product formula, one estimates the norm
of (&, 0y). These estimates together with equation (7.2) imply the desired result. []

Corollary 7.2.  For all constant coefficient differential operators D on Ep ;s there ex-
ist constants d € N and ¢ > 0 such that for all &€ Zp; ,, for all a,bei(Vs), and for all
we W

(7.5) IDfo(E, N < cllall 1] (1 + ().

Proof. This is a standard application of the Cauchy integral formula, starting with
equation (7.4). Choose a basis xi,...,x, of the character lattice X P of TP, and let
V1, ..,y be the dual basis. Let C, := {v e Lie(T*)| Vi : |x;(v)] = ¢}. We may assume that
D is of the form D = D* := y|' ... y,”. By the holomorphicity of £, , we have, for a suit-
able constant C, > 0 and any choice of a sequence of radii e(w):

16 DN, | LRt o)

, dx| A - Adx,.
veloy  I1xi(0)" !
i

Now use the estimates of Theorem 7.1 with the sequence e(w) chosen such that
r(w) := max{v(lexp(v)|) |v e C.u)} is equal to

(7.7) L+1/(1+ A (w)).
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But log(v) o exp is a norm on Lie(7?), as well as Sup |x;(v)|. They are equivalent. More-

over log(1 + x) = k'x for x € [0, 1], for some k' > 0. Together with (7.7) this implies that
there exists a constant k > 0 such that e(w) = k/(1 + A4"(w)). So equation (7.6) yields the
estimate (for some constant ¢’ > 0)

or d N (w
(7.8)  [D*us(& M) < ¢ llall 1611 (1 4+ A (w)) TP 4+ 17 (1 4+ 47 (w)))
for all w e W and for all multi-indices «. This easily leads to the desired result. []

Corollary 7.3. We have 7 (') = C* (Eu,End("VE))W. The restriction Fg of F to
S defines a continuous map Fo : S — C* (Eu, End("/a))%,

Proof. The equivariance of the sections in the image is clear. Recall that
F (Ny) € Pol(Z,, End(7z)) is defined by 7 (N,,)(¢) = n(&, Ny).

Hence by the estimates of Corollary 7.2 we see that for any continuous semi-
norm p on C¥ (Eu,End(”dfg)) there exist constants C >0 and deZ, such that
p(F(Ny)) £ C(1+ 4 (w))".

Let be Z, be such that 0 < Gy := > (1+ K/V(w))fb < oo, and let ¢ = g, denote

weW

the continuous seminorm on % defined by ¢(x) := CCysup |(x, N,,)|(1 + A~ (w))d+b. Then
P(Z#(x)) < gq(x) for all x € #, implying that Fy is a continuous map as claimed. []

7.2. Smooth and normalized smooth families of coefficients and their constant
terms. We introduce the important notion of a (normalized) smooth family of coefficients:

Definition 7.4. Let P € 2 and let 6 € Ap be an irreducible discrete series of #p with
central character Wprp € Wp\Tp. We put & = (P,d,t7) € Ep 5 ,. A smooth family of coef-
ficients of (&), & € Ep 5., 1s a family of linear functionals on # of the form

(7.9) H > h— Tr(a(E)n(&)(h)),
where ¢ is a section of C* (Ep s, End(7z)).

A smooth section g e C¥ (Ep@u,End("V E)) is called normalized smooth when it
is divisible (in the C*(Ep;,)-module C*(Zp;,,End(#=))) by the smooth function

{&— c1(&)} e C*(Ep,s.) (cf. Proposition 9.8).

A normalized smooth family of coefficients of 7(&), £ € Ep s, 13 a smooth family of
coefficients (7.9) for which ¢ is normalized smooth.

Remark 7.5. We frequently use 7 rather than & = (P,d,t%) as the parameter of a
family of coefficients.

Corollary 7.6. It follows directly from the definitions that smooth (resp., normalized
smooth) families of coefficients of n(&), & € Ep sy, are stable under left and right translations
by elements h € .
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Remark 7.7. Using the smoothness of the induction functor (Theorem 3.16) we
can exhibit the following equivariance property of smooth families of coefficients with re-
spect to the action of #". Let g =k x we #p and let (I)g, ¢ € Eps,u denote the smooth
family of coefficients associated with the smooth section o € C*(Ep ;5 ,, End(7%)). Let

g(0) € C* (E,(p),w,),u» End(7z)) be the smooth section defined by (with 7 € E,,(p), w,s),u)

(7.10) g(@)(m) = =g, m) ol (m)=lg~"\m).
By the intertwining property of #(g~',¢(&)) we have
9(0) _ g0
(7.11) o1 = @7,

7.2.1. Constant term of (normalized) smooth families of coefficients. We start with a
general result about the constant terms of smooth and of holomorphic families:

Proposition 7.8. Let ®¢, &€ Ep sy, be a smooth family of coefficients for . Let
Qe

(i) The constant term H#° > h — (I)Q(h) is identically equal to 0, unless there exists a
we WP such that w(P) < Q.

(ii) Assume P = Q. The constant term A 3 h GDQ(h) is a smooth family of coeffi-
cients for #' . Here we view Ep 5, both as a collection of tempered standard induction data
for A and for #°.

(iii) As in (ii). If O¢ is actually holomorphic in a neighbourhood of Zp 5, < Ep 5, then
HCsh— (I)Q(h) is holomorphzc in a neighbourhood of Zp ;s , as well.

