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Analytic R-groups of affine Hecke algebras
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1. Introduction

Let # be an affine Hecke algebra in the sense of Lusztig (see [16] or [25]). The
Fréchet algebra &, the Schwartz algebra completion of J#, is a central object of study for
the harmonic analysis of #. The key to understanding the structure of % is the Fourier
transform isomorphism % which (by the main result of [9], Theorem 5.3) identifies %
with the algebra of Weyl group invariant sections of a certain smooth endomorphism
bundle over the space E, of “‘tempered standard induction data.”

Such a tempered standard induction datum consists of a triple (P,d,7) where P
denotes a subset of the set of simple roots of the based root system underlying 5. This
subset P defines a “standard Levi subalgebra” #% of #, with semisimple quotient #5,
and J denotes a discrete series representation of #%. Finally ¢ is a unitary induction param-
eter for #p, which is used to lift 6 to a unitary representation J, of # P The set of such
unitary parameters has the structure of a compact real torus. Thus Z, is a finite union of
compact tori.

The endomorphism bundle alluded to above is constructed from a canonical projec-
tive unitary representation 7 of the groupoid #z, of tempered standard induction data
(cf. [9], Section 3.5). The arrows in this groupoid are twists by certain isomorphisms of
the #p defined in terms of the (affine) Weyl group. This groupoid #z, has been determined
explicitly in general if # is of simple type, see [26]. The projective representation 7 yields a
2-cocycle y € Z*(Wz,,U(1)) of #z, with values in U(1).

The results [9], Theorem 3.11, Theorem 3.19 state that for every & € E, the represen-
tation 7(&) of # is unitary and tempered, and that for every irreducible tempered module p
of A there exists a unique orbit ¢ (with & € §,) such that p is equivalent to an irreducible
summand of 7(¢).

The main purpose of this article is to decompose 7(¢) for & € E,. For this reason we
introduce a certain subgroup Re, called the R-group, of the isotropy subgroup #: ¢ of £ in
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134 Delorme and Opdam, Analytic R-groups of affine Hecke algebras

the Weyl groupoid #". We show an analog of the Knapp—Stein Dimension Theorem [14],
[30] which says that the commutant of the representation n(¢£) has a basis given by the 7(x)
with r running over the elements of Re. As in [1], Section 2, it follows that there exists a
bijective correspondence between the irreducible representations of # arising as summands
of (&) on the one hand, and the irreducible representations of the twisted complex group
algebra 7:C[R¢] on the other hand (where y: denotes the restriction of y to Re). This is the
content of our main result, Theorem 5.5. If J# is of simple type, our results yield the clas-
sification of the (equivalence classes of) irreducible tempered modules of . In the “equal
parameter case’ [13] and more generally for the affine Hecke algebras arising in the context
of “unipotent representations’ of inner forms of simple adjoint split groups, a classification
of the tempered irreducible modules in terms of geometric data is also known [18].

The analogy with the theory of tempered representations of the group G of points of a
reductive group defined over a local field is not surprising, since for various specializations
of the parameters of it is known that its module category is equivalent to a Bernstein
block b in the category of smooth representations of such a group G ([17], [21], [22], [23],
[11]). If  is in fact isomorphic to the Hecke algebra of a “b-type” then this equivalence
is known to respect temperedness and Plancherel measures [3]. Hence in this context our
results yield the classification of the irreducible tempered representations of G which belong
to b.

It is a fundamental question how the R-groups of parabolic induction for s# which
we will define below are related to the R-groups of parabolic induction for G if J# is the
Hecke algebra of a type for b or in the context of [11]. Some general results in this direction
have been achieved by Roche [29].

The R-groups and 2-cohomology classes [y;] for classical affine Hecke algebras are
amenable to direct explicit computation. This is illustrated by Slooten’s computation [31]
of the R-groups for classical Hecke algebras when the inducing representation is discrete
series with real infinitesimal character (in the sense of [2]), and by the results in Section 6
of the present paper, proving the triviality of the 2-cocyles y. for classical Hecke algebras in
all cases. With these results at hand, our decomposition theorem amounts in these cases to
the proof of Slooten’s conjectural classification [31], Conjecture 4.3(i) of the irreducible
tempered representations with real central character for classical Hecke algebras (see [31]).
For a geometric approach to these results, see [7].

The main technical thrust of the proof of Theorem 5.5 is the fact that the # -average
of the product of a smooth section of the endomorphism bundle with the ¢-function is itself
a smooth section (see equation (4.2)). Another technical tool is the computation of the con-
stant term for generic parameters [9], Section 6.2.

2. Affine Hecke algebras

The structure of an affine Hecke algebra # = #'(%,q) is determined by an affine
root datum (with basis) # together with a label function ¢ defined on the extended affine
Weyl group W associated to #. We refer the reader to [16], [25], [9] for the details of the
definition of the algebra # (%, ¢), which we will only briefly review here.
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Delorme and Opdam, Analytic R-groups of affine Hecke algebras 135

Let # = (X,Y,Ro, Ry, Fy) be a root datum (with basis Fy = X of simple roots of
Ry = X). Let W, denote the Weyl group of the reduced integral root system Ry. The
extended affine Weyl group W associated with £ is by definition W = W, X X. The affine
root system R is equal to R:= Rj x Z < Y x Z. Observe that R is closed for the natural
action of W on the set of integral affine linear functions ¥ x Z on X. Furthermore R is the
disjoint union of the positive and the negative affine roots R = R, U R_ as usual, and we
define the length function / on W by

(2.1) I(w):=|Ry nw™'R_|.
The affine simple roots are denoted by F2.

A label function ¢: W — R, is a function which is length multiplicative (i.e.
q(uv) = q(u)q(v) if I(uv) = I(u) + [(v)) and which in addition satisfies ¢(w) = 1 if /(w) = 0.
Thus a label function is completely determined by its values on the set ST of affine simple
reflections in . Observe that this gives rise to a positive function on S*T which is constant
on W-conjugacy classes of simple reflections, and conversely, every such function gives rise
to a label function.

