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1. Introduction

Let H be an a‰ne Hecke algebra in the sense of Lusztig (see [16] or [25]). The
Fréchet algebra S, the Schwartz algebra completion of H, is a central object of study for
the harmonic analysis of H. The key to understanding the structure of S is the Fourier
transform isomorphism F which (by the main result of [9], Theorem 5.3) identifies S
with the algebra of Weyl group invariant sections of a certain smooth endomorphism
bundle over the space Xu of ‘‘tempered standard induction data.’’

Such a tempered standard induction datum consists of a triple ðP; d; tÞ where P

denotes a subset of the set of simple roots of the based root system underlying H. This
subset P defines a ‘‘standard Levi subalgebra’’ HP of H, with semisimple quotient HP,
and d denotes a discrete series representation of HP. Finally t is a unitary induction param-
eter for HP, which is used to lift d to a unitary representation dt of HP. The set of such
unitary parameters has the structure of a compact real torus. Thus Xu is a finite union of
compact tori.

The endomorphism bundle alluded to above is constructed from a canonical projec-
tive unitary representation p of the groupoid WXu

of tempered standard induction data
(cf. [9], Section 3.5). The arrows in this groupoid are twists by certain isomorphisms of
the HP defined in terms of the (a‰ne) Weyl group. This groupoid WXu

has been determined
explicitly in general if H is of simple type, see [26]. The projective representation p yields a
2-cocycle g A Z2

�
WXu

;Uð1Þ
�

of WXu
with values in Uð1Þ.

The results [9], Theorem 3.11, Theorem 3.19 state that for every x A Xu the represen-
tation pðxÞ of H is unitary and tempered, and that for every irreducible tempered module r

of H there exists a unique orbit Wx (with x A Xu) such that r is equivalent to an irreducible
summand of pðxÞ.

The main purpose of this article is to decompose pðxÞ for x A Xu. For this reason we
introduce a certain subgroup Rx, called the R-group, of the isotropy subgroup Wx;x of x in
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the Weyl groupoid W. We show an analog of the Knapp–Stein Dimension Theorem [14],
[30] which says that the commutant of the representation pðxÞ has a basis given by the pðrÞ
with r running over the elements of Rx. As in [1], Section 2, it follows that there exists a
bijective correspondence between the irreducible representations of H arising as summands
of pðxÞ on the one hand, and the irreducible representations of the twisted complex group
algebra gxC½Rx� on the other hand (where gx denotes the restriction of g to Rx). This is the
content of our main result, Theorem 5.5. If H is of simple type, our results yield the clas-
sification of the (equivalence classes of) irreducible tempered modules of H. In the ‘‘equal
parameter case’’ [13] and more generally for the a‰ne Hecke algebras arising in the context
of ‘‘unipotent representations’’ of inner forms of simple adjoint split groups, a classification
of the tempered irreducible modules in terms of geometric data is also known [18].

The analogy with the theory of tempered representations of the group G of points of a
reductive group defined over a local field is not surprising, since for various specializations
of the parameters of H it is known that its module category is equivalent to a Bernstein
block b in the category of smooth representations of such a group G ([17], [21], [22], [23],
[11]). If H is in fact isomorphic to the Hecke algebra of a ‘‘b-type’’ then this equivalence
is known to respect temperedness and Plancherel measures [3]. Hence in this context our
results yield the classification of the irreducible tempered representations of G which belong
to b.

It is a fundamental question how the R-groups of parabolic induction for H which
we will define below are related to the R-groups of parabolic induction for G if H is the
Hecke algebra of a type for b or in the context of [11]. Some general results in this direction
have been achieved by Roche [29].

The R-groups and 2-cohomology classes ½gx� for classical a‰ne Hecke algebras are
amenable to direct explicit computation. This is illustrated by Slooten’s computation [31]
of the R-groups for classical Hecke algebras when the inducing representation is discrete
series with real infinitesimal character (in the sense of [2]), and by the results in Section 6
of the present paper, proving the triviality of the 2-cocyles gx for classical Hecke algebras in
all cases. With these results at hand, our decomposition theorem amounts in these cases to
the proof of Slooten’s conjectural classification [31], Conjecture 4.3(i) of the irreducible
tempered representations with real central character for classical Hecke algebras (see [31]).
For a geometric approach to these results, see [7].

The main technical thrust of the proof of Theorem 5.5 is the fact that the W-average
of the product of a smooth section of the endomorphism bundle with the c-function is itself
a smooth section (see equation (4.2)). Another technical tool is the computation of the con-
stant term for generic parameters [9], Section 6.2.

2. A‰ne Hecke algebras

The structure of an a‰ne Hecke algebra H ¼HðR; qÞ is determined by an a‰ne
root datum (with basis) R together with a label function q defined on the extended a‰ne
Weyl group W associated to R. We refer the reader to [16], [25], [9] for the details of the
definition of the algebra HðR; qÞ, which we will only briefly review here.

134 Delorme and Opdam, Analytic R-groups of a‰ne Hecke algebras

Brought to you by | Aix Marseille Université
Authenticated

Download Date | 5/22/18 12:41 PM



Let R ¼ ðX ;Y ;R0;R
4
0 ;F0Þ be a root datum (with basis F0 HX of simple roots of

R0 HX ). Let W0 denote the Weyl group of the reduced integral root system R0. The
extended a‰ne Weyl group W associated with R is by definition W ¼W0 yX . The a‰ne
root system R is equal to R :¼ R4

0 � ZHY � Z. Observe that R is closed for the natural
action of W on the set of integral a‰ne linear functions Y � Z on X . Furthermore R is the
disjoint union of the positive and the negative a‰ne roots R ¼ RþWR� as usual, and we
define the length function l on W by

lðwÞ :¼ jRþXw�1R�j:ð2:1Þ

The a‰ne simple roots are denoted by F a¤ .

A label function q : W ! Rþ is a function which is length multiplicative (i.e.
qðuvÞ ¼ qðuÞqðvÞ if lðuvÞ ¼ lðuÞ þ lðvÞ) and which in addition satisfies qðoÞ ¼ 1 if lðoÞ ¼ 0.
Thus a label function is completely determined by its values on the set S a¤ of a‰ne simple
reflections in W . Observe that this gives rise to a positive function on S a¤ which is constant
on W -conjugacy classes of simple reflections, and conversely, every such function gives rise
to a label function.

We choose a base q > 1 and define fs A R such that qðsÞ ¼ q fs for all s A S a¤ .

Given these data, the a‰ne Hecke algebra H ¼HðR; qÞ is described as follows. It is
the unique complex unital algebra with basis Nw (w A W ) over C subject to the following
relations (here qðsÞ1=2 denotes the positive square root of qðsÞ):

(i) Nuv ¼ NuNv for all u; v A W such that lðuvÞ ¼ lðuÞ þ lðvÞ.

(ii)
�
Ns þ qðsÞ�1=2��

Ns � qðsÞ1=2� ¼ 0 for all s A S a¤ .

2.0.1. Root labels for the non-reduced root system. The label function q on W can
also be defined in terms of root labels. We associate a possibly non-reduced root system
Rnr with R by

Rnr :¼ R0 W f2a j a4 A R4
0 X 2Yg:ð2:2Þ

Observe that aþ 2 A Wa for all a A R, but that aþ 1 A Wa i¤ a ¼ a4þ n with 2a B Rnr.

Let R C a! qa be the unique W -invariant function on R such that qaþ1 :¼ qðsaÞ for
all a A F a¤ . Now for a ¼ 2b A RnrnR0 we define

qa4 :¼
qb4þ1

qb4
:ð2:3Þ

It is easy to see that in this way the set of positive W0-invariant functions a4! qa4 on R4
nr

corresponds bijectively to the set of label functions q on W . With these conventions we
have for all w A W0

qðwÞ ¼
Q

a ARnr;þXw�1Rnr;�

qa4:ð2:4Þ
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We denote by R1 HX the following reduced root subsystem of Rnr:

R1 :¼ fa A Rnr j 2a B Rnrg:ð2:5Þ

Let F1 HR1 be the basis of simple roots corresponding to F0. The root system R1 dif-
fers from R0 only if the root datum of H contains direct summands of ‘‘type C

ð1Þ
n ’’, the

irreducible root datum with R0 of type Bn and X the root lattice of Bn. This is the only
irreducible root datum for which the a‰ne Hecke algebra admits 3 independent parame-
ters. For this root datum, R1 is of type Cn. When applying Lusztig’s first reduction theorem
(cf. [26], Theorem 2.6) one needs to consider the a‰ne Weyl group R

ð1Þ
1 rather than R

ð1Þ
0 ,

and this is the reason for introducing R1 (it plays a role in the explicit computations in
Chapter 6).

2.0.2. Restriction to parabolic subsystems. We define a ¼ Y nZ R. Let P be a subset
of F0. We have a canonical decomposition a ¼ aP l aP, where aP :¼ P? and aP :¼ RP4.
Dually we have the decomposition a� ¼ aP;�l a�P where a�P ¼ RP and aP;� ¼ ðP4Þ? (in
the case P ¼ F0 we will denote this decomposition by a� ¼ a0;�l a�0 ). Let RP HR0 be the
‘‘parabolic subsystem of roots’’ RP ¼ R0 X a�P.

Consider the root datum RP :¼ ðX ;Y ;RP;R4
P;PÞ. Let XP !@ X=ðX X aP;�Þ be the

projection of the lattice X on a�P along aP;� (this lattice contains the lattice X X a�P as a
sublattice of finite index). Observe that the dual lattice YP of XP equals YP ¼ Y X aP. We
also introduce the semisimple root datum RP :¼ ðXP;YP;RP;R4

P;PÞ. The non-reduced root
systems associated to the root data RP and RP are both equal to RP;nr :¼ QRP XRnr. We
define a label function qP on the a‰ne Weyl group associated to RP by requiring that the
corresponding root label function on RP;nr is obtained by restricting the root label function
on Rnr to RP;nr. We define a label function qP on the a‰ne Weyl group associated to RP in
the same fashion.

2.0.3. Bernstein presentation. There is a second presentation of the algebra H, due
to Joseph Bernstein (unpublished). Since the length function is additive on the dominant
cone Xþ, the map Xþ C x 7! Nx is a homomorphism of the commutative monoid Xþ

with values in H�, the group of invertible elements of H. Thus there exists a unique exten-
sion to a homomorphism X C x 7! yx A H� of the lattice X with values in H�.

Let AHH be the abelian subalgebra of H generated by yx, x A X . Let
H0 ¼HðW0; q0ÞHH be the finite type Hecke algebra associated with W0 and the restric-
tion q0 of q to W0. Then H0 HH is a subalgebra of H. The Bernstein presentation asserts
that the multiplication maps H0 nA!H and AnH0 !H are linear isomorphisms.
The algebra structure of H is then completely determined by the following cross relations
(for all x A X and s ¼ sa with a A F0):

ð2:6Þ

yxNs �NsysðxÞ ¼
ðq1=2

a4 � q
�1=2
a4 Þ

yx � ysðxÞ
1� y�a

if 2a B Rnr;

�
ðq1=2

a4=2q
1=2
a4 � q

�1=2
a4=2 q

�1=2
a4 Þ þ ðq1=2

a4 � q
�1=2
a4 Þy�a

� yx � ysðxÞ
1� y�2a

if 2a A Rnr:

8>>><>>>:
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2.0.4. The center Z of H. An immediate consequence of the Bernstein presenta-
tion of H is the description of the center of H:

Theorem 2.1. The center of H is equal to AW0 . In particular, H is finitely generated

over its center.

As an immediate consequence we see that irreducible representations of H are finite
dimensional by an application of (Dixmier’s version of) Schur’s lemma.

2.1. Intertwining elements. Let s ¼ sa A S0 with a A F1. Define is A H by:

is ¼ ð1� y�aÞNs þ
�
ðq�1=2

a4 q
�1=2
2a4 � q

1=2
a4 q

1=2
2a4Þ þ ðq

�1=2
2a4 � q

1=2
2a4Þy�a=2

�
¼ Nsð1� yaÞ þ

�
ðq�1=2

a4 q
�1=2
2a4 � q

1=2
a4 q

1=2
2a4Þya þ ðq

�1=2
2a4 � q

1=2
2a4Þya=2

�
(where, if a=2 B X , we put q2a4 ¼ 1). We recall from [24], Theorem 2.8 that these elements
of H satisfy the braid relations, and they satisfy (for all x A X ):

isyx ¼ ysðxÞis:ð2:7Þ

Let Q denote the quotient field of the center Z of H, and let QH denote the
Q-algebra QH ¼ QnZ H. Inside QH we normalize the elements is as follows. We first
introduce

na :¼ q
1=2
a4 q

1=2
2a4ð1þ q

�1=2
a4 y�a=2Þð1� q

�1=2
a4 q�1

2a4y�a=2Þ A A:ð2:8Þ

Then the normalized intertwiners i0s A QH (s A S0) are defined by (with s ¼ sa, a A R1):

i0s :¼ n�1
a is A QH:ð2:9Þ

It is known that ði0s Þ
2 ¼ 1, and in particular that i0s A QH

�, the group of invertible elements
of QH. We have:

Lemma 2.2 ([25], Lemma 4.1). The map S0 C s 7! i0s A QH
� extends (uniquely) to a

homomorphism W0 C w 7! i0w A QH
�. Moreover, for all f A QA we have that i0w f i0

w�1 ¼ f w.

3. The Fourier transform for a‰ne Hecke algebras

Recall the canonical decomposition a� ¼ a0;�l a�0 . Then X X a0;� consist of transla-
tions of length 0 in the a‰ne Weyl group. Choose a norm k � k on a0;�. Let us denote by x0

the projection of x A X onto a0;� along a�0 . Then we define a norm N on W by

NðwÞ :¼ lðwÞ þ kwð0Þ0k:ð3:1Þ

Definition 3.1. The Schwartz completion S of H is the vector space of the for-
mal complex linear combinations

P
w AW

cwNw for which the function W C w! cw is rapidly

137Delorme and Opdam, Analytic R-groups of a‰ne Hecke algebras

Brought to you by | Aix Marseille Université
Authenticated

Download Date | 5/22/18 12:41 PM



decreasing with respect to the norm N defined above on W , equipped with the usual
Fréchet topology on the space of rapidly decreasing functions on W .

Recall the following result:

Theorem 3.2 ([25], Theorem 6.5). The algebra structure on the dense subspace

HHS extends uniquely to a Fréchet algebra structure on S.

Let us now review the notions involved in the definition of two of the main ingre-
dients involved in the description of the structure of the Fréchet algebra S, the group-
oid WXu

of standard tempered induction data, and the ‘‘induction intertwining functor
p’’ defined on this groupoid. Both these structures arise from the L2-theory of the Hecke
algebra.

3.1. Tempered representations. An a‰ne Hecke algebra with a positive label func-
tion comes equipped with the structure of a �-algebra, where � denotes the unique anti-
linear anti-involution defined by anti-linear extension of the map N �w :¼ Nw�1 . Moreover,
the linear functional t defined by tðNwÞ ¼ dw; e is a positive trace with respect to �. The
star operation � and trace t together define a unique Hilbert algebra structure on H (see
[25]) which is the origin for the harmonic analysis on H.