Proof. (i) Let ¢ denote a generalized weight for n(¢), & € Ep 5 ,. By Proposition 6.1,
t = w(rt*) for some w e W¥ and r e Tp a weight of 5. Suppose that |¢| <, 1. By the argu-
ment at the end of the proof of Proposition 6.2 this implies that w(P) < Q.

(i) and (iii) Clearly it is enough to prove (iii) for the case where ®:(h) = f, »(&, h) for
some a,b €i(V;). Let k € N be such that kP(Ry) = X. Let (d,),.p, be the fundamental
weights. Thus for any 7€ T one has: || £y 1 if and only if || <f 1 and |¢(kd,)| = 1 for
all o € Q. By definition of the constant term we have

(7.12) [5(&h) = (Pea,m(&, hb),

where P: is the product of the spectral projections of the commuting operators (&, Oks,) ",
o € Q corresponding to the eigenvalues of modulus 1. By Proposition 6.1, the eigenvalues
of n(&, 0y ) are of the form w(t¥r)(kd,:), with o’ = —woo, r a weight of 6, and we W’
(we use the well known formula 6 = N, 0_,« Wo) Observe that the moduli of these
eigenvalues are constant for ¢ € Zp 5 ,. We divide the eigenvalues in two disjoint subsets:
those which are of modulus one for e Zp;, and the others, which are of modulus
strictly less than 1 for ¢ € Eps,. Thus if ¢ > 0 is sufficiently small, there exists a neigh-
bourhood U of Ep;, such that the moduli of the eigenvalues of the first (resp., sec-
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ond) subset are strictly larger (smaller) than 1 — ¢ if £ € U. The proposition follows using
holomorphic functional calculus to express the spectral projections as in Corollary 8.2

(i). O

Remark 7.9. We may generalize Proposition 7.8(ii) to the case where P is associated
with a subset of Q by using Remark 7.7. Choose g =k x w € #p such that w(P) = Q.
Then (by Remark 7.7 and Proposition 7.8(ii)) #<¢ 3 h (I)(;O:l ) (h), n € Eyp),w,),u 15 @
smooth family of coefficients for #¢. Here we view Ey(p),w,6),u both as a collection of
tempered standard induction data for # and for # €. ‘

For the constant term of a normalized smooth family we have the following conse-
quence of Corollary 6.17:

Proposition 7.10.  The restriction to # 2 of the constant term of a normalized smooth
Samily of n(&) = n(P,5,t7), t* € TF, along Q € 2 is a finite sum of terms, each of these be-
ing a normalized smooth family of coefficients of nQ(d (é)), where d is some Weyl group ele-
ment with d(P) < Q.

7.2.2. Uniform estimates of the difference of a smooth family of coefficients and its
constant term.

Lemma 7.11. Assume Zy = {0}. Let Ep 5 ,» 3 & — ®¢ be a smooth family of coeffi-
cients.

Let o € Fy, and put Q = Fy\{o}.

Let || - || denote a norm which comes from a Wy-invariant euclidean structure on
X®,R

Let a >0 and let X denote the cone (over Z.) X ={xe X" |{x,a¥) > a|x|}.
Then there exists C,b > 0 such that

(7.13) (@ — DL)(N,O:N,)| < Ce I,
forall xe X1, E€Bpyy, ue Wy, and ve W,
a ,0, o

Proof. Recall that the lattice X contains the root lattice Q(Ry), and hence an inte-
gral multiple of the weight lattice P(Ry), say kP(Ry). We put X' = kP(Ry) = X and we
identify X’ with Z' via a basis of X’ consisting of the elements (kdg), p € Fy (where the dg
are the fundamental weights), ordered in such a way that ¢; = kd,. The temperedness of
n(P,6,t"), t” € TP, and the fact that its central character is given by 7 = rpt” imply that
the possible eigenvalues of 7(P,d,17)(6ks,) are among the wi(kdg) with w e W, such that
\wt(kdg)| < 1. Moreover the modulus of w¢(kdg), hence of wt(e;), does not depend on
t"eTP.

Hence if u =v=e¢ and x € X' = kP(Ry), (7.13) follows, in view of the definition of
the constant term, from Lemma 8.3.
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Let us now derive the general case of (7.13) from this special case. Since Zy = {0},
X' is of finite index in X. One can assume that a is small enough, in such a way that X"
is nonempty, otherwise there is nothing to prove. Let x € X/ and let y be the orthogonal
projection of x on the line RJ,. By definition of Xy we have x — y € Xy, and since
x—p, B> =<x, B> for all e Q we find that in factx—yeX+ Thus x — y is a non-
negative linear combination of the fundamental weights 5/3Q of Rp. It is a basic fact
that the fundamental weights of a root system (with given basis of simple roots) have
nonnegative rational coefficients in the basis of its simple roots (indeed, this statement
reduces to the case of an irreducible root system, in which case the indecomposability
of the Cartan matrix implies that these coefficients are in fact strictly positive).
Hence we have x— ye Xg < @,0. Since {(f,a¥) =<0 for all fe O, we see that
{y,o¥y = <x,0¥y > a||x|| = a||y||. Hence ko, € X .

Let (xi,...,X,) be a set of representatives in X of X/X’. Let us show that one can
choose the x; in —X". Our claim is a consequence of the following fact. If y € X, one has
y+nd, € X for n large. In fact by the triangle inequality one has:

Y+ ndy, a0’y —ally +ndy|| 2 n({dy, o) — al|dal]) + <y, o> — all yl|.