We choose a base q > 1 and define f; € R such that g(s) = ¢/ for all s € 3,

Given these data, the affine Hecke algebra # = # (2, q) is described as follows. It is
the unique complex unital algebra with basis N,, (w € W) over C subject to the following
relations (here g(s)'/? denotes the positive square root of ¢(s)):

(i) Ny = NN, for all u,v e W such that /(uv) = I(u) + I(v).
(i) (Ns+q(s)""7%) (Ns — g(s)'?) = 0 for all s € ST

2.0.1. Root labels for the non-reduced root system. The label function ¢ on W can
also be defined in terms of root labels. We associate a possibly non-reduced root system
R, with Z by

(2.2) Ry :=Royu{2u]a’ e Ry n2Y}.
Observe that a +2 € Waforallae R, but thata+ 1 € Wa iff a = oY + n with 20 ¢ Ry,

Let R>a — ¢, be the unique W-invariant function on R such that ¢, := ¢(s,) for
all a e F*T, Now for o = 28 € Ry,/\ Ry we define

q v
(2.3) o =21

It is easy to see that in this way the set of positive Wy-invariant functions ¥ — ¢,+ on R},
corresponds bijectively to the set of label functions ¢ on W. With these conventions we
have for all w e W}

(2.4) q(w) = I1 G-
o€ Rnr - OW TRy
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136 Delorme and Opdam, Analytic R-groups of affine Hecke algebras

We denote by R; < X the following reduced root subsystem of Ry,:
(2.5) Ry := {0 € Ry | 200 ¢ Ry}

Let F; = Ry be the basis of simple roots corresponding to Fy. The root system R; dif-
fers from Ry only if the root datum of J# contains direct summands of “type C,gl)”, the
irreducible root datum with R, of type B, and X the root lattice of B,. This is the only
irreducible root datum for which the affine Hecke algebra admits 3 independent parame-
ters. For this root datum, R; is of type C,. When applying Lusztig’s first reduction theorem
(cf. [26], Theorem 2.6) one needs to consider the affine Weyl group R%l) rather than R(()”,
and this is the reason for introducing R; (it plays a role in the explicit computations in
Chapter 6).

2.0.2. Restriction to parabolic subsystems. We define a = Y ®; R. Let P be a subset
of Fy. We have a canonical decomposition a = a” @ ap, where af := P+ and ap := RP".
Dually we have the decomposition a* = a®* @ aj where aj = RP and a”* = (P¥)" (in
the case P = F, we will denote this decomposition by a* = a%* @ aj). Let Rp < Ry be the
“parabolic subsystem of roots” Rp = Ry N aj}.

Consider the root datum %% := (X, Y,Rp, Ry, P). Let Xp = X /(X na®*) be the
projection of the lattice X on a} along a®* (this lattice contains the lattice X na} as a
sublattice of finite index). Observe that the dual lattice Yp of Xp equals Yp = Y nap. We
also introduce the semisimple root datum %p := (Xp, Yp, Rp, Ry, P). The non-reduced root
systems associated to the root data A% and Zp are both equal to Rp nr := QRp N Ry, We
define a label function ¢p on the affine Weyl group associated to #p by requiring that the
corresponding root label function on Rp . is obtained by restricting the root label function
on Ry, to Rp . We define a label function g* on the affine Weyl group associated to %p in
the same fashion.

2.0.3. Bernstein presentation. There is a second presentation of the algebra s, due
to Joseph Bernstein (unpublished). Since the length function is additive on the dominant
cone X', the map X 3 x+— N, is a homomorphism of the commutative monoid X *
with values in #*, the group of invertible elements of #. Thus there exists a unique exten-
sion to a homomorphism X 3 x — 0, € #* of the lattice X with values in #*.

Let o/ « # be the abelian subalgebra of # generated by 6., xe X. Let
Ho = H (Wy,qo) = A be the finite type Hecke algebra associated with W and the restric-
tion gy of g to Wy. Then H#y < S is a subalgebra of »#. The Bernstein presentation asserts
that the multiplication maps #y ® &/ — # and of ® #y — H# are linear isomorphisms.
The algebra structure of # is then completely determined by the following cross relations
(for all x € X and s = s, with o € Fp):

(2.6) .
I if 22¢ Ry,
0N — Nxos(x) = -
12 12 ~1)2 Ox — Oyx)

1/2 1/2 -1/2 .
((%V/zqav - qav/z qyv ) + (qxv — )070() 10 0, if 20 € Ry,
—0
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2.0.4. The center & of #. An immediate consequence of the Bernstein presenta-
tion of J# is the description of the center of J#:

Theorem 2.1. The center of # is equal to 7. In particular, # is finitely generated
over its center.

As an immediate consequence we see that irreducible representations of # are finite
dimensional by an application of (Dixmier’s version of) Schur’s lemma.

2.1. Intertwining elements. Let s = 5, € Sy with o € F;. Define 1, € 5 by:

1/2 1 2 2

b= (1= 0_)N:+ (4205 " — 0.2 a)0) + (a5, — 432)0-0p2)
1/2 1/2 1/2 1/2 1/2

= Ny(1-0,) + ((‘]av/ qu/ QQ(( Q2g/¢v)9 + (qz /> - %év)ea/z)

(where, if o/2 ¢ X, we put ¢a,» = 1). We recall from [24], Theorem 2.8 that these elements
of # satisfy the braid relations, and they satisfy (for all x € X):

(27) 139)6 = Hs(x) Ly

Let 2 denote the quotient field of the center & of #, and let ,# denote the
2-algebra s # = 2 ®4 A . Inside »# we normalize the elements i, as follows. We first
introduce

28)  m=q L+ P0p) (1 - 4,40 ) € .
Then the normalized intertwiners 10 € »# (s € Sp) are defined by (with s = s,, o € R):
(2.9) =0l e 0.

It is known that (12)2 = 1, and in particular that :” € ,#*, the group of invertible elements
of »#. We have:

Lemma 2.2 ([25], Lemma 4.1). The map Sy 3 s — 1° € 3 extends (uniquely) to a
homomorphism Wy 3w — 12 € , . Moreover, for all f € .5/ we have that lgfzg,l = f".