We define a positive definite Hermitian inner product on H by ðx; yÞ :¼ tðx�yÞ, and
denote by L2ðHÞ the Hilbert space completion of H. It is the separable Hilbert space in
which the basis elements Nw (w A W ) form a Hilbert basis. We have

HHSHL2ðHÞ;ð3:2Þ

and the second inclusion is easily seen to be continuous.

A representation p of H which is of finite length is called tempered if p extends con-
tinuously to S. It is in fact su‰cient that the character of p (recall that all representations
of finite length of H are finite dimensional) extends continuously to S (cf. [25], Lemma
2.20). An irreducible representation p of H is called a discrete series representation if p

extends continuously to L2ðHÞ. An equivalent way of saying this is that the character wp
of p extends to a continuous functional on L2ðHÞ (cf. [25], Lemma 2.22). Thus a discrete
series module is in particular a tempered module.

Our main interest in this paper will be the description of the structure of the tempered
dual ŜS of H, the set of equivalence classes of irreducible tempered representations. It is
known (cf. [9], Theorem 3.11, Theorem 3.19, Theorem 4.3, and [25], Theorem 2.25) that
this set of irreducible representations extends to the C �-algebra completion C �r ðHÞ of H,
and that one obtains in this way precisely the irreducible spectrum of C �r ðHÞ. We equip ŜS
with the topology of the spectrum of C �r ðHÞ via this identification.

3.2. The groupoid of standard induction data.

3.2.1. Induced representations. The a‰ne Hecke algebra with root datum RP and
label function qP is naturally embedded as a subalgebra of H, as is apparent from Bern-
stein’s presentation. The a‰ne Hecke algebra with root datum RP and label function qP is
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isomorphic to the quotient of HP by the central subalgebra AP HHP generated by the yx

with x A X X aP;�. In particular for HP the rôle of the complex algebraic torus T of (quasi)
characters of X is now played by the algebraic subtorus TP HT with character lattice XP.
The central characters of the irreducible modules over HP are WP-orbits in TP.

Let T P HT denote the complex algebraic subtorus with character lattice
X P ¼ X=ðX X a�PÞ. This is the identity component of the group of fixed points for the
action of WP on T . The group T P acts naturally on HP by automorphisms. We
send t A T P to the automorphism ct of HP which acts on the Bernstein basis by
yxNw ! tðxÞyxNw. Given a discrete series representation d of HP we denote by dt the twist
dt ¼ d � p � ct by t A T P of the lift of d to HP via the natural quotient map p : HP !HP.
Define the finite abelian group

KP :¼ T P XTPAHom
�
XP=ðX X a�PÞ;C�

�
:ð3:3Þ

For later use we observe that if k A KP then the twist by k descends to an automorphism of
HP, and we have dtk ¼ ðdkÞt, where dkð¼ dk�1Þ is the twist of d by the automorphism of HP

coming from k, which is again a discrete series representation of HP.

Choose a complete set of representatives DP ¼ DRP;qP
for the set of isomorphism

classes of discrete series representations of the Hecke algebra HP. This set is finite [25],
Lemma 3.31. We put D for the finite disjoint union D :¼

‘
P AP
ðP;DPÞ, a finite set with a

natural fibration D! P (with P the power set of F0).

We will use some terminology from the theory of groupoids. Recall that a groupoid G
is a ‘‘group with several objects’’ or more formally, a small category in which all the mor-
phisms are invertible. In particular a group G is a groupoid with one object. On the other
extreme end any set X can be viewed as a groupoid with only identities, the ‘‘identity
groupoid’’ of X .

A standard induction datum x for H is a triple ðP; d; tÞ with P A P, d A DP :¼ DRP;qP
,

and t A T P. Recall that d is a representative of an equivalence class of discrete series repre-
sentations. Let us denote the underlying vector space by Vd. The set X of all such triples is a
finite (by [25], Lemma 3.31) disjoint union of the subsets XðP; dÞ, each of which is a copy of
the complex algebraic torus T P. We view X as the set of arrows of a groupoid whose set of
objects is D, with Hom

�
ðP; dÞ; ðQ; tÞ

�
¼ XðP; dÞ if ðP; dÞ ¼ ðQ; tÞ and ¼ j else. We identify

XðP; dÞ with the complex algebraic torus T P by T P C t! x ¼ ðP; d; tÞ A XðP; dÞ. This equips X
in particular with the structure of a complex algebraic variety. We denote by Xu HX the
compact real form of X (i.e. we restrict t to the compact real form T P

u HT P). Given an
induction datum x ¼ ðP; d; tÞ we can define an induced representation pðxÞ of H by induc-
ing dt from HP to H (see [25], Paragraph 4.5.1; [9], Subsection 3.5). The representation is
realized in the vector space

Vx ¼HnHP Vd ¼: iðVdÞð3:4Þ

which is independent of t A T P (the ‘‘compact realization’’). The matrix coe‰cients of pðxÞ
are regular functions on X. The representations

�
pðxÞ;Vx

�
are called generalized principal

series representations.
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Proposition 3.3 ([25], Proposition 4.19, Proposition 4.20). The generalized principal

series pðxÞ is tempered if x A Xu, and it is unitary for x A Xu with respect to a standard inner

product on iðVdÞ which is independent of x.

3.2.2. The groupoid of standard induction data. We now describe the morphisms
of standard induction data. Recall the Weyl groupoid W which has the collection of stan-
dard parabolic subsets PHF0 as set of objects, with arrows WP;Q :¼ fw A W jwðPÞ ¼ Qg
between two standard parabolic subsets P, Q (see Appendix 7 for some important
notions related to W). If w A WP;Q then there exists a corresponding isomorphism of root
data RP ! RQ compatible with the root labels qP and qQ, thus defining an isomorphism
cw : HP !HQ. On the other hand, we have already seen above that with k A KQ there
is associated a twist ck of HQ. We define a groupoid W whose set of objects is P and
WP;Q :¼ KQ �WP;Q with the obvious composition rule ðk � uÞ � ðl � vÞ ¼ k

�
uðlÞ

�
� uv.

We also introduce the ‘‘normal subgroupoid’’ KHW whose objects are P, with KP;Q ¼ j
if P3Q and KP;P ¼ KP. Hence the Weyl groupoid W is equal to the quotient W ¼W=K.

For each g ¼ k � u A W we define an isomorphism cg : HP !HQ by

cg ¼ ck�u :¼ ck � cu:

There is a natural action of W on the space X by (with g ¼ k � u A KQ �WP;Q):

gðP; d; tÞ :¼
�
uðPÞ; dg; gðtÞ

�
;ð3:5Þ

where dg A DQ is the unique discrete series representation such that dg F d � c�1
g .

Definition 3.4. We define the groupoid WX of standard induction data by
WX :¼W�P X. Its set of objects is X, and the morphisms in WX from x! h are the
g A W such that gðxÞ ¼ h. The full subgroupoid WXu

is obtained by restricting the set of
objects to Xu HX.

Notice that the groupoid WX is canonically determined by H. In particular WX

is independent of the chosen representatives of the isomorphism classes of discrete series
representations D.

Given a morphism g ¼ k � u A WP;Q in the groupoid and a discrete series representa-
tion d A DP, we now choose an isomorphism

~ddg : Vd ! Vdgð3:6Þ

intertwining the irreducible representations d � c�1
g and dg. Given x ¼ ðP; d; tÞ A XðP; dÞ we

will define a normalized intertwining operator

pðg; xÞ :
�
pðxÞ; iðVdÞ

�
!
�
pðgxÞ; iðVdgÞ

�
ð3:7Þ

under certain regularity conditions on x (see the discussion below; for further detail we refer
to [25], Section 4.4 and to [9], equation (3.8)). The definition is complicated since it involves
the intertwining elements i0

u�1 A QH, which act in a representation pðxÞ only if x is such
that the poles of the intertwining elements are avoided. In [25], Section 4.4 the normalized
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intertwining operators pðg; xÞ are first defined algebraically in the Zariski open set of the
so-called RP-generic elements x A XðP; dÞ, and afterwards extended to a larger open set in
the analytic topology containing XðP; dÞ;u, using the unitarity of the pðg; xÞ. The element
x ¼ ðP; d; tÞ A XðP; dÞ;u is called RP-generic if the orbit WPrdtHT consists of RP-generic ele-
ments in the sense of [25], Definition 4.12, where WPrdHTP denotes the central character
of d. The set of such RP-generic x is Zariski-open in XðP; dÞ, and for x in this set we can
define the normalized intertwining operator on pðxÞ by the formula

pðg; xÞðNw n vÞ ¼ p
�
uðxÞ;Nw

�
p
�
uðxÞ; i0u�1

��
1n ~ddgðvÞ

�
ð3:8Þ

(see [25], Section 4.4, or [9], Section 3.5). However, in a suitable open neighborhood of
XðP; dÞ;u the apparent poles of the normalized intertwining operators turn out to be remov-
able (see [25], Subsection 4.4). Hence we can uniquely extend the pðg; xÞ to a smooth family
of operators depending on x in a suitable open neighborhood of XðP; dÞ;u. The normalized
intertwining operators on Xu we use in the present paper are the restrictions to Xu of these
regular rational functions of x defined in a neighborhood of Xu HX. They are in fact
unitary for x A Xu with respect to the standard inner products on iðVxÞ and iðVgðxÞÞ (cf.
[25], Proposition 4.19). In this way we have obtained the following result (see [25], Theorem
3.38, and [9], Theorem 3.14):

Theorem 3.5. The assignment XðP; dÞ;u C x! pðxÞ and WP;Q C g! pðg; xÞ extend to

a functor p (the ‘‘induction intertwining’’ functor) from WXu
to PRepðHÞtemp;unit, the cat-

egory of tempered, unitary modules of H in which the morphisms are unitary H-intertwiners

modulo scalars. The functor p is rational and regular in x A Xu.

Theorem 3.6 ([9], Theorem 3.19 and Corollary 5.6). Any irreducible tempered repre-

sentation V is isomorphic to a summand of a generalized principal series representation for

a unitary standard induction datum x A Xu whose isomorphism class is uniquely determined

by V .

This theorem tells us that in order to classify the irreducible tempered representations,
it is enough to classify the discrete series representations and to understand how the gener-
alized principal series representations with unitary induction parameter decompose in irre-
ducible subrepresentations. The theory of the analytic R-group below is designed to resolve
this last problem of the decomposition of pðxÞ for unitary x.

3.2.3. The 2-cocycle gW, D. It is conventional to denote by G0 the set of objects of a
groupoid G, and by G1 the set of morphisms or arrows of G. Each arrow g A G1 has a
source object sðgÞ and a target object tðgÞ, and this defines two maps s; t : G1 ! G0. The
set of composable pairs of arrows is G2 :¼ fðg1; g2Þ j gi A G1; sðg2Þ ¼ tðg1Þg. This set is
thus a fibered product

G2 ¼ G1
s �t G

1:ð3:9Þ

The twisting isomorphisms cg : HP !HQ with g A WP;Q define a homomorphism
from the groupoid W to the groupoid IsoP whose set of objects is P and whose morphisms
IsoPðP;QÞ consist of algebra isomorphisms from HP to HQ which map AP;þ to AQ;þ,
where AP;þ is the subalgebra of HP spanned by the elements Nx with x A XP;þ and simi-
larly for AQ;þ. This induces an action of W on the set D. The choice of intertwining
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isomorphisms made in (3.6) determines a Uð1Þ-valued 2-cocycle gW;D on the finite groupoid
WD ¼W�P D (which has the finite set D as its set of objects) as follows. Let g 0, g be com-
posable arrows in W, let d A DP where P is the source of g, and let d 0 ¼ dg. With the above
notations, we have

�
ðg 0; d 0Þ; ðg; dÞ

�
A W2

D :¼WDs �t WD (where s, t denote the source and
target map of the groupoid WD). We define a function gW;D on W2

D by:

~dd 0g 0 � ~ddg ¼ gW;D

�
ðg 0; d 0Þ; ðg; dÞ

�
~ddg 0g:ð3:10Þ

Proposition 3.7. The function gW;D defines a 2-cocycle on W2
D with values in Uð1Þ,

whose class ½gW;D� A H 2
�
WD;Uð1Þ

�
is independent of the choices of the ~ddg. We can choose

the ~ddg such that gW;D has values in the group mðDDÞ of complex DD-th roots of unity, with

DD :¼ lcmd ADfdimðVdÞg.

Proof. Let
�
ð f ; dÞ; ðg; eÞ; ðh; zÞ

�
A W3

D :¼WDs �t WDs �t WD. By associativity

ð~ddf � ~eegÞ � ~zzh ¼ ~ddf � ð~eeg � ~zzhÞð3:11Þ

one checks the 2-cocycle relation of gW;D. It is clear that changing the choices of the
isomorphisms ~ddg in equation (3.6) changes gW;D only by a coboundary. Let us now prove
the last assertion. First suppose that DD ¼ 1. Choose a basis vector in Vd for each pair

ðP; dÞ with d A DP. Then ~ddg is a complex scalar, and relation (3.10) expresses gW;D as
the coboundary of the C�-valued function g! ~ddg on W1

D , proving the assertion in
this special case. In the general case, taking determinants (and suitable powers) in (3.10)
similarly shows that gDD

W;D is the coboundary of a C�-valued function e on W1
D , i.e.

gW;Dðg; g 0Þ
DD ¼ eðgÞeðg 0Þeðg � g 0Þ�1 for all ðg; g 0Þ A W2

D . Now choose zðgÞ for g A WD such

that eðgÞ ¼ zDDðgÞ, and replace ~ddg by ~dd 0g ¼ z�1~ddg. The 2-cocycle g 0W;D defined by (3.10) after

replacing ~ddg by ~dd 0g takes values in mðDDÞ. r

The projective representation p of the groupoid WXu
is related to gW;D by the

following formula, which follows immediately from the definition of the cocycle gW;D,
the definition of the normalized intertwining operators, and from the fact that the nor-
malized intertwining elements satisfy the Weyl group relations (cf. [25], Lemma 4.1): Let
x ¼ ðP; d; tÞ A XðP; dÞ;u, then

pðh; gxÞ � pðg; xÞ ¼ gW;D

�
ðh; dgÞ; ðg; dÞ

�
pðhg; xÞ:ð3:12Þ

Definition 3.8. Formula (3.12) defines a torsion 2-cohomology class

½gW;X� A H 2
�
WXu

;Uð1Þ
�
;

the pull back of ½gW;D� via the natural homomorphism of groupoids WXu
!WD.

One should think of ½gW;X� as the characteristic class of the projective bundle over the
groupoid WX which is defined by the induction intertwining functor p.

3.2.4. Inertial orbits of discrete series modulo the center. It is sometimes convenient
to work with a slightly modified version of the groupoid of standard induction data.
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We say that an irreducible representation s of HP is discrete series modulo the center
if s is equivalent to a representation of the form dt with t A T P

u and d an irreducible discrete
series representation of HP (see paragraph 3.2.1). Let PHF0 and let s be a discrete series
representation modulo the center of HP. By definition the inertial orbit OðP;sÞ of s is the set
of the equivalence classes ðP; s � ctÞ of the HP-representations s � ct where t varies in T P.
This gives a natural T P action on OðP; dÞ.