Thus, if x € X7 and x = x’ + x;, for some x’ € X’ and some i, one has x' € X' To get the
estimates, one applies the previous estimates to the translates of the family ®; by the N,
(from the left), and by 0, N, (from the right), which are smooth families of coefficients
themselves (cf. Corollary 7.6), taking into account Corollary 3.26. []

7.3. Wave packets Recall that ¢ was introduced as the adjoint of . Thus if
o€ Ly(Epsu, End(7z), up;) then #(o) € Ly(A), and is completely characterized by the
value of (#(0),h) where h € #. We have, using Theorem 4.3, that

(7.14)  J(0)(h) = (F(0)",h) = (h*, #(0))
= (F(h"),0) =py;s [ Tr(a(O)n(E h))|c(&)]?de,

=P.o,u

where py 5 = qOw) " | Wo/ Aol g, p({5}) > 0

Recall Definition 5.1. Assume that ¢ = ¢(w”-)o € 4(E,, End(7z)) (in other words,
o€ C”(Epsu, End(73))).

Denote by @ the smooth family of coefficients ®Z (/) = Tr(a(&)n(¢, h)) associated
with ¢. Then by (7.14) (with & € ), we have

(7.15) J(0)(h) = py sWs(h),
where for any o € C* (Zp 5,4, End(7z)), we put

(7.16) Wo(h) == | ®Z(h)e™"(&)d¢

'—'P)u

= [ Tr(a(&)r(& h))e (&) deE.

=Pou
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Theorem 7.12. For every ke Z., there exists a continuous seminorm py On
C* (Epo,u, End(7z)) such that

(7.17) | Wa(NO:No)| < (1+ |x1)~pi(o),
forall xe X*, u,ve Wy and 6 € C* (Zp 5,4, End(7z)).

Proof. First, by using right and left translations by the N,, we W, and Corol-
lary 7.6, it is enough to prove (7.17) for u = v = 1. Thus, we assume ¥ = v = 1 in the fol-
lowing.

The proof is by induction on the rank of X. The statement is clear if the rank of
X is zero. One assumes the theorem is true for lattices of rank strictly smaller than the rank
of X.

For the induction step we consider two cases, namely the case where Zy =% 0 (first
case), and the case where Zy = 0 (second case).

First case. In this case the semisimple quotient #, of # = #* has smaller rank
than 5. Recall the results of Proposition 2.2 and Proposition 2.3. Let us denote the semi-
simple quotient S5, of # by #, its root datum Zf, by Zy, etc.

We have Tp = Ty and T* o TO. Let T{ = (Ty)" be the connected component of e
of the intersection Ty n TF. Then the product map Tp x T, OP — Ty is a finite covering, as
is the product map TS x T° — T?. Let &= (P,d,t") and suppose that ¥ = £1® for
17 eT, and ("€ T)). Let & = (P,9,1{) € B, p,s,« denote the standard induction datum
for #},. Recall the epimorphism ¢, : # — #;, of Proposition 2.3. It is easy to see that
n(&) = m(&o),, the pull back of the representation n(&,) of #4 to A via ¢,. This implies
that

(7.18) (&) (0x) = °(x)n() (0x,)
for all x € X, where x( € Xj is the canonical image of x in Xy := X /Zy.

Hence, since c¢(&) =c(&,) (indeed, use Definition 9.7 and observe that
(1) = a(rpt?) = a(rptf1®) = a(rptl) for all & € Ry) and since

(7.19) [fatydt" = [ f@E°) def di®
TP

P 0
TO. u X TH

for all integrable functions / on 7.7, we have
(7.20) Wo(0x) = Wo,0.(0x,),
where W, ,. denotes the wave packet (7.16) for the smooth section
ox € C*(En,, p.o,u, End(75,))

with respect to the root datum %, defined by
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(7.21) o, (&) = j;to(x)a(t(fto) dar®

= [2(x")a(tf1") dr°,
70

where x° is the canonical image of x in X° := X /X n F,.

From equation (7.21) it is clear, by harmonic analysis on the torus 7, x T?, that for
all k € Z, and all continuous seminorms ¢ on C* (E%O’ p.o.u, End(7 '50)), there exists a con-
tinuous seminorm p = p, x on C* (Ep 5 ,, End(7z)) such that

(7.22) q(y) < (1+]1x°1)“p(0)
for all x € X and for all 6 € C* (Ep 5,4, End(7z)).

Now apply the induction hypothesis to W} , . In view of (7.20) and (7.22) this yields
the induction step in the first case.

Second case. We now consider the case Zy = 0. If « € Fy and a > 0, one defines
X o= {xe XT[{x,a") > alx||}. We first prove that:

(7.23) U X, ,=X"\{0}, forall a small enough.

C{GFO

Let x € X*\{0}. We write

x= 3 x50,
aeFy
where J,, are the fundamental weights. For ¢ > 0 small enough, one has, by equivalence of
norms in finite dimensional vector spaces:

(7.24) 2a||x|| £ sup [{x,a")], xeXT.
o€ Fy
Then, for xe X"\{0}, choose o€ Fy with {x,«") maximal. From (7.24), one has
{x,a¥) = 2al|x||, hence, as ||x|| * 0:

ooy >allx|, e, xe X/,
which proves (7.23).