3. The Fourier transform for affine Hecke algebras

Recall the canonical decomposition a* = a%* @ a;. Then X N a%* consist of transla-
tions of length 0 in the affine Weyl group. Choose a norm || - || on a®*. Let us denote by x°
the projection of x € X onto a®* along a;. Then we define a norm ./" on W by

(3.1) () 2= 100) + [w(0)°].

Definition 3.1. The Schwartz completion & of # is the vector space of the for-

mal complex linear combinations »_ ¢, N,, for which the function W 3w — ¢, is rapidly
weWw
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138 Delorme and Opdam, Analytic R-groups of affine Hecke algebras

decreasing with respect to the norm ./ defined above on W, equipped with the usual
Fréchet topology on the space of rapidly decreasing functions on W,

Recall the following result:

Theorem 3.2 ([25], Theorem 6.5). The algebra structure on the dense subspace
H < & extends uniquely to a Fréchet algebra structure on .

Let us now review the notions involved in the definition of two of the main ingre-
dients involved in the description of the structure of the Fréchet algebra &, the group-
oid #z, of standard tempered induction data, and the “induction intertwining functor
7 defined on this groupoid. Both these structures arise from the L,-theory of the Hecke
algebra.

3.1. Tempered representations. An affine Hecke algebra with a positive label func-
tion comes equipped with the structure of a x-algebra, where * denotes the unique anti-
linear anti-involution defined by anti-linear extension of the map N} := N,,-1. Moreover,
the linear functional 7 defined by ©(N,,) =, . is a positive trace with respect to *. The
star operation * and trace t together define a unique Hilbert algebra structure on J# (see
[25]) which is the origin for the harmonic analysis on .

We define a positive definite Hermitian inner product on # by (x, y) := t(x*y), and
denote by L,(#°) the Hilbert space completion of . It is the separable Hilbert space in
which the basis elements N,, (w € W) form a Hilbert basis. We have

(3.2) H S < LK),
and the second inclusion is easily seen to be continuous.

A representation 7 of # which is of finite length is called tempered if © extends con-
tinuously to . It is in fact sufficient that the character of n (recall that all representations
of finite length of # are finite dimensional) extends continuously to % (cf. [25], Lemma
2.20). An irreducible representation 7 of # is called a discrete series representation if 7
extends continuously to L,(#). An equivalent way of saying this is that the character y,
of 7 extends to a continuous functional on L,(#) (cf. [25], Lemma 2.22). Thus a discrete
series module is in particular a tempered module.

Our main interest in this paper will be the description of the structure of the tempered
dual & of #, the set of equivalence classes of irreducible tempered representations. It is
known (cf. [9], Theorem 3.11, Theorem 3.19, Theorem 4.3, and [25], Theorem 2.25) that
this set of irreducible representations extends to the C*-algebra completion C;(#) of A,
and that one obtains in this way precisely the irreducible spectrum of C(#°). We equip S
with the topology of the spectrum of C(.#) via this identification.

3.2. The groupoid of standard induction data.

3.2.1. Induced representations. The affine Hecke algebra with root datum #% and
label function ¢” is naturally embedded as a subalgebra of #, as is apparent from Bern-

stein’s presentation. The affine Hecke algebra with root datum Zp and label function ¢gp is
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isomorphic to the quotient of #¥ by the central subalgebra ./” = #% generated by the 0.
with x € X n a®*. In particular for #p the role of the complex algebraic torus 7 of (quasi)
characters of X is now played by the algebraic subtorus 7p = T with character lattice Xp.
The central characters of the irreducible modules over #p are Wp-orbits in Tp.

Let T? = T denote the complex algebraic subtorus with character lattice
X?=X/(X na}). This is the identity component of the group of fixed points for the
action of Wp on T. The group T* acts naturally on #% by automorphisms. We
send te TP to the automorphism v, of #7% which acts on the Bernstein basis by
O.N,, — t(x)0N,. Given a discrete series representation ¢ of #p we denote by J, the twist
5, =00 poy, by te TP of the lift of § to #” via the natural quotient map p : #* — #p.
Define the finite abelian group

(3.3) Kp:=T" nTp ~Hom(Xp/(X na}),C*).

For later use we observe that if k € Kp thenitlhe twist by k descends to an automorphism of

Hp, and we have 0y = (Jx),, where o (= ok ) is the twist of ¢ by the automorphism of #p
coming from k, which is again a discrete series representation of J#p.

Choose a complete set of representatives Ap = Ay, 4, for the set of isomorphism
classes of discrete series representations of the Hecke algebra #p. This set is finite [25],
Lemma 3.31. We put A for the finite disjoint union A := [] (P,Ap), a finite set with a
natural fibration A — 2 (with £ the power set of Fp). pez

We will use some terminology from the theory of groupoids. Recall that a groupoid %
is a ““group with several objects’” or more formally, a small category in which all the mor-
phisms are invertible. In particular a group G is a groupoid with one object. On the other
extreme end any set X can be viewed as a groupoid with only identities, the “identity
groupoid” of X.

A standard induction datum & for J# is a triple (P,0,t) with P e 2,6 € Ap := Ay, 4,,
and t € T, Recall that J is a representative of an equivalence class of discrete series repre-
sentations. Let us denote the underlying vector space by V5. The set Z of all such triples is a
finite (by [25], Lemma 3.31) disjoint union of the subsets Zp 4, each of which is a copy of
the complex algebraic torus 77. We view Z as the set of arrows of a groupoid whose set of
objects is A, with Hom((P,9), (Q,7)) = Eps if (P,d) = (Q,7) and = @ else. We identify
Z(p,s) With the complex algebraic torus T” by T# 51 — & = (P,d,1) € E(p 5. This equips E
in particular with the structure of a complex algebraic variety. We denote by E, < E the
compact real form of E (i.e. we restrict 7 to the compact real form 7.F = T*). Given an
induction datum & = (P,d,t) we can define an induced representation n(&) of # by induc-
ing ¢, from #* to # (see [25], Paragraph 4.5.1; [9], Subsection 3.5). The representation is
realized in the vector space

(3.4) Ve=H Qyr Vs =:i(Vs)

which is independent of t € T* (the “compact realization). The matrix coefficients of 7(¢)
are regular functions on E. The representations (n(f), Vé) are called generalized principal
series representations.
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Proposition 3.3 ([25], Proposition 4.19, Proposition 4.20). The generalized principal
series n(&) is tempered if ¢ € B, and it is unitary for & € B, with respect to a standard inner
product on i(Vs) which is independent of .