It is obvious that the isotropy of a datum ðP; sÞ A OðP; dÞ is always a finite subgroup
of T P. It is also clear (see also the discussion in paragraph 3.2.1) that each orbit OðP;sÞ
contains a unique KP-orbit of discrete series modulo the center which descend to HP. If
sP descends to HP then there exists a discrete series representation d of HP such that
½d1� ¼ sP. Therefore there exists, for each orbit OðP;sÞ, a component XðP; dÞ of X and a finite
covering map

XðP; dÞ ! OðP;sÞ;ð3:13Þ

ðP; d; tÞ ! ðP; ½dt�Þ:

In this case we will also use the notation OðP; dÞ to denote OðP;sÞ. It is easy to see that for
given x ¼ ðP; d; tÞ and x 0 ¼ ðP; d 0; sÞ we have ½d 0s� ¼ ½dt� (isomorphic as representations of
HP) if and only if KPx ¼ KPx

0. In other words, we have

O ¼KnX ¼ jKXjð3:14Þ

(where jKXj denotes the orbit space of isomorphism classes of objects of the groupoid
KX ¼K�P X), and the covering (3.13) is given by taking the quotient of XðP; dÞ by the
isotropy subgroup Kd A KP of ½d�. Since the action of K on X is free, the orbit map extends
to a homomorphism of groupoids (viewing O as the ‘‘unit’’ groupoid with only identity
morphisms)

KX ! Oð3:15Þ

which is a Morita equivalence (in the sense of [20]). The space O is a disjoint union of
finitely many orbits of the form OðP; dÞ (parameterized by the K-orbits on D), and each orbit
OðP; dÞ has the natural structure of a T P=Kd-torsor (corresponding to the multiplication
action of T P on XðP; dÞ by identifying XðP; dÞ with T P). This gives O the structure of a com-
plex algebraic variety and it defines a special compact form Ou of O.

Clearly O carries a natural action of the Weyl groupoid W ¼W=K. We consider the
groupoid

WO :¼W�P Oð3:16Þ

(and its compact form WOu
). The observations made in this paragraph amount to saying

that:

Proposition 3.9. The groupoids WX ðWXu
Þ and WO (resp. WOu

) are Morita equivalent.
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However, it is important to observe at this point that:

Remark 3.10. Let jDj denote the set of isomorphism classes of the normal subgroup-
oid KD of WD. The quotient homomorphism WD !WjDj (defined by sending w� k ! w

and d!Kd) is a Morita equivalence if and only if all the isotropy groups Kd are trivial.

3.3. The Fourier isomorphism. We will formulate the main result of [9] (see Section
5, loc. cit) in this section. Denote by the trivial vector bundle over X whose fibre at x is
equal to Vx ¼ iðVdÞ, thus

VX :¼
‘
ðP; dÞ

XP; d � iðVdÞ:ð3:17Þ

The algebra of smooth sections of the trivial bundle EndðVXÞ on Xu will be denoted by
Cy
�
Xu;EndðVXÞ

�
. We equip this algebra with its usual Fréchet topology. We define the

set of W-equivariant sections in this bundle as follows. Recall that pðg; xÞ is smooth and
has smooth inverse on Xu. Take x A XP;u and let A be an element of EndðVxÞ. For g A Wx

(where Wx denotes the set of elements in W which act on x, hence with source P) we define
gðAÞ :¼ pðg; xÞ � A � pðg; xÞ�1 A EndðVgðxÞÞ.

Definition 3.11. A section of f of EndðVXÞ is called W-equivariant if we have
f ðxÞ ¼ g�1

�
f
�
gðxÞ

��
for all x A X and g A Wx. We denote the subalgebra of smooth

W-equivariant sections by Cy
�
Xu;EndðVXÞ

�W
.

The Fourier transform F is canonically defined in terms of the induction intertwining
functor p: Given x A S we define a section FðxÞ of EndðVXÞ by FðxÞðxÞ :¼ pðx; xÞ. The
fact that the target of p is a category whose objects are unitary representations of H implies
that F is an algebra homomorphism, and the functoriality of p amounts to the fact that
FðxÞ is a W-equivariant section in the above sense. In [9], Proposition 7.3 it was shown
that in fact FðSÞHCy

�
Xu;EndðVXÞ

�W
(this inclusion is not very hard to prove).

We define a wave packet operator at first as the isometry

J : L2

�
Xu;EndðVXÞ; mPl

�
! L2ðHÞð3:18Þ

(where mPl is the Plancherel measure, cf. [9], Section 4) which is the adjoint of the
L2-extension of the Fourier transform. From the expression of the density function of the
Plancherel measure it is easy to see that the space

C
�
Xu;EndðVXÞ

�
:¼ cCy

�
Xu;EndðVXÞ

�
;ð3:19Þ

where c denotes the c-function on Xu (see e.g. [9], Definition (9.7)), is a subspace of the
Hilbert space L2

�
Xu;EndðVXÞ; mPl

�
. Hence J is well defined on this vector space. We equip

C
�
Xu;EndðVXÞ

�
with the Fréchet topology of Cy

�
Xu;EndðVXÞ

�
via the linear iso-

morphism Cy
�
Xu;EndðVXÞ

�
! C

�
Xu;EndðVXÞ

�
defined by s! cs. Finally we define an

averaging projection pW onto the space of W-equivariant sections by:

pWð f ÞðxÞ :¼ jWxj�1 P
g AWx

g�1
�

f
�
gðxÞ

��
:ð3:20Þ

We can now formulate the main result of [9]:
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Theorem 3.12. The Fourier transform restricts to an isomorphism of Fréchet algebras

F : S! Cy
�
Xu;EndðVXÞ

�W
:ð3:21Þ

The wave packet operator J restricts to a surjective continuous map

JC : C
�
Xu;EndðVXÞ

�
!S:ð3:22Þ

We have JCF ¼ idS, and we have FJC ¼ pWjCðXu;EndðVXÞÞ. In particular, the map pW is a

continuous projection of C
�
Xu;EndðVXÞ

�
onto Cy

�
Xu;EndðVXÞ

�W
.

The projection pW thus cancels singularities of sections over Xu which are no worse
than the poles of the c-function on Xu. This property of pW is crucially important in the
sequel of the paper.

4. The analytic R-group

In this section we will define the notion of the analytic R-group Rx in our context for
a given unitary standard induction datum x A Xu. Our treatment follows closely the argu-
ment of [30] but is more direct. For a good account of the rôle of the R-group in the work
of Harish-Chandra and of Knapp and Stein [14] we refer the reader to [1], Section 2.

The group Rx is a subgroup of the inertia group Wx;x which is a complement of a
certain normal reflection subgroup Wm

x;x of Wx;x. The reflection hyperplanes of the reflec-
tions in Wm

x;x are described in terms of the Plancherel density function. The importance
of the R-group Rx is that the induced module pðxÞ (which naturally comes with the
structure of a H� gC½Wx;x�op bimodule via the induction-intertwining functor) is a Morita
equivalence module between the opposite of the gx twisted group ring of Rx (for a certain
2-cocycle gx derived from gW;X) on the one hand, and the category of tempered unitary
H-modules with central character Wx (in the sense of a character of the center of the
Schwartz algebras S, see [9], Corollary 5.5) on the other hand. This implies in particular
that the irreducible tempered modules of H with central character Wx are in one-to-one
correspondence with the irreducible characters of gC½Rx� (see [1], Section 2).

4.0.1. Definition of the R-group. We identify XðP; dÞ with the complex torus T P, and
in doing so, we in particular give meaning to group theoretical operations in XðP; dÞ (such
as x�1). Below we use notations and concepts associated to the chamber system of the
Weyl groupoid and restrictions of roots to facets of the Weyl chamber; we refer the reader
to Section 7 for these notations and some basic facts. We also recall the decomposition
a ¼ aP l aP (see paragraph 2.0.2) for P A P.

The rational function nðxÞ ¼
�
cðxÞcðx�1Þ

��1
(which is the density function for the

Plancherel measure, up to normalizing constants) is known to be regular and positive
on Xu (cf. [9], Proposition 9.8). This applies to the corank 1 factors of the c-function as
well, so by the product formula for n (see [9], Definition 9.7), it is clear that the zero set
of n in XðP; dÞ;u (with ðP; dÞ A D) is a finite union of orbits MðP;aÞ;x;u (with ðP; aÞ A RP and

x A XðP; dÞ;u) of codimension 1 subtori of the form T
ðP;aÞ
u HT P

u , the unique codimension one

subtorus which lies in the kernel of the character ðP; aÞ A RP.
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Definition 4.1. The orbits of the form MðP;aÞ;x;u in the zero set of n intersected with
Xu are called mirrors in Xu. The collection of all mirrors is denoted by M. The set of
mirrors in XðP; dÞ;u is denoted by MðP; dÞ, so that M ¼

‘
ðP; dÞ AD

MðP; dÞ (a disjoint union).

Proposition 4.2. The collection M is W-invariant.

Proof. This is clear by the W-invariance of n. r

The next theorem is inspired by well known results of Harish-Chandra (see [10],
Section 39, and also [14], [30]):

Theorem 4.3. Let M A MðP; dÞ.

(i) There exists a unique involution sM A WðP; dÞ; ðP; dÞ (the inertia group in WD of the

object ðP; dÞ) such that sM leaves M pointwise fixed.

(ii) sM is W-conjugate to an element of the form s 0 � k 0 with s 0 ¼ sP 0
Q 0 A WP 0;P 0 an

elementary conjugation with P 0HQ 0 self-opposed (see paragraph 7.0.4), and k 0 A KP 0 such

that s 0 � k 0 ¼ ðk 0Þ�1 � s 0.

(iii) The rational function x! cðxÞ on XðP; dÞ;u has a pole of order one at M.

(iv) For all x A M, the intertwining operator pðsM ; xÞ is a scalar.

The element sM is called the reflection in M.

Proof. The proof of this result is based on the following aspect of [9], Theorem 5.3.
Let V ¼ iðVdÞ denote the vector space on which all the induced representations pðxÞ (with
x A XðP; dÞ) are realized in the compact realization. Let

f : XðP; dÞ;u ! EndðVÞð4:1Þ

be a smooth section, and extend this function by 0 on the other components of Xu. Then [9],
Theorem 5.3 implies that the function pWðcf Þ on Xu (where c denotes the c-function on Xu)
defined by

pWðcf ÞðxÞ ¼ jWxj�1 P
g AWx

pðg; xÞ�1�
cf
�
gðxÞ

��
pðg; xÞð4:2Þ

is again smooth on Xu.

Recall that (by the Maass–Selberg relations, see [9], Proposition 9.8) the function c

vanishes on M since n vanishes on M. Let x A M and let Wx;x HWðP; dÞ; ðP; dÞ denote the
subgroup of elements which fix x. If the identity is the only element of W which fixes the
elements of M pointwise then Wx;x ¼ feg for generic x A M. In that case there would exist
a small open neighborhood U C x such that wU XU ¼ j if w A Wx but w3 e. Hence if we
take f such that its support is contained in U but with f ðxÞ3 0 the expression (4.2) will
not be smooth on U , a contradiction.
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We conclude that there exists an element s A WðP; dÞ; ðP; dÞ which fixes M pointwise and
which is not the identity on XðP; dÞ. Thus locally in the tangent space iaP of XðP; dÞ at x A M, s
must be given by an element of WP;P that fixes the hyperplane in iaP which corresponds to
M under the exponential mapping (where we choose x as the identity element of XðP; dÞ).
This uniquely determines s on XðP; dÞ;u and shows that s is an involution. It also follows
that s is W-conjugate to an involutive elementary conjugation (see paragraph 7.0.4) com-
posed with an element of K such that the composition is still an involution, proving both
(i) and (ii).

Let us now consider (iii). Take a generic element x ¼ ðP; d; t0Þ of M such that
Wx;x ¼ fe; sMg and let U be a small open neighborhood of x which is invariant
for sM and has the property that wU XU 3j i¤ wðxÞ ¼ x. For t A T P

u we write
xt ¼ ðP; d; tt0Þ. By (ii), there exists a unique pair ðP; aÞ; ðP;�aÞ A RP of opposite roots
such that the function wa : XðP; dÞ ! C� defined by waðxtÞ :¼ aðtÞ � 1 has the property that
M XU ¼ fx j waðxÞ ¼ 0gXU . Observe that wa

�
sMðxtÞ

�
¼ �aðtÞ�1waðxtÞ. Let UT HT P

u de-
note the open neighborhood of e A T P

u such that xt A U i¤ t A UT .

Suppose now that the order of the pole of c at M is larger than 1. Then for an arbi-
trary smooth section f with support in U as before, there exists a smooth section h with
support in U such that w�2

a f ¼ ch. Hence pWðw�2
a f Þ is smooth by [9], Theorem 5.3 (see

(4.2)). In view of the choice of U and (4.2) this implies that the expression

w�2
a ðxtÞ

�
f ðxtÞ þ aðtÞ2pðsM ; xtÞ�1

f
�
sMðxtÞ

�
pðsM ; xtÞ

�
ð4:3Þ

is smooth as a function of t A UT , for any choice of f . (Recall that pðsM ; xÞ is smooth
and invertible as a function of x A Xu, cf. Theorem 3.5.) But if we choose f such that
f ðxÞ ¼ IdV we see that this is impossible. This proves (iii).

Let us finally prove (iv). We use the same set-up as above in the proof of (iii), but now
with w�1

a f ¼ ch for some smooth section h. The equation (4.3) now becomes

w�1
a ðxtÞ

�
f ðxtÞ � aðtÞpðsM ; xtÞ�1

f
�
sMðxtÞ

�
pðsM ; xtÞ

�
;ð4:4Þ

and again we know that this should be smooth as a function of t A UT . This implies at
t ¼ e that

f ðxÞ � pðsM ; xÞ�1
f ðxÞpðsM ; xÞ ¼ 0ð4:5Þ

for all smooth sections f supported on U . But for any A A EndðVÞ there exists such a
smooth section with f ðxÞ ¼ A, thus equation (4.5) implies that pðsM ; xÞ is a scalar. r

Definition 4.4. Let x A Xu. We denote by Wm
x;x HWx;x the subgroup generated by the

mirror reflections sM with M A M such that x A M. The subgroupoid Wm whose set of
objects is Xu and whose set of arrows consists of the union of the sets Wm

x;x is a normal
subgroupoid of W.

The statement that Wm is normal in W (i.e. invariant for conjugation in W) follows
immediately from the fact that M is W-invariant.
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The isotropy group Wx;x acts linearly on aP by identifying aP with the tangent space
of XðP; dÞ;u at x via the local di¤eomorphism

aP ! XðP; dÞ;u;ð4:6Þ

x! ðxÞexpð2pixÞð4:7Þ

centered at x.

Definition 4.5. Let x A XðP; dÞ;u and consider the subset R
ðP; dÞ
x HRP consisting of the

roots ðP; aÞ such that the zero set of the function wa defined by waðxtÞ ¼ aðtÞ � 1 is locally
near x equal to a mirror MðP;aÞ;x containing x.

Proposition 4.6. The set R
ðP; dÞ
x H aP;� is a reduced integral root system such that

Wm
x;x FWðRðP; dÞx Þ.