Hence it is enough to prove the estimates for x € X7 ,. Let Q = Fo\{«}. Then it fol-
lows from Lemma 7.11, that for some » > 0, and C > 0, one has
|07 (0) — @%2(0,)| < Ce™"MI, forallxe X, P e T/
By integration of this inequality over 7'F against the continuous function |c¢~!(¢)| it suffices
to prove the estimates (7.17) after replacing ®7» by d);’,lQ. But by Proposition 7.10, the
restriction to #¢ of the constant term d);',;Qc”(é) of the normalized smooth family
®%c (&) of coefficients is a sum of normalized smooth families of coefficients for



102 Delorme and Opdam, The Schwartz algebra of an affine Hecke algebra

Hg = (X,Y,Rg, Ry, Q). This brings us back to the first case of the induction step, thus
finishing the proof. []

Corollary 7.13. It follows from Theorem 7.12, (7.15) and Lemma 7.14 that #(o) € &
for all o € (g(Ep_’o"u, End("fg)), and that ¢ : %(Epﬁ)"u, End("VE)) — & is continuous.

In particular, by Lemma 5.2 we see that ¢(c) € & for all 6 € C* (EP7(57,4, End(“lfg)).

7.4. End of the proof of the Main Theorem. We start with a basic technical
lemma:

Lemma 7.14. Let n € Z. There exists a constant C,, with the following property. For
all e A for which there exists C > 0 such that

(7.25) |f(T.O0:T,)| < CA+|xIN7", w,ve Wy, xe X"
one has

|f(Nw) = Cnc(l + JV(W))in, we W.

Proof. Asin [26], (2.25), one writes, for w = uxv, with u,v e Wy, xe X+,

(726) Nw == Z Cw, (u/7p’)Tu’6xTv/a

u,ve Wy
where the real coefficients ¢, 4,y and ¢y, .y are equal if x and y belong to the same
facets of the cone X . The number of facets being finite, one sees, by using the assumption
(7.25), that there exists C’ such that
(7.27) lf(Nwo)| S C'CA+ ||xI)7", u,ve Wy, xe X™.
But, from [26], (2.27), one deduces the existence of ry = 0 such that:

(7.28) N (x) =19 £ N (uxv) £ N (X) +r9, u,ve Wy, xeX".

But one has: A (x) = {x,2p"> + ||x°||, x € X~ where x° is the projection of x € X ® R on
Zxy ® R along ZRy ® R. Let us define

[o]|" = sup |v(2up¥)| +||0°|], ve X ®R.
ue Wy

Then || - ||" is a norm on X ® R, which is equivalent to || - ||. Moreover
N(x) = |x||', forallxe X,
Hence there exists C” > 0 such that:
(7.29) C" A (x) < x| £ C" A ().

Taking into account (7.27), (7.28) and (7.29), one gets the result. []
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End of the proof of the Main Theorem. By Corollary 7.3, the image of % is con-

tained in the space of smooth # -equivariant sections C* (Z,, End(7z)) 7 , and F¢ is con-
tinuous.

Corollary 7.13 states that the image of _#, is contained in ., and that
Sy €(24,End(7z)) — & is continuous.

Since C* (E,, End(Wg))W < €(E4,End(7z)) (see Lemma 5.2) and & <= L, (#) (see

(2.16), (2.19)), Corollary 4.5 implies that #, 7 = idg. It follows that the map #, in (5.5)
is surjective, and that #¢ is injective.

Since ¢ = L,(E,,End(7z),up;) (see Lemma 5.2), Corollary 4.5 also implies that
Fg ¢ = Pw ¢ 1t follows, since py- ¢ 1s the identity on

C*(E,,End(7%))” = %(E,,End(7%)),

that Z¢ is also surjective in (5.4). This finishes the proof of the Main Theorem. []

8. Appendix. Some applications of spectral projections
The following lemma was suggested by [1], Lemma 20.1 and its proof.

Lemma 8.1. Let V be a complex normed vector space of dimension p. There exists
C > 0 such that for all A € End(V') with eigenvalues of modulus less than or equal to 1:

(8.1) 14" < CA+ A" (1 +n)", neZ,.
Here ||A|| is the operator norm of A.
Proof. Let D, be the disk of center 0 and radius 1 + (1 4+ 7)"'. Then

(8.2) A" =1/2in [ 2"(z1d — 4)"' d=.
oD,

From the Cramer rules, there exists a polynomial function from End(})) into itself,
B +— M(B), of degree p — 1, such that for any invertible B, one has:

(8.3) B = (det(B)) ' M(B).
Hence, there exists C’ > 0 such that:
IM(B)|| < C'(1+|B)""", BeEnd(V).
Hence, taking into account:
I4]zId— A 2+ (1+n) "+ 4] £ 2+(1 +n)’1)(1 +[|4]]), ze€ Dy,

one has
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84) [MEId—A)|£C Q2+ 0+ ) (144", zeD,.

Now the eigenvalues of zId — 4, z € dD, are of modulus greater or equal to (1 +n)7l.
Hence

(8.5) |det(zId — A4)| = (14+n)?, nelZ,.
The length of dD, is 2z(1 + (1 + n)_l). From equations (8.1) to (8.4), one gets:
A" < (1+ 1+ Y2+ T+ U+ m)? (1 + | 4])"
One gets the required estimate with:
C=Ce3"'. O

Corollary 8.2. (i) Let ¥’ > r > 0. There exists C, . such that for all A € End(V) with
eigenvalues of modulus less or equal to r, one has

14" £ Coor ()" (1 + 14"

(i) Let € > 0 and let Q. be the set of elements in End(V') whose eigenvalues are either
of modulus one or of modulus less or equal to 1 —e. Let Py be the sum of the spectral
projections corresponding to the eigenvalues of modulus strictly less than 1. Then
P_1A" = (A-)", where A-i = P.1A. Let b > 0 such that 1 — e < e~". There exists C de-
pending on b, € and V such that

|PaA"|| £ C(1+ ||PoA])" e, neN, 4eQ..