3.2.2. The groupoid of standard induction data. We now describe the morphisms
of standard induction data. Recall the Weyl groupoid 28 which has the collection of stan-
dard parabolic subsets P — Fj as set of objects, with arrows Wp o := {w e W |w(P) = 0}
between two standard parabolic subsets P, Q (see Appendix 7 for some important
notions related to ). If w € Wp o then there exists a corresponding isomorphism of root
data #p — Z¢ compatible with the root labels gp and ¢, thus defining an isomorphism
Y, : Ap — Hp. On the other hand, we have already seen above that with k € Ky there
is associated a twist y, of #p. We define a groupoid #~ whose set of objects is # and
Wp,o =Ko x Wp o with the obvious composition rule (k x u) o (I x v) = k(u(l)) x uv.
We also introduce the “normal subgroupoid” #" = #” whose objects are 2, with #p o = 0
if P+ Q and #p p = Kp. Hence the Weyl groupoid 2B is equal to the quotient I = %"/ 4"

For each g = k x u € #" we define an isomorphism , : #p — #( by

lwbg = 'wbkxu = W o lpu'

There is a natural action of %" on the space Z by (with g =k x u € Kp x Wp o):

(3.5) g(P,6,1) == (u(P),0%,9(1)),
where 07 € Ay is the unique discrete series representation such that 0/ ~d o lpg”.

Definition 3.4. We define the groupoid #z of standard induction data by
W= =W Xz E. Its set of objects is E, and the morphisms in #= from & — # are the
g € #" such that g(&) = . The full subgroupoid #7z, is obtained by restricting the set of
objects to B, < E.

Notice that the groupoid #z is canonically determined by . In particular #z
is independent of the chosen representatives of the isomorphism classes of discrete series
representations A.

Given a morphism g = k x u € #p ¢ in the groupoid and a discrete series representa-
tion 0 € Ap, we now choose an isomorphism

(3.6) 8y Vs — Vo

intertwining the irreducible representations J o zp;l and 0. Given ¢ = (P,0,1t) € E(P,0) we
will define a normalized intertwining operator

(3.7) n(g,&) = (&), i(Vs)) — (n(gS),i(Vse))

under certain regularity conditions on ¢ (see the discussion below; for further detail we refer
to [25], Section 4.4 and to [9], equation (3.8)). The definition is complicated since it involves
the intertwining elements 12,1 € », which act in a representation z(&) only if & is such

that the poles of the intertwining elements are avoided. In [25], Section 4.4 the normalized
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intertwining operators 7(g, £) are first defined algebraically in the Zariski open set of the
so-called Rp-generic elements ¢ € E(p 5), and afterwards extended to a larger open set in
the analytic topology containing = ( P. (5) 4> using the unitarity of the n(g,&). The element
¢ = (P,0,t) € Ep ), is called Rp-generic if the orbit Wprst = T consists of Rp-generic ele-
ments in the sense of [25], Definition 4.12, where Wprs < Tp denotes the central character
of . The set of such Rp-generic ¢ is Zariski-open in Ep 5), and for ¢ in this set we can
define the normalized intertwining operator on 7(&) by the formula

(3‘8) n(g, é)(Nw ®v) = n(u(f), NW)”(”(@» 12—1) (1 ®5~g<v))

(see [25], Section 4.4, or [9], Section 3.5). However, in a suitable open neighborhood of
E(p,s),u the apparent poles of the normalized intertwining operators turn out to be remov-
able (see [25], Subsection 4.4). Hence we can uniquely extend the 7(g, £) to a smooth family
of operators depending on f in a suitable open neighborhood of Ep s) ,. The normalized
intertwining operators on E, we use in the present paper are the restrlc‘uons to E, of these
regular rational functions of ¢ defined in a neighborhood of E, — E. They are in fact
unitary for ¢ € E, with respect to the standard inner products on i(Ve) and i(Vye)) (cf.
[25], Proposition 4.19). In this way we have obtained the following result (see [25], Theorem
3.38, and [9], Theorem 3.14):

Theorem 3.5. The assignment Zp ), 3¢ — n(&) and Wp g3 g — n(g,&) extend to
a functor m (the “‘induction intertwining” functor) from Wz, to P Rep(H)mp unie> the cat-
egory of tempered, unitary modules of # in which the morphisms are unitary J -intertwiners
modulo scalars. The functor © is rational and regular in £ € B,,.

Theorem 3.6 ([9], Theorem 3.19 and Corollary 5.6). Any irreducible tempered repre-
sentation V' is isomorphic to a summand of a generalized principal series representation for
a unitary standard induction datum & € Z, whose isomorphism class is uniquely determined
by V.

This theorem tells us that in order to classify the irreducible tempered representations,
it is enough to classify the discrete series representations and to understand how the gener-
alized principal series representations with unitary induction parameter decompose in irre-
ducible subrepresentations. The theory of the analytic R-group below is designed to resolve
this last problem of the decomposition of 7(¢) for unitary &.

3.2.3. The 2-cocycle y,,- ,. It is conventional to denote by % the set of objects of a
groupoid ¢, and by %! the set of morphisms or arrows of 4. Each arrow g € 4! has a
source object s(g) and a target object #(g), and this defines two maps s,7: %! — %°. The
set of composable pairs of arrows is %2 := {(g1,92)|gi € 9',5(g2) = t(g1)}. This set is
thus a fibered product

(3.9) 9> =9 x, 9.