Proof. Recall the definitions of Appendix 7. The group Wm
x;x is by definition gener-

ated by the mirror reflections in the mirrors of the form MðP;aÞ;x with ðP; aÞ A R
ðP; dÞ
x , and it

is clear that R
ðP; dÞ
x is invariant for Wm

x;x. Therefore up to normalization we see that R
ðP; dÞ
x is

the root system of the finite real reflection group Wm
x;x (in the sense of [4], Section 2.2). Let

us now consider the integrality of this root system. By Theorem 7.2, for all ðP; ~aaÞ A R
ðP; dÞ
x

the WP-orbit of MðP; ~aaÞ;x contains a mirror MðQ; gÞ;x 0 such that ðQ;HgÞ :¼ KerðQ; gÞ is the
hyperplane in aQ associated to a simple root g A F0nQ. This implies that the WP-orbit of ~aa
contains a root ~gg ¼ w~aa A RQWfgg such that ~gg A gþ ZRQ. If we put a ¼ w�1g then we have
ðP;H~aaÞ ¼ ðP;HaÞ, and moreover PW fag is a system of simple roots for a (possibly non-
standard) parabolic subsystem of roots. Moreover, from Theorem 4.3 we see that the ele-
mentary conjugation sP

P 0 of this parabolic root system leaves P fixed, i.e. P is self opposed
in P 0 :¼ PW fag (see paragraph 7.0.4). Now let us fix a Wm

x;x-invariant inner product in aP.

We need to show that ha; bi A Z holds for all a :¼ ðP; aÞ A R
ðP; dÞ
x and b :¼ ðP; bÞ A R

ðP; dÞ
x .

But since both a and b can be replaced by roots which form a simple system of roots to-
gether with P such that P is self opposed in these systems, the integrality assertion follows
from standard argument as in the proof of [4], Theorem 10.4.2. Let M ¼MðP;aÞ;x;u then

sMðbÞ :¼ s
PWfag
P ðbÞ ¼ wPWfagwPðbÞ A wPWfagðb þ aPÞ ¼ ðb þ laÞ þ aPð4:8Þ

with l A Z as desired. Recall (cf. Section 7.0.3) that RP consists only of primitive restrictions
of roots of R0nRP. Therefore it is now clear that R

ðP; dÞ
x is integral and reduced. r

Definition 4.7. Let R
ðP; dÞ
x;þ ¼ R

ðP; dÞ
x XRP

þ, and let aP;þ
x H aP be the positive Weyl

chamber of R
ðP; dÞ
x;þ . We define

Rx ¼ fw A Wx;x jwðaP;þ
x Þ ¼ a

P;þ
x g:ð4:9Þ

Proposition 4.8. The subgroup Rx HWx;x is a complement for the normal subgroup

Wm
x;x. Hence

Wx;x ¼ RxyWm
x;x:ð4:10Þ
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Proof. The group Wx;x preserves the set R
ðP; dÞ
x of roots of the finite reflection

group Wm
x;x, and thus the choice of a positive Weyl chamber induces a splitting of Wx;x

as indicated. r

5. The Knapp–Stein linear independence theorem

In this section we will prove the Knapp–Stein linear independence in the present con-
text of a‰ne Hecke algebras ([14], [30]).

Let h ¼ ðP; d; tÞ A XðP; dÞ;u be an RP-generic (cf. [9], Definition 2.5) induction parame-
ter in a small open Wx;x-invariant neighborhood U of x A XðP; dÞ;u. Let WPr denote the cen-
tral character of d. We will need to use Lusztig’s first reduction theorem, in the version
as discussed in [9]; we refer the reader to [9], Section 2.6, and [16] for further details. The
reduction theorem describes the structure of the formal completion of H at the central
character W0ðrtÞ, as a matrix algebra with coe‰cients in the formal completion at
ot ¼WPðrtÞ ¼ tWPr of the Levi subalgebra HP. The orbit W0ðrtÞ is partitioned in
equivalence classes of the form wot with w A W P. For each equivalence class wot there
exits an idempotent ewot

in the formal completion HW0ðrtÞ of H at the central character
W0ðrtÞ. These idempotents form a complete orthogonal set of idempotents in HW0ðrtÞ. In
the present context of RP-generic induction parameters the reduction theorem asserts that
eot

HW0ðrtÞeot
¼ eot

HP
ot

where eot
is a central idempotent on the right-hand side, and that

we have a decomposition

HW0ðrtÞ ¼
L

u; v AW P

i0ueot
HP

ot
i0v�1ð5:1Þ

which yields an isomorphism of HW0ðrtÞ and a matrix algebra of size N ¼ jW Pj and coe‰-
cients in eot

HP
ot

. The theorem moreover asserts in this situation that if wðPÞ ¼ Q A P then
the conjugation map cw : x! i0wxi0

w�1 is well defined on eot
HP

ot
HHW0ðrtÞ and defines an

algebra isomorphism

ci0w : eot
HP

ot
!@ ewðotÞH

Q

wðotÞð5:2Þ

which coincides with the isomorphism originating from the isomorphism of root data
RP !@ RQ induced by w.

We also use the concept of the constant term of (matrix coe‰cients of) tempered rep-
resentations along a standard parabolic subset P A P, see [9], Section 3.6, and [9], Section 6.
The subset of w A W P such that ewot

contributes to the constant term V P
h along P of the

tempered module Vh is equal to WP;P (cf. [9], Proposition 6.12, where we remark that
WP;P ¼ DP;P in the situation Q ¼ P). By the Morita equivalence Proposition 3.9 we see
that Wx;x FWKx;Kx HWP;P. We will identify Wx;x with this subgroup of WP;P in the rest
of this section.

Choose a complete set S of representatives for the left cosets of Wx;x in WP;P. For
each s A S and r A Rx we define

Es; r; t ¼
P

w AWm
x; x

eswrot
A HW0ðrtÞ;ð5:3Þ
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which is an idempotent of the formal completion of H at the central character W0ðrtÞ.
Recall that rt is RP-generic.

Proposition 5.1. For all s A S, r A Rx and h A U we define a projection pðs; r; hÞ in

Vh ¼ iðVdÞ by pðs; r; hÞ :¼ pðh;Es; r; tÞ.

(i) Viewed as rational function of h, pðs; r; hÞ is regular for h A U .

(ii) For all h A U ,
P

s AS; r ARx

pðs; r; hÞ is the projection onto V P
h , the constant part of Vh

along P (see [9], Section 3.6, for the definition of the constant part of a tempered module).

(iii) The collection of idempotents fpðs; r; hÞg is mutually orthogonal in End
�
iðVdÞ

�
for

all h A U .

(iv) For all s, r, and all h A U : pðs; r; hÞ is an endomorphism of the HP-module struc-

ture on iðVdÞ obtained by restricting pðhÞ to HP.

Proof. For generic h the properties (ii), (iii) and (iv) follow straightforward from the
definitions and from [9], Sections 3.6, 6.1 and 6.2 (especially Corollary 6.9, in which one
should observe that WP;P ¼ fd A DP;P j dðPÞ ¼ PgÞ and 6.3. From this remark it is clear
that (i) implies (iii) and (iv). But [9], Proposition 7.8 implies that the projection Vh ! V P

h

is also smooth in h A XðP; dÞ;u, and thus also (ii) will follow from the generic case provided
we know (i). Thus it only remains to prove (i).

It is obviously enough to consider the case s ¼ e and r ¼ e (replace x by sx and t by
srt in (5.3)). We compute a matrix coe‰cient of PðhÞ :¼ pðe; e; hÞ. Let a; b A iðVdÞ. Then,
using the notations of [9], Subsection 6.2, 6.3 and 6.4, we have:

ha;PðhÞbi ¼ fa;PðhÞbðh; 1Þð5:4Þ

¼
P

d AWm
x; x

f d
a;bðh; 1Þ

¼
P

d AWm
x; x

f 1
pðd;hÞa;pðd;hÞbðdh; 1Þ

¼
P

d AWm
x; x

f 1
a;bðdh; 1Þ

¼
P

d AWm
x; x

cðdhÞ
�
cðdhÞ�1f 1

a;bðdh; 1Þ
�
:

Here the first two equalities follow from a direct unwinding of definitions, the third equality
follows from an application of [9], Lemma 6.14, the fourth is the unitarity property [25],
Theorem 4.33 of the intertwiners pðd; hÞ, and the last one is trivial. By [9], Theorem 6.18
the expression cðdhÞ�1

f 1
a;bðdh; 1Þ is regular for h in a small tubular neighborhood of

XðP; dÞ;u. By Theorem 6.3(iii), the singularities of cðdhÞ for d A Wm
x;x and for h A U are

poles of order at most one along the mirrors M of Wm
x;x which contain x. On the other

hand, the expression on the right-hand side of the last equality of equation (5.4) also
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shows that ha;PðhÞbi is Wm
x;x-invariant as a function of h. The product of the function

U C h! ha;PðhÞbi by

p :¼
Q

ðP;aÞ AR
ðP; dÞ
x;þ

ðP; aÞð5:5Þ

extends to a Wm
x;x-skew invariant analytic function on U . It is a well known basic fact from

the invariant theory of finite real reflection groups that a Wm
x;x-skew invariant analytic func-

tion on U is divisible by p. This implies that the apparent first order poles of ha;PðhÞbi
along the mirrors of Wm

x;x are removable themselves. Therefore ha;PðhÞbi extends to an
analytic function of h A U . r

Corollary 5.2. (i) For all h A U we have a decomposition

V P
h ¼

L
s AS; r ARx

V P
s; r;hð5:6Þ

of the HP-module V P
h as a direct sum of HP-submodules V P

s; r;h defined by

V P
s; r;h :¼ pðs; r; hÞðVhÞ.

(ii) For all s A S, r A Rx, all the irreducible subquotients of the finite length HP-module

V P
s; r;x are isomorphic to ðdsÞst0 .

Proof. (i) This is a direct consequence of Proposition 5.1.

(ii) Assume that t is such that h ¼ ðP; d; tÞ A U is generic. We have according to [9],
equation (3.6), that

iðVdÞF
L

u AW P

i0ueot
nVdt

:ð5:7Þ

From (5.3) and the orthogonality of the idempotents we then conclude that

V P
s; r;h ¼

L
w AWm

x; x

eswrot
i0swrnVdt

:ð5:8Þ

Using the definition of the normalized intertwining operators (see Remark 3.8 and [9],
equation (3.7)) we see that this is isomorphic to

V P
s; r;h ¼

L
w AWm

x; x

p
�
r�1w�1s�1; swrðhÞ

�
ðeoswrt

nVd s
swrt
Þ;ð5:9Þ

so that the HP-module V P
s; r;h is isomorphic to a direct sum of the irreducible HP-modules

ðdsÞswrt, where w runs over all the elements of Wm
x;x. If we substitute t ¼ t0 (this corresponds

to taking h ¼ x) then each of these irreducible summands coincides with ðdsÞst0 . Hence the
character of V P

s; r;x (since V P
s; r;h depends smoothly on h). Proposition 5.1 is simply

jWm
x;xj times the character of ðdsÞst0 . Therefore all the irreducible subquotients of the finite

length HP-module V P
s; r;x are isomorphic to ðdsÞst0 . r

Corollary 5.3. The HP-module V P
s; r;x has a unique irreducible submodule, which is

isomorphic to ðdsÞst0 for all r A Rx and all s A S.
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Proof. By symmetry it su‰ces to prove this for s ¼ e.

By Frobenius reciprocity [9], Proposition 3.18 we have:

EndH

�
pðxÞ

�
¼ HomHPðdt0

;V P
x Þ:ð5:10Þ

By [9], Corollary 5.4 we know that EndH

�
pðxÞ

�
is the complex linear span of the

operators pðg; xÞ with g A Wx;x. We have seen that pðg; xÞ is a scalar for g A Wm
x;x. Thus

EndH

�
pðxÞ

�
is already spanned by the operators pðr; xÞ with r A Rx. Hence the dimension

of EndH

�
pðxÞ

�
is at most jRxj.

On the other hand, Corollary 5.2 implies that ðdÞt0 occurs at least once as a submod-
ule of V P

e; r;x, for every r A Rx. Combining this with the Frobenius reciprocity formula (5.10)
we obtain that ðdÞt0 occurs precisely once as a submodule of V P

s; r;x for every r A Rx. Again

invoking Corollary 5.2 we conclude that this irreducible submodule is in fact the unique
irreducible submodule of V P

s; r;x. r

Theorem 5.4. For all x A Xu, we have

EndH

�
pðxÞ

�
¼
P
r ARx

Cpðr; xÞ;ð5:11Þ

the complex linear span of the operators pðr; xÞ with r A Rx. Moreover, these operators are

linearly independent, so that

dim EndH

�
pðxÞ

�
¼ jRxj:ð5:12Þ

Proof. In the course of the proof of Corollary 5.3 it was shown that the dimension
of EndH

�
pðxÞ

�
is in fact precisely equal to jRxj. It was also remarked in the proof of

Corollary 5.3 that the space of endomorphisms of pðxÞ is spanned by the operators pðr; xÞ
with r A Rx. r

Theorem 5.5. Let x A Xu be a standard induction datum for H.

(i) Let gx denote the restriction of the 2-cocycle gW;X to Wx;x. This 2-cocycle is

cohomologous to the pull-back of a 2-cocycle on Rx (which we also denote by gx by abuse

of notation) via the natural projection Wx;x ! Rx.

(ii) The map Rx C r! pðr; xÞ extends by linearity to an algebra isormorphism

pð�; xÞ from the gx-twisted complex group algebra gC½Rx� of Rx to the commutant algebra

EndH

�
pðxÞ

�
.

(iii) Up to the choice of the isomorphism pð�; xÞ (which depends on our choice of

normalized intertwining operators (3.7)) there exists a unique bijection

dgC½Rx�gC½Rx� ! ŜSWx;ð5:13Þ

r! pr
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(where ŜSWx denotes a complete set of representatives of the finite set of isomorphism classes

of irreducible representations of S with central character Wx (central character in the sense

of [9], Corollary 5.5)) such that we have a decomposition (recall that Vx is the vector space on

which pðxÞ is realized )

Vx ¼
L
r

pr n rð5:14Þ

as an S� gC½Rx�op
-bimodule. Here the sum runs over r A dgC½Rx�gC½Rx� (viewed as irreducible right

gC½Rx�op
-module).

Proof. The first claim (i) comes from the fact that the projective representation
PpðxÞ on PðVxÞ descends to Rx by Theorem 4.3(iv). Hence pðr; xÞ A UðVxÞ is a lifting of
Ppðw0r; xÞ A PUðVxÞ for all w0 A W0

x;x. Therefore ½gx� descends to Rx �Rx. The remaining
part of the theorem follows from Theorem 5.4 by the arguments as in [1], pp. 87–88. r

6. The cocycle g for classical Hecke algebras

In this section we prove the triviality of the 2-cocycles gW;Xu
for the classical Hecke

algebras. The computation is based on the classification [26] of the discrete series represen-
tations of classical a‰ne Hecke algebras.

Theorem 6.1. Let R ¼ ðX ;Y ;R0;R
4
0 ;F0Þ be an irreducible root datum of classical

type, and let q be an arbitrary positive parameter function for R.

(i) We have ½gx� ¼ 1 for all x A Xu.

(ii) We have ½gW;D� ¼ 1 if R0 is not of type Dn with n > 8, or if X is not the root lattice

of R0.

Proof. We use that the assertion ½gW;D� ¼ 1 of (ii) implies (i) by taking the pull-back
to WXu

(using Definition 3.8). Hence in all cases mentioned in (ii) it su‰ces to prove (ii).
This is an aggregate of various special cases which are treated separately below. In the
remaining case R0 ¼ Dn with n > 8 and X the root lattice of R0 we will show directly that
(i) holds. r

Remark 6.2. Remarkably, if R0 is of type Dn with n > 8 and X equals the root
lattice of R0 then there exist discrete series representations dP of HP such that ½gðP; dPÞ�3 1.