(iii) If A(t) is a continuous (resp., holomorphic) function with values in Q., then A (t)
has the same property.

n—1

Proof. (i) One applies the previous result to r”~ A, where r < r” < r’ and one uses

the fact that (1 4+ n)”(+’/r")™" is bounded.

(ii) follows from (i) applied to Ay, r =1 —¢, 7' = e,

(iii) follows from the formula

Aoy = 1)2in [z(z1d — 4) " dz,

D
where D is the disc of center 0 and radius 1 —¢/2. [

Lemma 8.3. Let ¢,a >0, p,leN. Let V a normed complex vector space of dimen-
sion p and X =Z'. Let n be a finite dimensional complex representation of X. One de-
notes by (ei,...,e,) the canonical basis of X. One sets A =mn(e1),...,A;=n(e). If
n=(ny,...,n)€X, one sets: |n| = |ni| +--- + |ny|, and A" = n(n). Assume that the mod-
ulus of the eigenvalues of the A; are less or equal to one, and the eigenvalues of Ay are either
of modulus one or of modulus less or equal to 1 — €. Let us denote by P (resp., Py) the sum
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of the spectral projections of A corresponding to the eigenvalues of moduli strictly less than 1
(resp., of moduli 1). Set X; = {ne Z. |ny > a||n||}.

Then there exist a’ and C', independent of the representation n of X in V, such that

||P<1A"||§c'( 1 <1+||A,-||>f’)e-“’”, ne X,
i=1,....1

Proof. From Corollary 8.2(i), (i), one deduces that, for » > 0 such that | — ¢ < e™?,
and b’ > 0, there exists a constant C > 0, depending only on ¢, b, b’ and V' such that:

Pad’l = €'( T (1Al )etmstmem, e,

i=1,..,1

If n e X, one has
bny —b'(ny + -+ +ny) = (ab —b'")||n|;

b being chosen, one takes b’ = ab/2. Then the inequality of the lemma is satisfied for
a =ab/2. O

9. Appendix. The c-function

In this appendix we have collected some of the properties of the Macdonald
c-function. These properties play a prominent role throughout this paper, and are closely
related with the properties of residual cosets as discussed in [26], Appendix: residual cosets
(Section 7).

We now define the Macdonald c-function ¢ element of 5o/ = 2 ® o/ the quotient
field of .«7. Set

(9.1) ci= [ ecx= ]I cu
C{ERU_+ OCERLJr
where ¢, for o € R is equal to
~1/2 —-1/2 _
(1 + qav/ 0—06/2>(1 - qocv/ anlvg—zz/Z)

(92) Cy = 1-0 € g&/

If « € R\ R; then we define ¢, := ¢,.

Remark 9.1. We have thus associated a c-function ¢, to each root « € R, but ¢,
only depends on the direction of «. This convention was used in [26], but differs from the
one used in [25]. If « € R, and o/2 ¢ Ry, then the formula for ¢, should be interpreted by
setting ¢p,» = 1, and then rewriting the numerator as (1 — ¢! 0_,). Here and below we use
this convention.

We view c¢ as a rational function on 7" via the isomorphism of .o/ and the ring of reg-
ular functions on T sending 6, to the complex character x of 7.
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Since the numerator and the denominator of ¢ both are products of irreducible
factors whose zero locus is nonsingular (a coset of a cod%mension 1 subtorus of 7, it is
straightforward to define the pole order i, of (c(¢)c(wor)) ~ at a point t € T (see [26], Defi-
nition 3.2).

Let Q = Q(Ry) denote the root lattice of Ry. The following theorem is the main prop-
erty of the c-function:

Theorem 9.2 ([26], Theorem 7.10; [27], Theorem 7.1). We have: i, < rank(Q) for all
teT.

We define the notion of a “residual point” of T (with respect to (%, ¢)) as follows:
Definition 9.3. A point ¢ € T is called residual if i, = rank(X).

Remark 9.4. There is a complete classification of the residual points [13], [26]. The
results on the c-function used in this section can either be proved using this classification
(see [13], [26]) or using harmonic analysis (see [27]).

Corollary 9.5.  There exist only finitely many residual points in T, for every root datum
R and label function q for R, and the set of residual points is empty unless Zy = 0.

Proof. Let n =rank(R). From equation (9.1) it is clear that for any k € Z, the set
Sk := {t|i, = k} is a finite (possibly empty) union of nonempty Zariski open subsets of co-
sets L of subtori of T, whose Lie algebra is an intersection of root hyperplanes « = 0 of
CQ® Y. If L is such a coset with codim(L) = d, then R, := {a € Ry ||, is constant} is a
parabolic subsystem of rank d. Moreover, the projection ¢ of L onto Ty is a point with
i,le = k. Applying Theorem 9.2 to 7 with respect to (%, q,) we obtain k < d.

Hence if S, is not finite, then there exists a proper parabolic root subsystem R; <= Ry
of rank m < n say, such that n < m, which is clearly absurd. The remaining part of the cor-
ollary is straightforward from Theorem 9.2. []

Another fact of great interest is the following.