The twisting isomorphisms v, : #p — #p with g € #p o define a homomorphism
from the groupoid #" to the groupoid Iso» whose set of objects is 2 and whose morphisms
Iso»(P, Q) consist of algebra isomorphisms from #p to #p which map .«/p ; to g 4,
where .oZp  1s the subalgebra of #p spanned by the elements N, with x € Xp ; and simi-

larly for .7y . This induces an action of #" on the set A. The choice of intertwining
' Brought to you by | Aix Marseille Université
Authenticated
Download Date | 5/22/18 12:41 PM



142 Delorme and Opdam, Analytic R-groups of affine Hecke algebras

isomorphisms made in (3.6) determines a U(1)-valued 2-cocycle y,,- 5 on the finite groupoid
Wa =W Xz A (which has the finite set A as its set of objects) as follows. Let g’, g be com-
posable arrows in %", let 6 € Ap where P is the source of g, and let ' = 9. With the above
notations, we have ((¢',6"),(¢,9)) € W3 := Was X Wi (where s, t denote the source and
target map of the groupoid 7). We define a function y,- , on ¥/ AZ by:

(3.10) 80 =7y.a((9,9"),(9.0))gg

Proposition 3.7. The function y,, 5 defines a 2-cocycle on W3¢ with values in U(1),
whose class [y, a] € H*(#a, U(1)) is independent of the choices of the 8y We can choose
the 5 such that Yy a has values in the group p(Da) of complex Da-th roots of unity, with

lcrnbeA{dirn(Vo)}

Proof.  Let ((f,9),(g.¢), (h,0)) € W3 = Way x: Was X, #a. By associativity
(3.11) (0r0&,) 0, =070 (8,08

one checks the 2-cocycle relation of p,- ,. It is clear that changing the choices of the
isomorphisms 5 in equation (3.6) changes 7y a only by a coboundary. Let us now prove
the last assertion. First suppose that Dy = 1. Choose a basis vector in V; for each pair
(P,0) with 0 € Ap. Then 5g is a complex scalar, and relation (3. 10) EXPIesses Jy- A as
the coboundary of the C*-valued function g—>5 on ¥, proving the assertion in
this special case. In the general case, taking determinants (and suitable powers) in (3 10)
similarly shows that yn,, A IS the coboundary of a C*-valued function ¢ on %, i.e.
Yw.a(9,9") Dy — e(g)elg)elg o g ) for all (g,g’) € w}. Now choose {(g) for g € # such
that e(g) = (”*(g), and replace d, by 5’ =(7'5,. The 2-cocycle 7/ - a defined by (3.10) after
replacing 5 by 5/ takes values in ,u(DA) O

The projective representation n of the groupoid #7z, is related to y, o by the
following formula, which follows immediately from the definition of the cocycle Y A
the definition of the normalized intertwining operators, and from the fact that the nor-
malized intertwining elements satisfy the Weyl group relations (cf. [25], Lemma 4.1): Let
&= (P,0,t) € E(py),u then

(3.12) n(h, g&) 0 m(g,&) = vy a((h,09),(g,0))n(hg, &).
Definition 3.8. Formula (3.12) defines a torsion 2-cohomology class
[Mf",ai e H? (W:,,,U(l)),
the pull back of [y, ] via the natural homomorphism of groupoids #z, — #a.

One should think of [y, z] as the characteristic class of the projective bundle over the
groupoid %= which is defined by the induction intertwining functor 7.

3.2.4. Inertial orbits of discrete series modulo the center. It is sometimes convenient

to work with a slightly modified version of the groupoid of standard induction data.
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We say that an irreducible representation ¢ of #% is discrete series modulo the center
if o is equivalent to a representation of the form J, with 7 € T'” and J an irreducible discrete
series representation of #p (see paragraph 3.2.1). Let P — F;, and let ¢ be a discrete series
representation modulo the center of #¥. By definition the inertial orbit O(p,s) of g is the set
of the equivalence classes (P, g o ,) of the # "-representations o o y, where ¢ varies in T'7.
This gives a natural 77 action on Op,s)-

It is obvious that the isotropy of a datum (P, o) € O(p ) is always a finite subgroup
of TP, It is also clear (see also the discussion in paragraph 3.2.1) that each orbit Op,q)
contains a unique Kp-orbit of discrete series modulo the center which descend to #p. If
op descends to #p then there exists a discrete series representation ¢ of #p such that
[01] = op. Therefore there exists, for each orbit ¢(p ,), a component Zp 5) of = and a finite
covering map

(3.13) Er.s) — Op.o),
(P,6,t) — (P,[5))).

In this case we will also use the notation O)(p 5 to denote O(p . It is easy to see that for
given & = (P,6,1) and &' = (P,0',s) we have [0]] = [0,] (isomorphic as representations of

S

x" ) if and only if Kpé = Kp&'. In other words, we have

(3.14) O=A\E=

x|

(where |#%| denotes the orbit space of isomorphism classes of objects of the groupoid
Az = A x»E), and the covering (3.13) is given by taking the quotient of Z(p 5 by the
isotropy subgroup Ks € Kp of [0]. Since the action of #" on Z is free, the orbit map extends
to a homomorphism of groupoids (viewing ¢ as the “unit” groupoid with only identity
morphisms)

(3.15) Hz — O

which is a Morita equivalence (in the sense of [20]). The space ¢ is a disjoint union of
finitely many orbits of the form O p ;) (parameterized by the #-orbits on A), and each orbit
O(ps) has the natural structure of a T¥/Kj-torsor (corresponding to the multiplication
action of T* on E(p,s) by identifying Zp 5 with T ). This gives O the structure of a com-
plex algebraic variety and it defines a special compact form ¢, of €.

Clearly O carries a natural action of the Weyl groupoid 23 = %"/ #". We consider the
groupoid

(316) QB@; Z:QBX;J](Q

(and its compact form #,). The observations made in this paragraph amount to saying
that:

Proposition 3.9.  The groupoids W= (Wz,) and W (resp. W, ) are Morita equivalent.
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However, it is important to observe at this point that:

Remark 3.10. Let |A| denote the set of isomorphism classes of the normal subgroup-
oid A of #a. The quotient homomorphism # — W, (defined by sending w x k — w
and 0 — #0) is a Morita equivalence if and only if all the isotropy groups K are trivial.