We will give the proof of the nontriviality of ½gðP; dPÞ� in this exceptional case in para-
graph 6.7.2. Using the description of the discrete series for a‰ne Hecke algebras of type Dn

as given in [26], the proof consists of tracing the action of Wx;x on the isomorphisms con-
structed in Lusztig’s first reduction theorem [16].

6.1. A remark on isogenous a‰ne Hecke algebras. For later use we list the following
useful general fact.

Lemma 6.3. Let H be a semisimple a‰ne Hecke algebra. Let R ¼ ðX ;Y ;R0;R
4
0 ;F0Þ

be the based root datum of H, and q its parameter function. Let He be an isogenous exten-
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sion of H, i.e. a semisimple a‰ne Hecke algebra with root datum Re ¼ ðX e;Y e;R0;R
4
0 ;F0Þ

where X HX e is an extension of lattices such that Rnr ¼ Re
nr, and such that the parameter qe

of He is equal to q, viewed as functions on R4
nr. Then HHHe is an isometric embedding of

H as a �-subalgebra of He of finite index, and the induction and restriction functors between

RepðHÞ and RepðHeÞ send irreducible unitary (resp. discrete series) representations to finite

direct sums of irreducible unitary (resp. discrete series) representations.

Proof. Let Lr HX be the root lattice of R0. We introduce the finite abelian groups
W ¼ X=Lr and We ¼ X e=Lr, and we denote by Hr HHe the a‰ne Hecke algebra with
root system R0 (and basis F0) and whose root datum has the root lattice Lr of R0 as lattice
X . As is well known, we have He ¼Hr zWe and H ¼Hr zWHHe. From this and the
standard description of the Hilbert algebra structures (� and the trace t) on H and He we
see that HHHe is an isometric embedding of a �-subalgebra. It is immediate from this
that the restriction functor preserves unitarity and discreteness.

Now let us consider induction. Multiplication yields an action of We on He which
permutes the standard orthonormal basis elements fNwgw AW e

P
of He freely (with W e

the extended a‰ne Weyl group with root system R0). Choose a set o1; . . . ;on of
representatives for the cosets of W in We. Then we have an orthogonal decomposition
He ¼ o1Hl � � �lonH. For all h A H we have oih ¼ hoioi, where h! hoi is a (special)
a‰ne diagram automorphism associated with oi of H. Such automorphisms are isometries
since they permute the standard orthonormal basis of H. Let ðV ; pÞ be a finite dimensional
representation of H. The underlying vector space iðVÞ ¼He nV of the induced represen-
tation iðpÞ is the direct sum of the subspaces Vi :¼ o�1

i nV , and we identify each Vi with
V by the map V C v 7! o�1

i n v A Vi. If ðV ; pÞ is unitary then
�
iðVÞ; iðpÞ

�
is unitary with

respect to the Hilbert space structure on iðVÞ which is the orthogonal direct sum of the
subspaces Vi (each equipped with the transfer of the Hilbert structure of V under this iden-
tification). We see that the character wiðpÞ satisfies wiðpÞðoihÞ ¼ wpðhoiÞ for each i. With the
above orthogonal decomposition of He and the fact that h! hoi is an isometry of H we
see that iðpÞ is a discrete series character if and only if p is a discrete series character. r

6.2. R0 has only irreducible components of type A. In this situation we prove a more
general result:

Proposition 6.4. Let R0 be a root system whose irreducible components are all of type

A, and let R ¼ ðX ;Y ;R0;R
4
0 ;F0Þ be an arbitrary (not necessarily semisimple) root datum

whose underlying root system is R0. Then g :¼ gW;D ¼ 1.

Proof. If R0 has only irreducible components of type A then the same is true for
any of its standard parabolic subsystems RP HR0. Let He

P :¼HPðX e; qeÞ be the extended
semisimple a‰ne Hecke algebra whose root datum has underlying root system RP with
basis FP HF0 and whose lattice X e

P ¼ LP is the weight lattice of RP. Then He
P is a tensor

product of various extended a‰ne Hecke algebras HA; e
li�1 :¼HA

li�1ðLA
li�1; qÞ of type Ali�1

(for various li f 2). Since it is well known [33] that the irreducible discrete series represen-
tations of HA; e

li�1 all have dimension 1, it follows from the above that all the discrete series
representations de

P of He
P are one dimensional. In particular, the restriction of an irreduc-

ible discrete series representation of He
P to HP is irreducible. By Lemma 6.3 and by the

adjointness of restriction and induction we see that all irreducible discrete series representa-
tions of HP are obtained in this way, and in particular are one dimensional. The projective
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representation ~dd of WD is thus one dimensional, hence trivial. In particular, its class ½gW;D�
is trivial. r

6.3. R0 of type Bn. The next result generalizes a result of Slooten [31].

Proposition 6.5. Suppose that R is of type Cð1Þn (i.e. R0 is of type Bn and X is the

root lattice of R0) with arbitrary positive parameter function q ¼ ðq0; q1; q2Þ, where (using

the standard realization for Cð1Þn ) q0 ¼ qðs2xn
Þ, q1 ¼ qðsxi�xiþ1

Þ and q2 ¼ qðs1�2x1
Þ. Then

½gW ;D� ¼ 1.

Proof. In order to analyze the cocycle gW;D, let us first look more carefully at the
type A case. Let HA

n�1ðX ; qÞ be an a‰ne Hecke algebra with R0 of type An�1 and with lat-
tice X (situated between the root lattice Lr and the weight lattice L of R0) and parameter
q3 1 (if q ¼ 1 there are no discrete series). If q3 1 then the set DA

n�1ðX ; qÞ of equivalence
classes of discrete series representations of the a‰ne Hecke algebra of type An�1 with lattice
X is in canonical bijection with the set K A

n�1ðX Þ of characters of X which are trivial on the
root lattice Lr of R0, through the central character map. Namely, in terms of the notation
of [26], Section 8 we have K A

n�1ðX Þ ¼ Gmax=G where Gmax ¼ HomðL=Lr;C
�ÞACn. The

group Gmax acts simply transitively on the set of vertices EðC4Þ (notations as in loc. cit.).
Hence the group K acts simply transitively on the set of G-orbits on EðC4Þ, and for each
s A EðC4Þ we have Gs ¼ 1. By [26], Theorem 8.7, the set DA

n�1 is a disjoint union over all
G-orbits of EðC4Þ of the set of discrete series characters of the graded a‰ne Hecke algebra
HðRsðeÞ;1;V ;FsðeÞ;1; keÞ. In the type An�1-case, these are all isomorphic to a graded a‰ne
Hecke algebra of type An�1, and hence each of these contributes precisely one discrete
series character (since we assume that q3 1, implying that ke ¼ k 3 0). If k A K A

n�1ðXÞ
we denote by dk the unique, one-dimensional discrete series character of the type An�1

a‰ne Hecke algebra HA
n�1ðX ; qÞ whose central character has unitary part k. Then

DA
n�1ðX Þ ¼ fdk j k A K A

n�1ðXÞg. Through the twisting automorphisms ck (see paragraph
3.2.2) the group K A

n�1ðXÞ acts on DA
n�1ðX Þ. We have

dk
k 0 :¼ dk 0 � c�1

k ¼ dk 0k�1:ð6:1Þ

Now we return to the case where R is equal to Cð1Þn . The possible pairs ðP; dPÞ with dP A DP

can be described explicitly as follows. First notice that PHF0 is of type

Al1�1 �Al2�1 � � � � �Alr�1 � Blð6:2Þ

where l e n and where l ¼ ðl1; l2; . . . ; lrÞ is a composition of n� l. In this situation HP is
of the form

HA
l1�1ðLA

l1�1; q1ÞnHA
l2�1ðLA

l2�1; q1Þn � � �nHA
lr�1ðLA

lr�1; q1ÞnHB
l ðqÞð6:3Þ

where HA
li�1ðL

A
li�1; q1Þ denotes the extended a‰ne Hecke algebra of type Ali�1 whose

lattice equals the weight lattice LA
li�1 of Ali�1 and with parameter q1, and where H B

l ðqÞ is

the a‰ne Hecke algebra of type C
ð1Þ
l with parameter q. Thus

dP ¼ d1;k1
n d2;k2

n � � �n dr;kr
n dð6:4Þ
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where ki A K A
li�1ðL

A
li�1Þ (a cyclic group of order li), di is the unique irreducible discrete

series representation of HA
li�1ðL

A
li�1; q1Þ with real infinitesimal character, and where d is

a discrete series representation of HB
l ðqÞ. As discussed in paragraph 3.2.2, an element

g ¼ k � u A WP;Q ¼ KQ �WP;Q gives rise to an automorphism cg : HP !HQ. In the
present situation, u is a composition of a permutation of tensor legs of the form
HA

li�1ðLA
li�1; q1Þ in (6.3) with equal li, with a tensor product of automorphisms of the

tensor factors HA
li�1ðL

A
li�1; q1Þ induced by a diagram automorphisms of the finite Dynkin

diagram of type Ali�1. Recall that KQ ¼ T Q XTQAHom
�
XQ=ðX XRQÞ;C�

�
(by (3.3)).

Therefore KQ is the direct product of the cyclic groups K A
li�1ðL

A
li�1Þ of order li, and

k ¼ ki � k2 � � � � � kr acts by the tensor product of the automorphisms cki
described

above. The crucial observation to make here is that the action of cg on the last tensor leg
is always trivial. If we choose a basis vector for each of the one dimensional representations
di;ki

we obtain a natural identification of the vector space of dP with the vector space Vd on
which d is realized. With this identification, we can choose cg ¼ IdVd

for all g, and hence
gW;D ¼ 1. r

Proposition 6.6. Consider the irreducible extended a‰ne Hecke algebra H :¼HB; e
n

with R0 of type Bn and X ¼ LB
n , the weight lattice of type Bn. Then ½gW;D� ¼ 1.

Proof. The proof of Proposition 6.5 changes only slightly. In the present situation
q is restricted to the cases where q0 ¼ q2. The last tensor leg of the algebra HP in (6.3)
changes to the extended algebra HB; e

l . For future reference we note that HP is again
of the form HP ¼HA; e

P nHB; e
P , a tensor product of a number of extended type A Hecke

algebras with an extended type B Hecke algebra (recall that the lattice XP ¼ LP underlying
HP is the projection of the weight lattice L onto the vector space RP which is indeed the
weight lattice of RP). Accordingly we have dP ¼ dA; e

P n dB; e
P (analogous to (6.4)).

The group K B;L
P ¼ TP XT P that needs to be considered in the definition of WD

equals, as before, the group of characters of LP which are trivial on the sublattice
LXRP. In the present situation one checks easily that if there exists at least one odd li

then LXRP ¼ LP; r, the root lattice of RP. Therefore K B;L
P ¼ KP � C2 in this case, where

the group KP is defined as above for the previous case HB
n :¼HðCð1Þn ; qÞ (i.e. a direct

product of cyclic groups) and where the extra factor C2 (the group with 2 elements) acts
(by twisting automorphisms) on rightmost tensor factor HB; e

P only.

On the other hand, if all li are even, then LXRP ¼ LP; r þ ðvþLP; rÞ where v A LP

is a vector having coordinatesG1=2 such that for each part li of l the corresponding coor-
dinates of v sum up to zero (which is possible because li is even). Hence in this case the
group K

B;L
P is equal to the kernel of the unique quadratic character r of KP � C2 which

is nontrivial on all factors (recall that all factors are even cyclic groups, hence admit a
unique nontrivial quadratic character). Thus K B;L

P is a subgroup of index 2 in KP � C2 in
this case.

It is at this point useful to remark that WD is equivalent to a finite union of the iso-
tropy groups WðP; dPÞ; ðP; dPÞ by choosing a complete set of representatives for the WD-orbits
of pairs ðP; dPÞ. Hence it is enough to show that the restriction gP; dP

of g to WðP; dPÞ; ðP; dPÞ
is trivial for each pair ðP; dPÞ. Recall that dP ¼ dA; e

P n dB; e
P . By the above we see that

WðP; dPÞ; ðP; dPÞHWe
ðP; dPÞ; ðP; dPÞ :¼WA; e

ðP; dA; e
P
Þ; ðP; dA; e

P
Þ
�WB; e

ðP; dB; e
P
Þ; ðP; dB; e

P
Þ (a subgroup of index at
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most 2, depending on P), where the factor WB; e

ðP; dB; e
P
Þ; ðP; dB; e

P
ÞHK B

l ðL
B
l Þ ¼ C2 (recall that the

finite Dynkin diagram of type Bl has no nontrivial diagram automorphisms) is either trivial
or isomorphic to C2 (depending on dB; e

P ). The projective representation ~ddP of WðP; dPÞ; ðP; dPÞ
(whose class is gP; dP

) is the restriction of a projective representation ~dde
P of We

ðP; dPÞ; ðP; dPÞ
(which is defined as usual, by twisting dP ¼ dA; e

P n dB; e
P with the automorphisms of

HP coming from We
ðP; dPÞ; ðP; dPÞ). Observe that ~dde

P is the tensor product of a projective

representation ~ddA; e
P of WA; e

ðP; dPÞ; ðP; dPÞ and a projective representation ~ddB; e
P of WB; e

ðP; dPÞ; ðP; dPÞ. The

first tensor factor is linear because it has dimension 1 (and thus is trivial as a projective
representation), and the second tensor factor is linear since H 2ðC2;C

�Þ ¼ 1 (actually
H 2ðCn;C

�Þ ¼ 1 for any finite cyclic group Cn, see e.g. [15], Exercise XX 16 (warning: the
even and odd cases have been mixed up in loc. cit.)). Hence by restriction we see that
½gP; dP

� ¼ 1, which is what we needed to show. r

6.4. R0 of type Cn.

Proposition 6.7. Suppose that R0 is of type Cn. If X is the weight lattice of R0 we

denote the corresponding a‰ne Hecke algebra HC; e
n . In this case we have ½gW;D� ¼ 1.

Proof. In this case HC; e
n is simply a specialization of the three parameter type Cð1Þn

a‰ne Hecke algebra, hence the result follows from Proposition 6.5. r

Proposition 6.8. Suppose that H is the non-extended a‰ne Hecke algebra HC;Q
n , i.e.

R0 is of type Cn and the lattice X equals the root lattice of R0. Then ½gW;D� ¼ 1.

Proof. Again we compare the situation with the standard case Cð1Þn . The description
of the standard parabolic subsystems PHF0 is as before, where the rightmost factor of
type Bl has to be replaced by Cl of course. The new complication is that the a‰ne Hecke
algebra HP is not always a tensor product of extended type A-factors and (possibly) a type
C factor. If at least one of the li is odd then HP is as before, a tensor product of a number
of extended type A-factors HA

li�1
ðLli�1

; q1Þ with at most one type C-factor HC; e
l . In other

words, the lattice associated with the Hecke algebra HP is the weight lattice LP of RP.
However if the li are all even, the algebra HP is an index two subalgebra of the a‰ne
Hecke algebra just described obtained by taking the fixed points with respect to the twisting
involution ce corresponding to the unique WP-invariant quadratic character e of the weight
lattice LP of RP which is nontrivial when restricted to any of the weight lattices of the irre-
ducible direct summands of RP.