Theorem 9.6 ([26], Theorem 7.14; [27], Theorem 7.4). Let r =sce T be residual,
with s€ T, and ¢ € T,.. Then r* :=sc™ ! e W (Rs1)r, where Ry 1 is the root subsystem of Ry
defined by R | := {a € Ry |a(s) = 1}.

We extend the definition of the c-function to arbitrary standard induction data. First
recall Theorem 2.10, stating that the central character of a residual discrete series represen-
tation is residual.

Definition 9.7. Let & = (P,d, ) be a standard induction datum, and let rp € Tp be
such that Wprp is the central character of J (thus rp is a (#p, Tp)-residual point). Put
t = rpt? € T. We define:

(9.3) c(é) = [T (o).

a€Ro,+\Rp,+



Delorme and Opdam, The Schwartz algebra of an affine Hecke algebra 107

Notice that we recover the original ¢-function defined on T as the special case where P = ()
and 0 is the trivial one dimensional representation.

The next proposition goes back to [13], Theorem 3.13 (also see [26], Theorem
3.25).

Proposition 9.8. Let P < Fy and let ¢ = (P,6,t") € Ep 5, Choose rp e Tp such that
Wprp is the central character of 6, and let t = rpt¥ € T.

(ii) The function & — |c(&)|* on B, is W -invariant.
(i) The function c¢(&) is A -invariant.

(iv) Let P'€ 2P and d e Kp x W(P,P'). The rational functions c¢(d&)c(&)™" and
c(dé)_lc(f) (of & € Ep ) are regular in a neighbourhood of Zp s .

(V) The rational function c(f)f1 is regular in a neighbourhood of E,.

Proof. (i) A straightforward computation from the definitions, using Theorem 9.6
(cf. [26], (3.58)).

(i) The # -invariance follows simply from the definitions if we write (using (i))
(&) = (e(&)e(E")™") (cf. [26], Proposition 3.27).

(ii) This follows trivially from the definition of the action of " on &: If k € Kp
then k& =k(P,6,t") = (P,¥(d),kt"). The central character of W(d) is equal to
k=" Wprp = Wp(k~'rp), thus we need to evaluate the ¢, in the product c¢(k&) at the point
k~'rpkt® = t, or any of its images under the action of Wp. Hence c¢(k&) = ¢(&).

(iv) By (i) and (ii) it is clear that these rational functions have modulus 1 on Zp 5,
(outside their respective singular sets).

The singular sets of these rational functions are of the following form. Choose rp € Tp
such that Wprp is the central character of . Then the singular set of ¢(d&)e(£)™" is the
union of the zero sets of the functions

(9.4) I (-
x€ R+ \Rp 1, +
and
—-1/2_—1)2 12 1 _—1)2
(9.5) M (+q" ocpﬁ/ )(1 = g5 CIzalvo‘P,(s/ )
u€R \Rp 1, +

on Ep 5, where ap 5 denotes the function on Zp 5 defined by ap (&) = a(rpt?).

In the case of c(wP&) ' ¢(&) the answer is the same, but we need to take the products
over the set e d"'Ry (\Rp 1, _.
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The intersection of a component of this hypersurface with Zp ;5 , is either empty or it
has (real) codimension 1 in Zp s .

By the boundedness of ¢(d&)c(¢)™" on Ep.s,u, this implies that the pole order of
this function at a component of the singular set which meets Zp s, is in fact equal to
zero. Hence the poles are removable in a neighbourhood of ZEps,. Similarly for

e(dé) ().

(v) The proof of [13], Theorem 3.13 may be adapted to the present situation. Or we
may argue as in (iv) as follows.

Since |¢(¢)| 7 = (c(f)c(wp(é)))_l is smooth on E, (cf. [26], Theorem 3.25, equation
(3.53), Proposition 3.27 and equation (3.58)), it follows that ¢(¢)" is bounded on Zp.s.,.
Hence the argument that was used in the proof of (iv) applies. []

10. Appendix. Relation with the Harish-Chandra Schwartz algebra

In this section we say some words about the explicit interpretation of the Schwartz
algebra . in the situation where # arises as the algebra of compactly supported spherical
functions of a compact open subgroup of a reductive p-adic group G.

We start this discussion with an (admittedly indirect) argument explaining the role of
& for the representation theory of G. Let G be a reductive p-adic group and let o = (K, p)
be a type for a Bernstein block # of the category of smooth representations of G (cf. [6]).
Let o be the Hecke algebra of compactly supported g-spherical functions. Assume further
that 7 is isomorphic (in the sense of involutive algebras) to an affine Hecke algebra with
parameters # (2, q) in our sense. We assume moreover that via this isomorphism the trace
of # corresponds to a suitable positive multiple of the tracial state 7 of the affine Hecke
algebra # (2, q) (all this is known e.g. for level zero types of split semisimple groups of
adjoint groups, see [24], [14]). In this situation the functor V' — V7 taking g-spherical vec-
tors defines a Morita equivalence u from 4 to the category of s#-modules. It is known that
u preserves the Plancherel measure [7]. On the other hand, it is known that the support of
the Plancherel measure of G consists of the irreducible tempered representations of G
(cf. [36]). Finally, Corollary 4.4 shows that the support of the Plancherel measure of
H ~ H (R, q) is the set of irreducible representations of the Schwartz algebra ¥ (%, q) (re-
stricted to #(Z, q)). Using the well known fact that irreducible smooth representations of
G are admissible these arguments yield the following result:

Theorem 10.1. Let G be a p-adic reductive group and suppose that # is the Hecke
algebra of a type a of a Bernstein block % of G. Suppose that # is isomorphic (as involutive
algebra) to an affine Hecke algebra of the form #(R,q) such that the trace of H corre-
sponds to a positive multiple of the trace t of H#(R,q). The functor V — V' induces an
equivalence from the category of admissible tempered representations in the block % to the
category of tempered modules of finite length of # ~ H (R, q) (i.e. the category of finite di-
mensional & (R, q)-modules).