3.3. The Fourier isomorphism. We will formulate the main result of [9] (see Section
5, loc. cit) in this section. Denote by the trivial vector bundle over E whose fibre at & is
equal to V: = i(Vj), thus

(317) "/E = H EpJ; X l(V{j)
(P,0)

The algebra of smooth sections of the trivial bundle End(7z) on E, will be denoted by
Cc*® (Eu, End(7: E)). We equip this algebra with its usual Fréchet topology. We define the
set of ¥/ -equivariant sections in this bundle as follows. Recall that n(g, &) is smooth and
has smooth inverse on Z,. Take & € Zp , and let 4 be an element of End(V:). For g € #:
(where W: denotes the set of elements in %~ which act on &, hence with source P) we define
9(4) == n(g,&) 0 Aon(g,E) " € End (Vo).

Definition 3.11. A section of f of End(7z) is called # -equivariant if we have
F(&) =9g""(f(g(¢))) for all (€= and g€ W We denote the subalgebra of smooth
W -equivariant sections by C* (E,, End(7z))

The Fourier transform % is canonically defined in terms of the induction intertwining
functor 7: Given x € & we define a section . (x) of End(7z) by Z (x)(&) := n(&, x). The
fact that the target of 7 is a category whose objects are unitary representations of # implies
that Z is an algebra homomorphism, and the functoriality of # amounts to the fact that
F (x) is a W -equivariant section in the above sense. In [9], Proposition 7.3 it was shown
that in fact # (%) = C*(E,, End(7z 5))% (this inclusion is not very hard to prove).

We define a wave packet operator at first as the isometry

(3.18) J Ly (Ey, End(7z), pp) — L*(H)

(Where up, is the Plancherel measure, cf. [9], Section 4) which is the adjoint of the
L;-extension of the Fourier transform. From the expression of the density function of the
Plancherel measure it is easy to see that the space

(3.19) %(Z4, End(7z)) := cC” (E,,End(7%)),

where ¢ denotes the c-function on E, (see e.g. [9], Definition (9.7)), is a subspace of the
Hilbert space L, (Eu, End(7z%), ,upl). Hence ¢ is well defined on this vector space. We equip
%(E., End(7z)) with the Fréchet topology of C*(Z,,End(7z)) via the linear iso-
morphism C*(E,,End(7z)) — %(E., End(7z)) defined by ¢ — co. Finally we define an
averaging projection py- onto the space of # -equivariant sections by:

(3.20) PN =17 g7 (f(9(9))-

geW:

We can now formulate the main result of [9]:
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Theorem 3.12. The Fourier transform restricts to an isomorphism of Fréchet algebras
—_ NS4

(3.21) F .S — C* (.:M,End(”Vg)) .

The wave packet operator ¢ restricts to a surjective continuous map

(3.22) Sy €(E,, End(vz)) — 7.

We have 47 = idg, and we have 7 J = py |z, end(va)) In particular, the map py- is a
continuous projection of ¢ (2,, End(7'z)) onto C* (E,, End(“VE))W

The projection p,- thus cancels singularities of sections over E, which are no worse
than the poles of the c¢-function on E,. This property of py- is crucially important in the
sequel of the paper.

4. The analytic R-group

In this section we will define the notion of the analytic R-group R¢ in our context for
a given unitary standard induction datum ¢ € E,. Our treatment follows closely the argu-
ment of [30] but is more direct. For a good account of the rdle of the R-group in the work
of Harish-Chandra and of Knapp and Stein [14] we refer the reader to [1], Section 2.

The group Re is a subgroup of the inertia group #7 ¢ which is a complement of a
certain normal reflection subgroup #": of # . The reflection hyperplanes of the reflec-
tions in " are described in terms of the Plancherel density function. The importance
of the R-group R: is that the induced module #(¢) (which naturally comes with the
structure of a # — "C[#: ¢|°" bimodule via the induction-intertwining functor) is a Morita
equivalence module between the opposite of the y: twisted group ring of R¢ (for a certain
2-cocycle y: derived from y,- =) on the one hand, and the category of tempered unitary
A -modules with central character #°¢ (in the sense of a character of the center of the
Schwartz algebras ., see [9], Corollary 5.5) on the other hand. This implies in particular
that the irreducible tempered modules of s with central character #'¢ are in one-to-one

correspondence with the irreducible characters of “C[R;| (see [1], Section 2).

4.0.1. Definition of the R-group. We identify Zp 5 with the complex torus T?, and
in doing so, we in particular give meaning to group theoretical operations in Zp 5 (such
as Zf*l). Below we use notations and concepts associated to the chamber system of the
Weyl groupoid and restrictions of roots to facets of the Weyl chamber; we refer the reader
to Section 7 for these notations and some basic facts. We also recall the decomposition
a = a” @ ap (see paragraph 2.0.2) for P € 2.

The rational function v(¢) = (c(é)c(é‘l)y1 (which is the density function for the
Plancherel measure, up to normalizing constants) is known to be regular and positive
on E, (cf. [9], Proposition 9.8). This applies to the corank 1 factors of the c-function as
well, so by the product formula for v (see [9], Definition 9.7), it is clear that the zero set
of vin Zp ), (With (P,J) € A) is a finite union of orbits M(p ,) ¢, (With (P, ) € R? and
¢ € E(p,5),u) of codimension 1 subtori of the form T; LSP’ ") T?, the unique codimension one

subtorus which lies in the kernel of the character (P, ) € R”.
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146 Delorme and Opdam, Analytic R-groups of affine Hecke algebras

Definition 4.1.  The orbits of the form M p ,) ¢, in the zero set of v intersected with

=, are called mirrors in Z,. The collection of all mirrors is denoted by .#. The set of

mirrors in E(p 5 , is denoted by .#(p 4, so that 4/ = [] . p ) (a disjoint union).
(P,5)eA

Proposition 4.2.  The collection .# is W -invariant.
Proof. This is clear by the # -invariance of v. []

The next theorem is inspired by well known results of Harish-Chandra (see [10],
Section 39, and also [14], [30]):

Theorem 4.3.  Let M € M p ).

(1) There exists a unique involution sy € W(ps) (p,s) (the inertia group in Wy of the
object (P,0)) such that sy leaves M pointwise fixed.

(1) sy is W'-conjugate to an element of the form s' x k' with s’ = 551 e Wp: pr an
elementary conjugation with P' = Q' self-opposed (see paragraph 7.0.4), and k' € Kp: such
that ' x k' = (k') ™' x &'

(iii) The rational function & — c(&) on Ep s), 4 has a pole of order one at M.
(iv) For all £ € M, the intertwining operator n(sy, &) is a scalar.
The element sy is called the reflection in M.