In the first case (if there exists at least one odd li) then the group K C;Lr

P is of the form
KP � C2, where the last factor C2 acts on the extended algebra HC; e

l via the twisting auto-
morphism associated with the nontrivial character of the weight lattice LC of type Cl trivial
on the root lattice LC

r . The argument to see the triviality of gW;D is now exactly analogous
to the proof of Proposition 6.6.

In the second case (when all li are even) then K C;Lr

P is the quotient of the previously
described group by the subgroup Ke ¼ hei generated by e. The second case can be reduced
to the first case as follows. Let He

P be the semisimple a‰ne Hecke algebra whose root sys-
tem is RP and whose lattice X e

P equals the weight lattice LP of RP. Then Ke acts on He
P and

HP ¼ ðHe
P Þ

Ke . We may assume that P3F0, otherwise there is nothing to prove. But then,
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by definition, XP contains factors of the form LA
li�1 with li f 2. Thus e is a WP-invariant

character of X e
P, and is nontrivial on each of the type A factors. Now we use the fol-

lowing special feature of the a‰ne Hecke algebras HA;X A

li�1 of type Ali�1 (and any lattice
X A

li�1): For such a‰ne Hecke algebras, twisting by a nontrivial W A
li�1;0-invariant character

k A T A
li�1 has no fixed points on the set of equivalence classes of discrete series characters

DA
li�1 (this follows from considering the unitary part of the central characters of the discrete

series characters, as in the proof of Proposition 6.5). Since He
P is merely a product of such

type A-factors and a type C factor, this shows in view of the above that ‘‘twisting by e’’ acts
on the set De

P of equivalence classes of discrete series representations of He
P without fixed

points. In turn this implies (by elementary Cli¤ord theory, see [27], and Lemma 6.3) that
the restriction functor sends irreducible discrete series of He

P to irreducible discrete series
of HP, and all discrete series of HP are obtained in this way. Hence the action groupoid
We

P;D e
P

of the group K e
P zWP;P acting on the set of equivalence classes De

P of irreducible
discrete series representations of He

P via twisting automorphisms on He
P , is Morita equiva-

lent to WP;DP
. But We

P;D e
P

is a union of groups We
ðP; ~ddPÞ; ðP; ~ddPÞ

which are of the same form as

in the first case, reducing the second case to the first case as required. r

6.5. R0 of type Dn and X3Lr.

Proposition 6.9. Suppose that H is an a‰ne Hecke algebra of type Dn whose lattice

X is not the root lattice. Then ½gW;D� ¼ 1.

Proof. Again the standard parabolic subsystems RP of R0 are products of a number
of type A factors and at most one type D factor. The complicating aspect in the present
case is the more complicated structure of the group of automorphisms of the type D factor
that needs to be considered.

First let us suppose that the lattice X ¼ L, the weight lattice of R0. In this case the
description of the group K

D;L
P similar to K

B;L
P as in the proof of Proposition 6.6, where we

may and will assume now that 4e l < n, since otherwise RP either equals R0 (and there is
nothing to prove in this case) or has only type A-factors (which brings us to the situation of
Proposition 6.4). We write

L ¼ LD
n ¼ L0 þL1 ¼ Zn þ

�
ð1=2; 1=2; . . . ; 1=2Þ þ Zn

�
:ð6:5Þ

If there exists at least one odd li then K D;L
P is a direct product of the cyclic groups cor-

responding to the type A-factors (hence the corresponding twisting automorphisms act
trivially on the type D-factor) and a factor C2 ¼ hhi acting nontrivially only on the type
D-factor, where h A K D

l ðL
D
l Þ is the unique character of LD

l with kernel Z l (acting by twist-
ing on the tensor factor HD

l ðLÞ of HP). If all li are even, all the direct factors of the group
just described are even cyclic groups, and thus carry a unique nontrivial quadratic charac-
ter. Then K

D;L
P is the kernel of the product r of all these nontrivial characters on the cyclic

factors.

Let M be the largest part of l ¼ ðl1; . . . ; lrÞ ‘ n� l, and let mi (for i ¼ 1; . . . ;M) be
the multiplicity of i as a part of l. Then it is easy to see that

WP;P ¼
�
W0ðBm1

Þ � � � � �W0ðBmM
Þ � hoi

�Soddð6:6Þ
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where o is the restriction of the unique nontrivial diagram automorphism of Dn to the sub-
diagram of type Dl , and where Sodd is the product over all factors W0ðBm2jþ1

Þ of the linear
character S2jþ1 given by taking the product of the signs of a signed permutation and, in the
last factor, of the unique nontrivial character of hoiAC2.

In all cases we define an extension We
P;P IWP;P of order 2, where We

P;P is of the
form

We
P;P ¼WA; e

P;P �WD; e
P;Pð6:7Þ

with

WD; e
P;P ¼ hoi� hhiAC2 � C2ð6:8Þ

if l contains odd parts, and

WD; e
P;P ¼ hhiAC2ð6:9Þ

if l has only even parts. In the latter case it is again clear that ½gðP; dPÞ� ¼ 1 as in Proposition
6.6. In the first case we need to show that if a discrete series representation dD

P of HD
l ðL

D
l Þ

contains hoi� hhi in its isotropy group then it can be extended to a representation of
HD

l ðLD
l Þzðhoi� hhiÞ. This follows from Lemma 6.10.

Next we assume that X ¼ Zn. With the previous situation X ¼ L in mind this case is
easier, since everything is the same except that KP does not involve the factor hhi now
(compare with the proof of Proposition 6.5). The above arguments apply in this simpler
situation as well (but the extension of dD

P is obvious now, since its isotropy is at most a
C2) showing that ½g� ¼ 1 in this case.

Finally if n is even, we need to consider two more lattices X ¼ L� and Lþ with

LG¼ Lr þ
�
ð1=2; 1=2; . . . ;G1=2Þ þLr

�
:ð6:10Þ

Let LP ¼ LA
l �LD

l be the weight lattice of RP. Observe that the second projection of
XP HLP is equal to the full weight lattice LD

l of type Dl (unless l ¼ n, a case which we
excluded at the start of this proof). Let K L

P be the subgroup of the group of characters of
the weight lattice LP which restrict to 1 on the sublattice X XRP. Restriction of characters
of LP to XP induces a quotient map q : KL

P 7! KP. The above observation implies that
the first projection p1 : KL

P ! K A
l (by restriction of a character of LP to the factor LA

l )
is injective on the kernel of q. Hence, the arguments in the proof of Proposition 6.8
(reducing the ‘‘second case’’ to the ‘‘first case’’) apply and show that we can replace the
quotient KP by K L

P via a suitable equivalence of groupoids. In this situation we may write

de
P ¼ dA; e

P n dD; e
P for the extension to He

P of the discrete series representation dP of HP.
The group We

P;P ¼ K e
P zWe

P;P of automorphisms of He
P that needs to be considered now

is always a subgroup (depending on P) of the automorphism group Wm
P;P ¼WA;m

P;P �WD;m
P;P

of He
P described by

WA;m
P;P ¼ K A;m

P zWA
P;Pð6:11Þ
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with

WA
P;P ¼W0ðBm1

Þ � � � � �W0ðBmM
Þ; K

A;m
P ¼ C

m2

2 � � � � � C
mM

M ;ð6:12Þ

and with

WD;m
P;P ¼ K

D;m
P z hoið6:13Þ

where K
D;m
P is the character group of LD

l =L
D
r; l (a group of order 4). Therefore, arguing as in

the proof of Proposition 6.6, it su‰ces to show that dD; e
P extends to a linear representation

of HD; e
P z IðP; dD; e

P
Þ, where IðP; dD; e

P
Þ is the isotropy group of ½dD; e

P � in WD;m
P;P . This follows

from Lemma 6.10, finishing the proof. r

The following lemma uses a nontrivial property of irreducible discrete series represen-
tations of the graded a‰ne Hecke algebra type Dn proved in [26].

Lemma 6.10. Let H be the a‰ne Hecke algebra of type Dl (with l f 4) which is maxi-

mally extended, i.e. X ¼ LD
l , the weight lattice of R0. For convenience we take the standard

realization of R0, with basis fe1 � e2; . . . ; en�1 � en; en�1 þ eng. Let K be the group of char-

acters of LD
l =L

D
r; l (a group of order 4) and let o be the diagram automorphism of R0 induced

by the orthogonal reflection in the hyperplane xn ¼ 0. We let the group W :¼ K z hoi act

on H by twisting automorphisms as usual. Let d A DðHÞ, and let Id be the isotropy group of

½d� in W. Then d extends to a representation of Hz Id.

Proof. We first observe that WAD8, the dihedral group of order 8. Let e A W be
an element of order 4, and let h ¼ e2 (the generator of the center of W). Then W ¼ he;oi.
We define k :¼ oe, an element of order 2. There are 3 subgroups of index 2 in D8, one of
which is cyclic. If l is odd then K ¼ heiAC4; if l is even then K ¼ hh; kiAC2 � C2. The
other subgroup of index 2 is N ¼ hh;oiAC2 � C2.

It follows from [26], Theorem 7.1, Theorem 8.7 that any d A DðHÞ admits (precisely
two) extensions (d�; dþ say) to Hz hoi ¼HB

l ðLB
l Þ (with q2xn

¼ 1). In particular, we
always have o A Id. It follows that either Id is cyclic (in which case the desired result is
obvious, since cyclic groups have a trivial Schur multiplier (see the remark at the end of
the proof of Theorem 6.5)) or N H Id.

We now use [12] that the Schur multiplier of the group D8 is C2, and that ([28], Sec-
tion 3) the restriction of its unique nontrivial class ½a� A H 2ðD8;C

�Þ to both subgroups of
type C2 � C2 is nontrivial. Combined with the above remarks we see that it su‰ces to
prove that d extends to HzN if N H Id, which is what we will assume from now on.

As we have already remarked, d extends to irreducible discrete series representations
dG of HB

l ðLB
l Þ (with q2xn

¼ 1). This algebra admits an involutive automorphism hB whose

fixed point set is HB
l ðZ lÞ (with q0 ¼ q2 ¼ 1; recall that LB

r; l ¼ Z l) which fixes o and which

restricts to h on HD
l ðLD

l ÞHHB
l ðLD

l Þ. To prove that d extends to HzN it su‰ces to
show that hB is in the isotropy group of ½dG�. We claim actually that this holds true
for any d A D

�
HB

l ðL
B
l Þ
�
. Indeed, applying [26], Theorem 7.1, Theorem 8.7 to HB

l ðL
B
l Þ

(with q2xn
¼ 1) and to its fixed point algebra HB

l ðZ lÞ ¼HðCð1Þl Þ (with q0 ¼ q2) (see [26],
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Example 8.3) under hB we see that jDB
l ðZ lÞj ¼ 2jDB

l ðL
B
l Þj. In view of Lemma 6.3 and [27],

Theorem A.13 we conclude on the other hand that if there would exist a d A HB
l ðLB

l Þ
whose class is not invariant for hB then we would necessarily have jDB

l ðZ lÞj < 2jDB
l ðL

B
l Þj,

proving our claim and thus finishing the proof of the lemma. r

6.6. R0 of type Dn and XFLr. In the one remaining classical case, the a‰ne Hecke
algebra of type Dn with X ¼ LD

r;n, the root lattice of R0, it is (remarkably) not always true
that ½gW;D� ¼ 1. Yet we have:

Proposition 6.11. Let H ¼HD
n ðLr;nÞ and let WXu

be its groupoid of unitary standard

induction data. Then ½gW;X� ¼ 1.

Proof. Let x ¼ ðP; d; tÞ A Xu. We need to show that the 2-cocycle gx of Wx;x is a
coboundary. Let P be as in (6.2) with 4e l < n and as before, let mi denote the multiplicity
of the part i in l ‘ n� l. The group WP;P does not depend on the lattice X , so is still given
by (6.6). Let us write (6.6) as

WP;P ¼ ðWA
P;P �WD

P;PÞ
Soddð6:14Þ

with WD
P;P ¼ hoi (o being the unique nontrivial automorphism of the diagram of type Dl

that extends to Dn) and

WA
P;P ¼W0ðBm1

Þ � � � � �W0ðBmM
Þð6:15Þ

and Sodd the linear character defined in the text just below (6.6). Recall that Sodd is trivial
on WA

P;P i¤ all parts of l are even. We introduce the projections

pA
W : WP;P !WA

P;P; pD
W : WP;P !WD

P;P:ð6:16Þ

Notice that pA
W is an isomorphism (always) and pD

W is trivial i¤ all parts of l are even. We
have by definition

WP;P ¼ KP zWP;P:ð6:17Þ

Let us now compute the lattice XP and the abelian group KP (this is similar to the proof of
Proposition 6.8). The orthogonal projection XP of the root lattice LD

r;n onto RRP is the
product of the weight lattice of the type A factors of RP with the lattice Z l for the type Dl

factor of RP, provided that l has odd parts. Hence in this case we have

HP ¼HA
P ðLPÞnHD

l ðZ lÞ:ð6:18Þ

If l has only even parts then XP is a sublattice of index two of the lattice just described,
namely the kernel of the product e of the unique nontrivial WP-invariant quadratic charac-
ter of the direct summands of the above lattice corresponding to the irreducible compo-
nents of RP. Hence if l has odd parts then

KP ¼ K A
P � K D

Pð6:19Þ
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where

K A
P AC

m2

2 � � � � � C
mM

Mð6:20Þ

and where

K D
P :¼ hkið6:21Þ

with k the unique nontrivial character of the lattice Z l which is trivial on the root lattice
LD

r; l of the root system Dl . In this case we denote by

pA
K : KP ! K A

P ; pD
K : KP ! K D

Pð6:22Þ

the projections onto the type A and the type D factors. We remark that pD
K is invariant for

the action of WP;P on KP. If l is even then KP is the quotient of this group by hei. If l has
odd parts then we define

pD ¼ pD
W � pD

K : WP;P !WD
P;P :¼WD

P;P � K D
P HAut

�
HD

l ðZ lÞ
�
:ð6:23Þ

Observe that WD
P;P ¼ hoi� hkiAC2 � C2. Similarly we define

pA ¼ pA
W � pA

K : WP;P !WA
P;P :¼WA

P;P yK A
P HAut

�
HA

P ðLPÞ
�
:ð6:24Þ

If l is even, then (as in the proof of Proposition 6.8) we extend the lattice XP of HP to
obtain He

P IHP (a quadratic extension) whose associated lattice X e
P is the product of the

weight lattices of the type A factors of RP with the lattice Z l for the type Dl factor of RP.
As in Proposition 6.8, this leads to a groupoid We

P;D e
P

which is Morita equivalent to WP;D.
Using that pD

W ¼ 1 if l is even we can now apply the same argument as given in the proof of
Proposition 6.8 to conclude that ge

P;D e is trivial. As we know this implies the triviality of
gWP;P;XP

as well in this case.

So let us assume from now that l contains at least one odd part. To prove the triviality
of gWP;P;XP

it is enough to prove the triviality of gx for the isotopy group Wx;x of an arbi-
trary object x ¼ ðP; dP; tÞ with dP ¼ dAl1�1 n � � �n dAlr�1 n d. Let us therefore consider the
action of WP;P on the space XP of parameters first. Using the action of K A

P we may and
will assume that the one dimensional type A discrete series representations dAli�1 all have
a real central character.