In the special case of the Iwahori-Matsumoto Hecke algebra # = #(G, B) ([15], [4])
of a split semisimple p-adic group G we will show more precisely that the Schwartz com-
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pletion & of # is isomorphic to the algebra (G, B) of B-biinvariant Schwartz functions in
the sense of Harish-Chandra.

Let K be a non archimedean local field, ¢ the number of elements of its residue field.
Let G the group of K-points of a semisimple algebraic group defined and split over K. Let
(Y, X,R,R) its root datum with respect to a split torus 4. Let K the isotropy group of a
special point of the apartment of the Bruhat-Tits building of G corresponding to 4 and B
an Iwahori subgroup G contained in K. Then K is a maximal compact subgroup of G. The
Weyl group of G with respect to 4 has a set of representative W, in K, by definition of
special points and one has

(10.1) K = BW,B.

The Iwahori subgroup of G determines a set of simple roots of R, F, and also a minimal
parabolic subgroup of G, Py, which contains B, and a Weyl chamber 4" in 4. We denote
by # the reduced based root datum (X, Y, R, R", F).

We keep the notation of Section 2.4. Then every element, w, of the Weyl group
W determines a double coset of BwB of B in G. We denote by 13,5 its characteristic
function on G. We denote by #(G,B) the convolution algebra of compactly sup-
ported functions on G which are biinvariant under B. It is endowed with the L?-scalar
product.

We denote also by ¢ the mulitiplicity function on W, w +— ¢’™"). Then (see [15], Sec-
tion 3, for Chevalley groups, and [4], Section 3, in general), there is an isomorphism, @,
between #(Z%,q) and (G, B) such that

(102) @(Tw) = leB, we W.
Moreover [15], Prop. 3.2, shows that:

The square norm of 7, is equal to the square of the L*-norm

(10.3) of 1,5, ql(“’), forwe W.

The lattice X is identified to a subgroup of 4. We denote by X the set of its Pp-dominant
elements. One has

(10.4) G = BWB = BW, X" W,B.

We denote by Jy the modulus function of Py. It is a biinvariant function under B on Py.
One has (cf. [21], Corollary 3.2.5 and Remark 3.2.11):

(10.5) So(x) =¢'™, xeX.

If X ®;, R is endowed with a norm, its restriction to the set X+
(10.6)  of Py-dominant elements, is an equivalent function to
the restriction to X of the length function /.

(See (7.1).)



110 Delorme and Opdam, The Schwartz algebra of an affine Hecke algebra

The transpose, ®*, of the isomorphism @ determines an isomorphism of the dual
H(G,B)" of #(G,B) with the dual #* of # := # (A, q). The scalar product allows to
identify #(G, B) (resp. #’) as a subspace of # (G, B)”" (resp. #).

The Harish-Chandra Schwartz algebra of G is the space €(G) of functions, f, on G
which are biinvariant under some compact open subgroup of G and such that for all n € N:

sup £ (9)IE(9)™ (1 +log(llg]))" < +oo.

Here the functions || - || and Z are the biinvariant functions under K, defined for example in
36], 1.1, IL1.

From the fact that f is biinvariant under some open compact subgroup of K, hence
of B, and from the decomposition (10.4), this is equivalent to

(10.7) sup |f(waw/b’)|E(x)_1(1 +log(||x||))n < +0o0

xeX+t
for all b,b' € B, w,w' € Wy, n € N. From [36], Lemme II.1.1, there exist C;,C, >0, d e N
such that
(10.8)  Ci6Y*(a) £ E(a) < Gy (@) (1 +log(lla])) !, ae A

Using equations (10.8), (10.5), (10.4), (10.6), and taking into account equation [36], I.1 (6),
one sees that (10.7) is equivalent to

(10.9) sup | f(bwxw'd")|q"2 (1 +1(x))" < +o0

xeX+
forall b,b’ € B, w,w' € Wy, n € N. Using the L? scalar product, the algebra of B-biinvariant
elements of 4(G), €(G, B), might be viewed as a subspace of #(G, B)".
Proposition 10.2.  The image of €(G, B) by the transpose, ®*, of ® is equal to S ().

Proof. The Schwartz algebra & (#) is defined by (2.17). Here /" is just the length
function, as G is semi-simple: Zy is reduced to {0}.

Using our equation (2.2), one sees that, equivalently, & (#’) is the space of h e #*
such that

(10.10) sup (N, )| (1 +1(w))" < o0

xeX+

for all w,w’ € Wy, n € N. Let f be a B-biinvariant function on G, that one views as a linear
form on #(G, B). Let us denote by & € #* its image by ®*. Then a simple computation,
using (10.2) and (10.3), shows that

(h,Ny) = f(w)ql(w), we W.