Proof.  The proof of this result is based on the following aspect of [9], Theorem 5.3.
Let V = i(V5) denote the vector space on which all the induced representations 7(¢£) (with
¢ e E(pg)) are realized in the compact realization. Let

(4.1) S 1 E(ps),u — End(V)

be a smooth section, and extend this function by 0 on the other components of =Z,. Then [9],
Theorem 5.3 implies that the function p,-(cf) on E, (Where ¢ denotes the ¢-function on E,)
defined by

(4.2) pur(cf)(&) = W™ X wlg, &) (cf (9(9))) (g, &)

gen;
is again smooth on Z,.

Recall that (by the Maass—Selberg relations, see [9], Proposition 9.8) the function ¢
vanishes on M since v vanishes on M. Let { € M and let W : = #(ps) (p,s) denote the
subgroup of elements which fix &. If the identity is the only element of ¥~ which fixes the
elements of M pointwise then #; = {e} for generic & € M. In that case there would exist
a small open neighborhood U > & such that wU n U = 0 if w € #: but w + e. Hence if we
take f such that its support is contained in U but with f(£) #+ 0 the expression (4.2) will

not be smooth on U, a contradiction.
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We conclude that there exists an element s € #(p ), (p,5) Which fixes M pointwise and
which is not the identity on Ep 5). Thus locally in the tangent space ia® of EpsatleM,s
must be given by an element of Wy p that fixes the hyperplane in ia” which corresponds to
M under the exponential mapping (where we choose ¢ as the identity element of Zp ).
This uniquely determines s on Ep ), and shows that s is an involution. It also follows
that s is %/ -conjugate to an involutive elementary conjugation (see paragraph 7.0.4) com-
posed with an element of " such that the composition is still an involution, proving both

(i) and (ii).

Let us now consider (iii). Take a generic element & = (P,d,1)) of M such that
Wee={esy} and let U be a small open neighborhood of ¢ which is invariant
for sy and has the property that wU U + 0 iff w(é) =& For te TP we write
& = (P,d,t). By (ii), there exists a unique pair (P,a), (P,—a) € RY of opposite roots
such that the function y, : E(p 5y — C* defined by yx,(&,) := () — 1 has the property that
M AU = {&|1,(&) =0} n U. Observe that y,(sy (&) = —a(t) ' 1,(&). Let Up = T de-
note the open neighborhood of ¢ € T'F such that & e U iff t € Uy.

Suppose now that the order of the pole of ¢ at M is larger than 1. Then for an arbi-
trary smooth section f with support in U as before, there exists a smooth section /# with
support in U such that y,2f = ch. Hence py-(y;2f) is smooth by [9], Theorem 5.3 (see
(4.2)). In view of the choice of U and (4.2) this implies that the expression

(4.3) 7 2E)(F(E) + () mlsar, &) 7 (sn(E)) a5, E1))

is smooth as a function of 7€ Uy, for any choice of f. (Recall that n(s,s,¢) is smooth
and invertible as a function of ¢ € &,, cf. Theorem 3.5.) But if we choose f such that
f(&) = 1dy we see that this is impossible. This proves (iii).

Let us finally prove (iv). We use the same set-up as above in the proof of (iii), but now
with y, !f = ch for some smooth section /. The equation (4.3) now becomes

(4.4) 2 EV (&) = at)m(san, &) 7 (s (&) m(sar, €1)),

and again we know that this should be smooth as a function of ¢ € Ur. This implies at
t = e that

(4.5) F(&) = ml(sa, &) f(Erlsa, &) =0

for all smooth sections f* supported on U. But for any A € End(V) there exists such a
smooth section with f (&) = A4, thus equation (4.5) implies that 7(s,/, ¢) is a scalar. [

Definition 4.4. Let ¢ € E,. We denote by #": = # ¢ the subgroup generated by the
mirror reflections sy, with M € .# such that & € .. The subgroupoid #™ whose set of
objects is E, and whose set of arrows consists of the union of the sets 7" is a normal
subgroupoid of #".

The statement that %" is normal in ¥~ (i.e. invariant for conjugation in #") follows
immediately from the fact that .# is # -invariant.
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The isotropy group # ¢ acts linearly on a by identifying a” with the tangent space
of E(p ), at ¢ via the local diffeomorphism

(46) ClP E(P 0),u

(47) X = (é)exp(zmx)

centered at &.

Definition 4.5. Let ¢ € E(p 5), and consider the subset RéP’d) < R” consisting of the
roots (P, o) such that the zero set of the function y, defined by y,(&,) = a(7) — 1 is locally
near ¢ equal to a mirror M(p , ¢ containing ¢.

Proposition 4.6. The set R( ) < aP* is a reduced integral root system such that
W~ w(RS).

Proof.  Recall the definitions of Appendix 7. The group #.": is by deﬁn1t10n gener-
ated by the mirror reflections in the mirrors of the form M p , w1th (P,o) € R< ), and it
is clear that R(P % is invariant for W".. Therefore up to normahzatlon we see that R(P ) is
the root system of the finite real reﬂectlon group #"; (in the sense of [4], Section 2. 2) Let
us now consider the integrality of this root system. By Theorem 7.2, for all (P, a) € Ré 9
the Wp-orbit of M(p 4 : contains a mirror My ) - such that (Q, H,) := Ker(Q, y) is the
hyperplane in a€ ass001ated to a simple root y € FO\Q This implies that the W p-orbit of a
contains a root y = wa € Rp,y,) such that y € y + ZRy. If we put oo = w™ 1y then we have
(P,H;) = (P, H,), and moreover P U {a} is a system of simple roots for a (possibly non-
standard) parabolic subsystem of roots. Moreover, from Theorem 4.3 we see that the ele-
mentary conjugation s, of this parabolic root system leaves P fixed, i.e. P is self opposed
in P":= Py {a} (see paragraph 7.0.4). Now let us fix a 7" —1nvar1ant inner product i 1n a®.
We need to show that <&, /) € Z holds for all & := (P,a) € R 9 and = (P,p)e Rg %,
But since both « and £ can be replaced by roots which form a simple system of roots to-
gether with P such that P is self opposed in these systems, the integrality assertion follows
from standard argument as in the proof of [4], Theorem 10.4.2. Let M = M(p ,) ¢, then