In the present situation we have T ¼ ðC�Þn=hG1i. Recall that T P HT is the subto-
rus of the characters of the orthogonal projection of X ¼ LD

r;n onto the subspace RP?. For
each part i of l this projection is generated by generators E i

1; . . . ;E
i
mi

say, which we normal-
ize by requiring that E i

j has coordinates 1=i at the i slots corresponding to the j-th part of
size i of l, while its remaining coordinates are 0. Accordingly, for the element in t A T P

such that tðE i
j Þ ¼ ti

j A C� we write:

t ¼ ðt1
1 ; t

1
2 ; . . . ; t

1
m1
; t2

1 ; t
2
2 ; . . . ; t

M�1
mM�1

; tM
1 ; tM

2 ; . . . ; tM
mM
Þ:ð6:25Þ
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In order to see how KP acts on T P and on DP we need to identify KP ¼ TP XT P as a sub-
group of T P explicitly. The group K A

P is the subgroup of elements t with ðti
j Þ

i ¼ 1, and acts
by multiplication on T P. However, there exists an additional generator k A T P XTP HT

(since l is not even), which has its first n� l coordinates (in T ¼ ðC�Þn=hG1i) equal to 1
and its last l coordinates equal to �1. Indeed, this description makes it obvious that k A TP.
On the other hand, k can also be given by a row of n� l coordinates equal to �1 and a tail
of l coordinates equal to 1. This description makes it obvious that k A T P. Hence we have
k A TP XT P. By (6.19), KP is generated by K A

P and k. In the coordinates (6.25) on T P

the element k A TP XT P equals �1 A T P (i.e. k i
j ¼ �1 for all i; j). The subgroup KP HT P

is thus given by those t A T P with either ðti
j Þ

i ¼ 1 (for all i), or with ðti
j Þ

i ¼ �1 (for all i).
The projection pD

K : K P ! K D
P is given by pD

K ðkÞ ¼ k if ðki
j Þ

i ¼ �1 for some pairs ði; jÞ
(hence all) with i odd, and pD

K ðkÞ ¼ 1 else. The projection onto K A
P is given by pA

K ðkÞ ¼ k

if pDðkÞ ¼ 1, and pA
K ðkÞ ¼ �k else.

The group WP;P acts on T P by signed permutations on the E i
j which leave the super-

script i unchanged. If g A WP;P and x ¼ ðP; d; tÞ then gx :¼ ðP; dg; gtÞ, where dg F d � fg. By
(6.18), d ¼ dA n dD and thus

dg ¼ ðdA n dDÞg ¼ ðdAÞp
AðgÞn ðdDÞp

DðgÞ:ð6:26Þ

Let us show first that ½gx� ¼ 1 if the map pDjWx; x
!WD

P;P is not surjective. We ex-

tend WP;P to We
P;P ¼WA

P;P �WD
P;P and accordingly define We

P;P ¼WA
P;P �WD

P;P. By the

assumption we see that Wx;x H eWWP;P :¼WA
P;P � C2 where C2 HWD

P;P is a suitably chosen
subgroup. But then the projective representation of eWWP;P defines a trivial 2-cocycle
(as in the proof of Proposition 6.6, using also (6.18)), hence in particular ½gx� ¼ 1 in this
case.

So let us now assume that pDjWx; x
is onto WD

P;P. By (6.18) this implies in par-

ticular that ðdDÞk ¼ dD and ðdDÞo ¼ dD. Thus dD defines a 2-cocycle gd of WD
P;P. By

(6.26) the desired result follows from the claim: The pullback of gd under the restriction

pD
x;x : Wx;x !WD

P;P of the map pD of (6.23) is a coboundary. The remaining part of this
proof is devoted to the proof of this claim.

The condition for g ¼ kw A KP zWP;P to be in Wx;x is that ðdAÞp
AðgÞ ¼ dA and

gt ¼ t. Since WA
P;P fixes dA (by our choice to take the central character of dA real) and

K A
P acts freely on DA

P , the first equation is equivalent to pAðkÞ ¼ 1. Hence k ¼G1 A T P

(recall that �1 A T P is the element k A KP), and accordinglyGwt ¼ t. Hence we have

Wx;xAfw A WA
P;P ¼W0ðBm1

Þ � � � � �W0ðBm1
Þ jwt ¼Gtgð6:27Þ

and in this realization the homomorphism pD
x;x : Wx;x !WD

P;P is given by

pD
x;xðwÞ ¼ osðwÞ � keðwÞ

where s; e : Wx;x ! C2 are two linear characters defined by ð�1ÞsðwÞ ¼ SoddðwÞ (with Sodd

as in the proof of Proposition 6.9), and wt ¼ ð�1ÞeðwÞt.
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The torus T P is a direct product T P ¼
Qr
i¼1

T P; ðiÞ of the tori T P; ðiÞ of characters of

the root lattice of Bmi
. Now T P; ðiÞ has a double cover eTT P; ðiÞ, the torus of characters of the

weight lattice of Bmi
. The kernel of the covering map is denoted by hhðiÞi where hðiÞ is the

unique nontrivial W0ðBmi
Þ-invariant element of eTT P; ðiÞ. Thus we have

1! hhðiÞi! eTT P; ðiÞ ! T P; ðiÞ ! 1:ð6:28Þ

Putting these together we get an exact sequence

1! hhð1Þ; . . . ; hðrÞi! eTT P ! T P ! 1ð6:29Þ

where hhð1Þ; . . . ; hðrÞiAC r
2. By (6.27) we see that the action of Wx;x on T P extends

to eTT P.

Consider the set St ¼ fs A eTT P j s! fGtgHT Pg. This set admits a free, transitive
action (by multiplication) of the subgroup M :¼ hhð1Þ; . . . ; hðrÞi� h~kki of eTT P, where ~kk de-
notes a lift of �1 ¼ k A T P. This abelian group is isomorphic to C r�1

2 � C4 if l contains
parts with an odd multiplicity and is isomorphic to C rþ1

2 otherwise. Clearly M is stable
for the action of Wx;x on eTT P, making M a module over Wx;x. To describe the module struc-
ture explicitly, remark that the element ~kk is not W0ðBm1

Þ � � � � �W0ðBm1
Þ-invariant. In fact,

if w ¼ wð1Þ � � � � � wðrÞ A W0ðBm1
Þ � � � � �W0ðBm1

Þ then

wð~kkÞ ¼ hðwÞ~kkð6:30Þ

where

hðwÞ ¼
Qr
i¼1

ðhðiÞÞsi A hhð1Þ; . . . ; hðrÞið6:31Þ

with ð�1Þsi ¼ SiðwðiÞÞ, where Si is the character on W0ðBmi
Þ whose kernel is W0ðDmi

Þ. The
elements hðiÞ are all fixed for the action of Wx;x.

The M-orbit St is stable for the action of Wx;x on eTT P as well. Hence, any lift ~tt A St of
t defines a 1-cocycle m : Wx;x !M of Wx;x with values in M by the formula w~tt ¼ mðwÞ~tt.
We fix such a lift ~tt once and for all. Consider the abelian group N :¼ hh; ~kki defined by
the relations h2 ¼ 1 and ~kk2 ¼ h (if the number of odd i with mi odd is odd) or else ~kk2 ¼ 1
(hence N is isomorphic to C4 if there is an odd number of odd i with odd mi, and N

is isomorphic to C2 � C2 else). Consider the Wx;x-module structure on N defined by
wðhÞ ¼ h for all w A Wx;x, and by

wð~kkÞ ¼ hsðwÞ~kkð6:32Þ

(the fact that this defines a Wx;x-module is equivalent to saying that s is a character of
Wx;x). The module N is a quotient of M via the unique homomorphism a : M ! N satisfy-
ing að~kkÞ ¼ ~kk, aðhðiÞÞ ¼ h if i is odd, and aðhðiÞÞ ¼ 1 if i is even (in fact, the definition of N
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is such that a exists). The cocycle m induces a cocycle of Wx;x with values in N which we
denote by mN . Consider the diagram

N Wx;x

i

 
��L ???ypD

x; x

hhi K��! D8 ���!!
j

WD
P;P hoi� hki???y??y

hoi

ð6:33Þ

:::::::::::::::: b

w

where D8 ¼ h ~oo; ~kki is a dihedral group of order 8 in which ~oo has order two and h (or more
precisely iðhÞ) is the nontrivial central element. The defining relations in D8 are given by
~oo~kk ~oo ¼ h~kk. The map j is defined by requesting that jð ~ooÞ ¼ o and jð~kkÞ ¼ k.

We claim that there exists a homomorphism w : Wx;x ! D8 as indicated in the
diagram. Obviously the vertical exact sequence is split. We choose the splitting o! ~oo of
this sequence. The homomorphism pD

x;x gives rise to a homomorphism p : Wx;x ! D8 with

image h ~ooi obtained by composing pD
x;x with the first projection ho; ki! hoi and the lift

o! ~oo. We can write this explicitly by pðwÞ ¼ ~oosðwÞ. We now define a map w : Wx;x ! D8

by

wðwÞ ¼ i
�
mNðwÞ

�
pðwÞ:ð6:34Þ

We claim that w is a group homomorphism. Indeed, the action of Wx;x on N is related to p
by the formula iðnwÞ ¼ pðwÞiðnÞpðwÞ�1 (using the explicit formulas for the module N and
for p). It follows that (6.34) indeed defines a homomorphism. Next we claim that w makes
(6.33) commutative as indicated. Indeed, i

�
mNðwÞ

�
1 ~kkeðwÞ modhhi as follows from the

definition of m (and mN) and of e. On the other hand, by construction of p we see that
pðwÞ1 ~oosðwÞ modhhi. Together these two congruences (modulo the center hhi of D8)
imply the claim.

Since D8 is the Schur extension of ho; ki it now follows that the pullback of gd
under the homomorphism pD

x;x is indeed a coboundary (since pD
x;x factors through the Schur

extension map), finishing the proof of the claim and of the theorem. r

6.7. Final remarks.

6.7.1. Multiplicity one W0-types. We would like to comment on a natural alter-
native approach to proving the triviality of the cocycles gx for x ¼ ðP; d; tÞ A Xu. The
equivalence class of the restriction to HðW0; q0Þ of pðxÞ is independent of the continu-
ous parameter t A T P. We will refer to an irreducible representation of HðW0; q0Þ as a
‘‘W0-type’’ in this paragraph. If there exists a W0-type appearing in

�
Vx; pðxÞ

�
with multi-

plicity one then we can normalize the action of Rx on Vx such that the operators pðr; xÞ
are equal to 1 on this multiplicity one isotype, and this trivializes the cocycle gx.

Proposition 6.12. Let H ¼HðR; qÞ be an a‰ne Hecke algebra, and let

x ¼ ðP; d; tÞ A Xu be a standard tempered induction datum such that the central character of

d is positive (i.e. infinitesimally real). Then gx is trivial.
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Proof. In view of the above argument, it is su‰cient to prove the existence of a mul-
tiplicity one W0-type in pðxÞ. We thank Dan Ciubotaru for communicating to us that it can
be shown that any irreducible representation of H with positive central character admits
a multiplicity one W0-type (see [6], Introduction, paragraph 1.3). The proof of this fact is
based on case-by-case verifications. Now consider x ¼ ðP; d; tÞ with d a discrete series with
real central character. If t A T P is positive and su‰ciently generic, pðxÞ is irreducible and
has positive central character. By Ciubotaru’s result mentioned above, this implies the
existence of a multiplicity one W0-type. As explained above, it follows that pðxÞ has a
multiplicity one W0-type for all t A T P, hence in particular for all t A T P

u as desired. r

We do not know how to generalize this argument to general d.

6.7.2. Examples where gD is nontrivial. In this subsection we present an example
showing that gD is not trivial for HD

n ðLr;nÞ if n > 8. In the notation of the proof of Prop-
osition 6.11, we write l ¼ n� 1 if n is odd, and l ¼ n� 2 if n is even, and put l ¼ 2m in
both cases. We define l ¼ ð1Þ or l ¼ ð1; 1Þ depending on n being odd or even. Recall that
conjugate partition of l is denoted by m; hence we have m ¼ ð1Þ in the first case and m ¼ ð2Þ
in the second case. By (6.6), (6.17), (6.20) and (6.21) we see that

WP;P ¼
�
W0ðBm1

Þ � hki� hoi
�Sodd HWA

P;P �WD
P;PAW0ðBm1

Þ � C2
2ð6:35Þ

where o A WD
P;P and k A K D

P are as in the proof of Proposition 6.11, and where Sodd is the
linear character which is equal to the product of the signs of a signed permutation in
W0ðBm1

Þ, which is trivial in hki, and which is nontrivial on hoi. In particular the homo-
morphism pD : WP;P !WD

P;P of (6.23) is surjective (even has a section), with

WD
P;P ¼ hki� hoiAC2

2 :ð6:36Þ

Equation (6.18) reduces in this case to

HP ¼HD
2mðZ2mÞð6:37Þ

and the action of WP;P by automorphisms of HP factors through the surjective projection
pD to an action (denoted by b) of WD

P;P on HP by automorphisms.

The spectral diagram (in the sense of [26], Definition 8.1) of HP is the a‰ne Dynkin
diagram of type D2m equipped with the action of the unique nontrivial diagram automor-
phism h whose set of fixed points is the set of non-extremal vertices of the diagram. In
Figure 1 this spectral diagram is displayed, with the action of h indicated by the solid
arrows. In addition we have indicated in Figure 1 the middle vertex e (the encircled vertex)
of the diagram, and the action of three diagram automorphisms ~kk, ~oo and ~oo 0 (by the dashed
arrows). The group G of diagram automorphisms generated by ~kk and ~oo is isomorphic to
the dihedral group D8, and we have a projection q : G !WD

P;P with kernel hhi (the center
of G). Observe that h ¼ ~oo 0 ~oo ¼ ~kk ~oo~kk ~oo in G. Recall that TP ¼ HomðZ2m;C�Þ ¼ ðC�Þ2m,
and denote by eTTP the double cover eTTP :¼ HomðLD

2m;C
�Þ of TP. There is a canonical

identification of the group of special diagram automorphisms h~kki� hhi with the group
~KKP :¼ ðLD

r;2mÞ
4=ðLD

2mÞ
4AC2

2 H eTT P of fixed points for natural action of W0ðD2mÞ on eTTP.
We can extend the action of W0ðD2mÞ on eTTP to W0ðB2mÞ ¼W0ðD2mÞz h ~ooi. Then h
is the unique nontrivial fixed point for this action of W0ðB2mÞ, while ~ooð~kkÞ ¼ h~kk. We
have TP ¼ eTTP=hhi, and the action of W0ðB2mÞ on TP admits a unique nontrivial fixed
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point k ¼ ð�1; . . . ;�1Þ ¼ ~kkhhi. The group G ¼ ~KKP z h ~ooi acts naturally on HD
2mðL2mÞ via

an action ~bb defined as follows: ~bbð ~ooÞ is the diagram automorphism arising from the auto-
morphism of the root datum of HD

2mðL2mÞ which ~oo induces, and k A ~KKP acts on the
Bernstein basis of HD

2mðL2mÞ by ~bbðkÞðyxNwÞ ¼ kðxÞyxNw. Since h is central in G, we see

that HP ¼
�
HD

2mðL2mÞ
�h

is stable for the action of G via ~bb. If we restrict the action of ~bb
to the subalgebra HP, this restricted action descends to an action of WD

P;P on HP which
coincides with the action b on HP defined above.