Then conditions (10.9) for f is equivalent to the condition (10.10) for 4. The proposition
follows. [
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11. Appendix. Geometric lemma and the constant term

The referee suggested that our results on the constant term of coefficients should be
expressed in terms of representations. The referee mentioned the use of the basic geometric
lemma and the reference [36] for similar results for reductive p-adic groups. We will follow
the suggestion of the referee and briefly indicate how the results of subsection 6.3 could be
viewed in this perspective.

The first result we would like to mention here is the appropriate version in our con-
text of the basic geometric lemma for tempered representations, analogous to [36], Lemme
111.3.3:

Lemma 11.1 (Geometric lemma for tempered representations). Let P,Q e Z and
let (V5,0) be a tempered representation of #*. Recall the set D@ = Wy of minimal length
representatives of the double cosets WowWp. For t e TuP let ip(Vs,,) denote the tempered
representation of A obtained by inducing 6, from H' to A (see [26], Proposition 4.20).
There exists a filtration of the constant part ip(Vy ;) 2 of ip(Vs,:) along Q such that

(11.1) gr(ip(Vs.)9) = ) @Q i8 p(d(Vs.) " 2°F)
eD”P

where d(V(;‘,t)dlemP denotes the pullback of (V(sy,)‘rlQmP by the algebra isomorphism
w;l L QAP gpdlO0P (see Subsection 3.5 for the meaning of ;).

Proof. We choose a filtration Oy « O, = --- = Oy = W, of W, by left Wy and
right Wp invariant subsets such that (with Oy = 0)

(11.2) O\O;_1 = Wod;Wp
for d; e D27 such that the length of d; is increasing with i. For all w € Wy 4p we have
(1 1 3) NWNd,' - NdiNdlflwa'i == NW[[,'

since /(w) = I(d;'wd;) and I(wd;) = I(w) + I(d;). Using Lustig’s relation (2.8) and induc-
tion with respect to the length of d; we see easily that for all x € X:

(11.4) O Ny = Ng 0y, + > aiNy, Oy, -

Wi € 0,',1 , Xk € X

We define a filtration of ip(V; ;) by putting

(11.5) ir(Vs); = 3. HONG(1Ryr Vi)
Jj=1,...,i

By (11.3) and (11.4) we see that this is a filtration by # ¢-submodules, and that

(11.6) ip(Va,0)i/tP(Vo,0)imy = ignd,P(di(V5,1|5Wd;‘QmP))'
Therefore by Proposition 3.18(iv) it is enough to prove that for all d;:

. d-10nP,
(11.7) iS g p(di(Vy, 272 =0,
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The weights 1 € T of d;(V Qmp’+) are of the form

5t

(11.8) t=t I d,®a"
aed;P\Qnd;P
with ||, = 1 and where for all « € d;P\Q N d;P, |d,| <1 and |d,| < 1 for at least one
a. From Kilmoyer’s result Proposition 6.7 it follows that if o€ d;P\Qnd;P then
a € Ro,+\Rp,+. Using the 1nequa11‘ues satlsﬁed by the |d,| it now follows easily that
|| * 1 for any weight ¢ ofd(V(S : ). The weights 7€ T of i M“D(d(Vd onk ) are

W translates of the weights of d; (V(S '[ OnP+ ), hence these welghts also all satisfy 7], + 1.
This proves (11.7) and finishes the proof. []

Corollary 11.2. If 0 is a discrete series representation of #p and & = (P,0,t) € Ep a
standard tempered induction datum, then there exists a filtration of n(f)Q such that

(11.9) g9~ @ i%dVs).

deD2P.dP=Q

Proof. This is an easy special case of the previous lemma, using Proposition 3.20.

O

Corollary 11.3. Same conditions as in the previous corollary, but now assume that
te TID is such that the induction datum & is Rp-generic, i.e. such that trs € T is Rp-generic
where rs is such that Wpry is the central character of 6. Then n(é)Q is semisimple and

(11.10) (&%~ D ipdVs)

deD2P.dP=Q

is the decomposition in irreducibles, all of them being inequivalent to each other.

Proof. Under the assumption of genericity we know that the modules idQP(d. Vs.1)
with d € D2® such that dP = Q are irreducible (see [26], Corollary 4.18) and their central
characters are mutually distinct by Corollary 6.8(ii). Then (11.10) follows by the preceding
corollary. [

The decomposition of Corollary 11.3 can be easily compared to the decomposition
(3.6), by observing that

(11.11) iSp(d. Vi) = #2(igew ® Vi),

Now let Q' = —w?2(Q) and put P’ = —w?(P). Consider also the decomposition (still
assuming that we are in the generic case)

(11.12) (&9 ~ D® il d V).

d'eD? ?'.d'(P)cQ’

Notice that this is the geometric lemma for affine Hecke algebras. W1th respect to the Her-
mitian inner product on 7(¢) defined by (3.4) the subspaces of 7(£)< and 7(¢)? defined by

(11.13) Nyoifpn(d' Vi)
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and
(11.14) i9(d.Vs.,)

respectively are mutually orthogonal unless wd’ = d, as one can easily see from the well
known formula 07 = N,,,0_,,(x) N:! and Corollary 6.8(ii). The results of Subsection 6.3,

M()
in particular the exphclt formula in Corollary 6.16 for the constant term, are based on

this orthogonahty together with exp11c1t formulas relating the inner products <{a,b) for
ae ngzd, (d Vsi) cn(é)and b e zdP(d Vs.) < (&) (where wd’ = d) in terms of stan-
dard inner products in standard induced modules of # 2.
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