Recall Lusztig’s parameterization ([16], [26], Theorem 8.7) of the discrete series repre-
sentations of HP ¼HD

2mðZ2mÞ. According to this result the discrete series representations of
HP whose central character W0ðD2mÞrHHomðZ2m;C�Þ contains points with unitary part
equal to sðeÞ ¼ ð1; . . . ; 1;�1; . . . ;�1Þ A TP (with the same number m of 1’s and �1’s) cor-
respond to discrete series representations of the extended graded a‰ne Hecke algebra of the
form

He :¼
�
HðDmÞnHðDmÞ

�
z hhið6:38Þ

where HðDmÞ is shorthand for HðR1;V ;F1; kÞ (in the notation of [26]), where R1 is a root
system of type Dm in V �, with basis of simple roots F1. The underlying based root system
of the Hecke algebra He is the root system RsðeÞ;1 of type Dm �Dm obtained from the spec-
tral diagram by deleting the vertex e. The group G ¼ D8 of diagram automorphisms fixes e;
this yields an action (denoted by a) of G on the algebra He by diagram automorphisms.
Observe that aðhÞ is inner on He, hence a gives rise to a homomorphism of G to the group
of outer automorphisms of He which factors through WD

P;P via q.

To explain the above mentioned correspondence between the discrete series on both
sides, recall from [26], proof of Theorem 7.1 that every discrete series representation d of
HðDmÞ is fixed for twisting with the action of the unique nontrivial diagram automorphism
~oo of Dm, and can in fact be extended to HðBmÞ ¼ HðDmÞz h ~ooi in precisely two ways,
denoted by dþ and d�. In particular, the central character W0ðDmÞx of d is fixed for the
action of ~oo. If dþð ~ooÞ ¼ W A GLðVdÞ then d�ð ~ooÞ ¼ �W. A discrete series representation of
He is therefore of the form d1; e1

n d2; e2
(with ei ¼G, and where di is a discrete series repre-

sentations of HðDmÞ) and has a central character of the form

cV :¼
��

W0ðDmÞ �W0ðDmÞ
�
z hhi

�
ðx1; x2Þ ¼

�
W0ðDmÞðx1Þ;W0ðDmÞðx2Þ

�
:

Notice that the identity map defines an equivalence of He-representations

d1; e1
n d2; e2

!@ d1;�e1
n d2;�e2

:ð6:39Þ

Figure 1. Spectral diagram of HP, with the action of ~oo, ~oo 0 and ~kk.
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This representation corresponds (in the sense of [26], Theorem 8.7) to a discrete series rep-
resentation s of HP with central character cc :¼W0ðD2mÞðrsÞ with rs :¼ sðeÞ expðx1; x2Þ.
We note that c :¼ sðeÞ exp cV ¼ sðeÞ

�
W0ðDmÞ

�
expðx1Þ

�
;W0ðDmÞ

�
expðx2Þ

��
H cc is an

equivalence class in the sense of [16], paragraph 8.1. The correspondence discussed above
is completely determined, using Lusztig’s isomorphism [16], Section 8, Section 9

F : ecðHP; ccÞec !@ He; cV
;ð6:40Þ

by the requirement that the action of He on sðecÞðVsÞHVs via F is equivalent to the
representation d1; e1

n d2; e2
. It is clear by the above that these representations of He are

invariant for twisting by ~oo, and that they are invariant for ~kk if and only if d1 ¼ d2 :¼ d (a
discrete series representation of HðDmÞ). Write sðdÞ for the discrete series representation of
HP corresponding to dþn dþ and sðdÞ for the one corresponding to dþn d�.

Proposition 6.13. The discrete series representations of HP of the form sðdÞ are in-

variant for twisting by the group WD
P;P ¼ hki� hoiAC2

2 of automorphisms of HP, and the

corresponding factor set g (see [8], 8.32) is a nontrivial cocycle of WD
P;P.

Proof. The invariance of sðdÞ was discussed above. We trace the action b of WD
P;P on

HP; cc through Lusztig’s isomorphism (6.40). But since the equivalence class c is o-invariant
but not k invariant we are forced to work with the WD

P;P-invariant idempotent ec þ ekðcÞ
rather than ec. Following Lusztig [16], we choose w A W0ðD2mÞ such that kðcÞ ¼ wc and
such that w has minimal length (or equivalently, such that wðFsðeÞ;1Þ ¼ FsðeÞ;1). We have
an algebra isomorphism

C : ðec þ ewcÞHP; ccðec þ ewcÞ !@ Mat2�2ðHe; cV
Þ;ð6:41Þ

X ! FðecXecÞ FðecXewci
0
wÞ

Fði0
w�1 ewcXecÞ Fði0

w�1ewcXewci
0
wÞ

 !
:

We transfer the action b of WD
P;P on ðec þ ewcÞHP; ccðec þ ewcÞ to the matrix algebra on the

right-hand side via C; we shall denote the resulting action of WD
P;P by m. We use the iso-

morphism Mat2�2ðHe; cV
Þ ¼Mat2�2ðCÞnHe; cV

, and write I for the identity automorphism
of Mat2�2ðCÞ. Using the results of [16], Section 8, it is not di‰cult to show that

mðoÞ :¼ C � bðoÞ �C�1 ¼ C
1 0
0 h

� � � �I n að ~ooÞ
�

ð6:42Þ

where, for an invertible matrix M, CM denotes the inner automorphism of conjugation
with M. Similarly, we see that

mðkÞ :¼ C � bðkÞ �C�1 ¼ C
0 1
1 0

� � � �I n að~kkÞ
�
:ð6:43Þ

Observe the relation
�
mðkÞmðoÞ

�2 ¼ Id (use
�
að~kkÞað ~ooÞ

�2 ¼ aðhÞ, the inner automorphism
of conjugation by h on He; cV

), showing that we indeed defined a representation of WD
P;P,

and not just of G. Recall that sðdÞ has the defining property that He acts via F on
sðdÞðecÞðVsðdÞÞAVdnVd according to dþn d�. It follows that

Mat2�2ðHe; cV
Þ ¼Mat2�2ðCÞnHe; cV
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acts via C on Vc;wc :¼ sðdÞðec þ ewcÞðVsðdÞÞAC2 n ðVdnVdÞ by idn ðdþn d�Þ (here id
denotes the defining action of Mat2�2ðCÞ on C2). We write elements of C2 n ðVdnVdÞ as
a column vector of size 2 with entries in VdnVd, so that the action of Mat2�2ðHe; cV

Þ can
be written as matrix multiplication where the matrix entries act on VdnVd via dþn d�.

It follows straight from the definition of the correspondence that the factor set g for
WD

P;P defined the by module sðdÞ via the action b is equal to the factor set defined by the
module Vc;wc via the action m. The following linear involutions MðkÞ, MðoÞ on Vc;wc define
intertwining operators from Vc;wc to its twists by mðkÞ and mðoÞ respectively:

MðkÞ u1 n u2

v1 n v2

� �
¼ v2 n v1

u2 n u1

� �
;ð6:44Þ

MðoÞ u1 n u2

v1 n v2

� �
¼ �u1 nWðu2Þ

Wðv1Þn v2

� �
:

We see that
�
MðkÞMðoÞ

�2 ¼ �Id, proving that M lifts to a linear representation of the
Schur extension G ¼ D8 of WD

P;P in which h acts by �Id. In particular, g is nontrivial. r

Corollary 6.14. The 2-cocycle gD of WD for HD
n ðLr;nÞ is nontrivial if n > 8.

Proof. By definition (cf. paragraph 3.2.3) the pullback of gD to

WP;PAðWDÞðP;sðdÞÞ; ðP;sðdÞÞ

is equal to the pullback ðpDÞ�ðgÞ of the factor set g via pD : WP;P !WD
P;P. Using (6.35) it is

easy to see that pD has a section s : WD
P;P !WP;P, implying that ðpDÞ� is injective on co-

homology classes by contravariant functoriality of H 2ð?;C�Þ. By the above proposition we
conclude that ðpDÞ�ðgÞ is a nontrivial 2-cocycle, implying that gD is nontrivial. r

7. Appendix: The Weyl groupoid

In this paragraph and in the next we recall some well known facts about Weyl groups
and standard parabolic subgroups of Weyl groups. These results are essentially due to
Langlands, and the basic references for this material are [5], [19].

Let a ¼ LieðTrsÞ be the finite dimensional real vector space RnZ Y . Then R0 H a� is
a reduced, integral root system. Recall however that we do not assume that RR0 ¼ a�.

The Weyl group W0 of R0 acts naturally as a real reflection group on a. The set of
simple reflections in W0 corresponding to the basis of simple roots F0 is denoted by S0.

A parabolic subgroup of W0 is the isotropy subgroup of an element of a. A standard
parabolic subgroup of W0 is a subgroup WP HW0 which is generated by the set of simple
reflections corresponding to a subset PHF0. Clearly every parabolic subgroup is conjugate
to a standard parabolic subgroup.

Let us denote by P the power set of F0. Given P;Q A P we denote

WP;Q :¼ fw A W0 jwðPÞ ¼ QgHW0:
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Definition 7.1. The Weyl groupoid W is the finite groupoid whose set of objects is P
and HomWðP;QÞ :¼WP;Q.

For a standard parabolic subgroup WP we have a distinguished set W P of left coset
representatives for WP, characterized by W P :¼ fw A W0 jwðPÞHR0;þg. We denote by
w0 the longest element of W0, and by wP the longest element of WP. Then the longest
element in W P is equal to wP ¼ w0wP. Observe that P :¼ wPðPÞ A P, so that we always
have wP A WP;P. The element P A P is called the conjugate of P.

If P;Q A P and WP;Q 3j then P, Q are called associates. In particular, for every
P A P the conjugates P and P are associates.

Given P A P we put

aP ¼ fx A a j aðxÞ ¼ 0 Ea A Pg:

Consider the set S :¼ fðP; xÞ jP A P; x A aPg. Then S is a collection of real vector spaces
which is naturally fibred over P. The set S carries a natural action of W defined by
wðP; xÞ ¼ ðQ;wxÞ if w A WP;Q.

7.0.3. Chamber system of W. We denote by aþ the positive Weyl chamber in a. Every

face of aþ is of the form aþX aP for a unique P A P, and this sets up natural bijection

between the facets of aþ and P.

The subset of R0 consisting of the roots of WP is denoted by RP, thus RP ¼ R0 XRP.
We choose the set of positive roots RP;þ in RP corresponding to the basis P of RP.

We adopt the notation ðP; aÞ to denote the restriction of a A R0nRP to aP. We write
RP H aP;�nf0g for the set of restrictions ðP; aÞ of roots a A R0nRP which are in addition
primitive in the sense that if b A R0nRP and ðP; aÞ A RP such that ðP; aÞ and ðP; bÞ are pro-
portional, then ðP; bÞ ¼ cðP; aÞ with c A Z. We write RP

þ for the primitive restrictions corre-
sponding to the positive roots a A R0;þnRP;þ. An element ðP; aÞ is called simple if ðP; aÞ is
indecomposable in ZþRP

þ. This is equivalent to saying that ðP; aÞ is the restriction of an
element of F0nP.

To each ðP; aÞ A RP we associate a hyperplane ðP;HaÞ ¼ KerðP; aÞH aP. The hyper-
planes ðP;HaÞ are called the walls in aP.

A chamber of W in S is a pair ðP;CÞ with P A P, and C H aP a connected compo-
nent of the complement of the collection of walls in aP. The collection of chambers is
denoted by CðW; a;F0Þ. This is a finite set, which has a natural fibration ðP;CÞ ! P over
the set P. The action of W on S maps chambers to chambers, and thus induces a natural
action of the groupoid W on CðW; a;F0Þ.

The set RP
þ determines a distinguished chamber ðP; aP;þÞ of aP, defined by

aP;þ ¼ fx A aP j aðxÞ > 0 Ea A RP
þg. Observe that the chambers are simplicial cones, and

that ðP; aP;þÞ is the face of aþ corresponding to P.

An (irredundant) gallery of length n in aP is a sequence C0;C1; . . . ;Cn of chambers
contained in aP such that each pair Ci�1;Ci (i ¼ 1; . . . ; n) consists of distinct chambers
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which share a common face. A minimal gallery is a gallery of shortest length between its end
points. The distance between two chambers is the length of a minimal gallery between them.

Given a chamber ðP;CÞ, we define its height htðP;CÞ to be the number of walls of aP

separating ðP; aP;þÞ and C. Thus htðP;CÞ is equal to the distance between ðP; aP;þÞ and C.

7.0.4. Elementary conjugations. The faces of aP;þ are of the form

aQ;þ ¼ aP;þX ðP;HaÞ;

where Q A P is such that PHQ and QnP ¼ fag: Thus the faces of aP;þ are in bijective
correspondence with the Q A P containing P as a maximal proper subset. Given Q A P
containing P as a maximal proper subset we define an element sP

Q A WP;P 0 by sP
Q ¼ wQwP.

Here P 0 ¼ sP
QðPÞHQ is the conjugate of P in Q. Notice that sP 0

Q ¼ ðsP
QÞ
�1. In particular,

PHQ is self-opposed (in the terminology of [4], Section 10.4, i.e. PHQ is its own conju-
gate as a maximal standard parabolic subsystem of Q) i¤ sP

Q is an involution. The following
result is well known (see [5], [19]).

Theorem 7.2. (i) The action of W on the set CðW; a;F0Þ of chambers of W is free, and

every W-orbit in CðW; a;F0Þ contains a unique positive chamber ðP; aP;þÞ (with P A P).

(ii) Every element ðP; xÞ A S is W-conjugate to a ðQ; yÞ A S with y A aQ;þ.

(iii) If ðP;C1Þ and ðP;C2Þ are distinct neighboring chambers then C1 ¼ w1ðaP1;þÞ,
C2 ¼ w2ðaP2;þÞ and w�1

1 w2 is the elementary conjugation sP2

Q in W with respect to a uniquely

determined Q A P which contains both P2 and P1 as maximal proper subsets.

Corollary 7.3. (i) Every w A WP;Q can be written as a product of elementary conjuga-

tions in W.

(ii) The minimal length of a word consisting of elementary conjugations representing

w A WP;Q is equal to the height of
�
Q;wðaP;þÞ

�
.

(iii) The reduced expressions for w A WP;Q as a product of elementary conjuga-

tions correspond bijectively to the minimal galleries in aQ from aQ;þ to wðaP;þÞ. If

aQ;þ ¼ C1;C2; . . . ;Cn ¼ wðaP;þÞ is a minimal gallery with Ci ¼ wiðaPi;þÞ and we put

xi ¼ w�1
i�1wi A WPi ;Pi�1

, then w ¼ x1 � � � xn is the corresponding reduced expression for w.
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163 Avenue de Luminy, Case 901, 13288 Marseille Cedex 09, France

e-mail: delorme@iml.univ-mrs.fr

Korteweg de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248,

1090 GE Amsterdam, The Netherlands

e-mail: e.m.opdam@uva.nl

Eingegangen 7. September 2009, in revidierter Fassung 7. Mai 2010

172 Delorme and Opdam, Analytic R-groups of a‰ne Hecke algebras

Brought to you by | Aix Marseille Université
Authenticated

Download Date | 5/22/18 12:41 PM