(48) E5M(ﬁ) = s}fu{a} (ﬂ) = WPu{oc}WP(ﬁ) € WPu{oc}(ﬂ + aP) = (ﬂ + lO() +ap

with 1 € Z as desired. Recall (cf. Section 7.0.3) that R” consists only of primitive restrictions
of roots of Ry\Rp. Therefore it is now clear that RéP’é) is integral and reduced. [

Deﬁmtlon 4.7. Let R( %) = Rép’é) A RE, and let aé) " < af be the positive Weyl
chamber of R ) . We deﬁne

(49) mé:{WE"/Vg,g‘w(a;’Jr) — a£,+}.

Proposition 4.8. The subgroup Re = W ¢ is a complement for the normal subgroup
W"e. Hence

(4.10) Wee=Re X W,
=< Brought to you by | Aix Marseille Université
Authenticated
Download Date | 5/22/18 12:41 PM



Delorme and Opdam, Analytic R-groups of affine Hecke algebras 149
Proof. The group #¢: . preserves the set Rép’é) of roots of the finite reflection
group #;";, and thus the choice of a positive Weyl chamber induces a splitting of 77 ¢
as indicated. []

5. The Knapp-Stein linear independence theorem

In this section we will prove the Knapp—Stein linear independence in the present con-
text of affine Hecke algebras ([14], [30]).

Let n = (P,d,t) € E(p 5),4 be an Rp-generic (cf. [9], Definition 2.5) induction parame-
ter in a small open #¢ c-invariant neighborhood U of ¢ € Ep 5) ,. Let Wpr denote the cen-
tral character of 6. We will need to use Lusztig’s first reduction theorem, in the version
as discussed in [9]; we refer the reader to [9], Section 2.6, and [16] for further details. The
reduction theorem describes the structure of the formal completion of s# at the central
character W;(rt), as a matrix algebra with coefficients in the formal completion at
w; = Wp(rt) = tWpr of the Levi subalgebra #”. The orbit Wy(rt) is partitioned in
equivalence classes of the form ww, with w e W¥. For each equivalence class wa, there
exits an idempotent e, in the formal completion %wom) of A# at the central character
Wy(rt). These idempotents form a complete orthogonal set of idempotents in #yy, (. In
the present context of Rp-generic induction parameters the reduction theorem asserts that
o, KW (1) €, = ew,J?af where ¢, is a central idempotent on the right-hand side, and that
we have a decomposition

(51) c%Wo(rl) = @ lgew/%afll?’l

u,ve Wr

which yields an isomorphism of Hwyr) and a matrix algebra of size N = |W 7| and coeffi-
cients in e,,#, . The theorem moreover asserts in this situation that if w(P) = Q € 2 then
the conj}lgation map ¢, : X — i’ is well defined on e, #,] = #yy, ) and defines an
algebra isomorphism

(5.2) co ewt%w}: = eW(wr)qugw,)
which coincides with the isomorphism originating from the isomorphism of root data
2" = 22 induced by w.

We also use the concept of the constant term of (matrix coeflicients of) tempered rep-
resentations along a standard parabolic subset P € 2, see [9], Section 3.6, and [9], Section 6.
The subset of w e W7 such that e,,, contributes to the constant term V”P along P of the
tempered module V;, is equal to Wp p (cf. [9], Proposition 6.12, where we remark that
Wp p = DPF in the situation Q = P). By the Morita equivalence Proposition 3.9 we see
that e ¢ ~ Wye e = Wp p. We will identify #¢ ¢ with this subgroup of Wp p in the rest
of this section.

Choose a complete set S of representatives for the left cosets of #; ¢ in #p p. For
each s € S and r € R we define

(53) Ev,r;t = Z Cswre, € %W})(rt%
weW:".
539
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which is an idempotent of the formal completion of # at the central character Wy(rt).
Recall that rz is Rp-generic.

Proposition 5.1. For all se€ S, x€ R and n € U we define a projection p(s,x,n) in
Vy =i(Vs) by p(s,x,n) := n(n, Es.0).

() Viewed as rational function of n, p(s,x, n) is regular for n € U.

(i) Forallne U, > p(s,x,n) is the projection onto VP the constant part of 'V,
seS,reR;
along P (see 9], Section 3.6 for the definition of the constant part of a tempered module).

(ili) The collection of idempotents {p(s,x,n)} is mutually orthogonal in End(i(Vy)) for
allne U.

(iv) For all s, v, and all 5 € U: p(s,x, n) is an endomorphism of the A *-module struc-
ture on i(Vs) obtained by restricting n(n) to #*.

Proof. For generic 7 the properties (ii), (iii) and (iv) follow straightforward from the
definitions and from [9], Sections 3.6, 6.1 and 6.2 (especially Corollary 6.9, in which one
should observe that #p p = {d € D" |d(P) = P}) and 6.3. From this remark it is clear
that (i) implies (iii) and (iv). But [9], Proposition 7.8 implies that the projection V; — VﬂP
is also smooth in # € Z(p 5) 4, and thus also (ii) will follow from the generic case provided
we know (i). Thus it only remains to prove (i).

It is obviously enough to consider the case s = e and r = e (replace & by s¢ and ¢ by
stz in (5.3)). We compute a matrix coefficient of P(r) := p(e,e,n). Let a,b € i(V5). Then,
using the notations of [9], Subsection 6.2, 6.3 and 6.4, we have:

(54) <a7P(’7)b> = sz,P(n)b(”v 1)

Z fd;y)an(dn (d}/h )

de 1{/’”

Z fal,b(dna 1)

dew

= 3 cldn)(c(dn)” 'S}, (dn, 1)).

de “//g"z

Here the first two equalities follow from a direct unwinding of definitions, the third equality
follows from an application of [9], Lemma 6.14, the fourth is the unitarity property [25],
Theorem 4.33 of the intertwiners n(d,#), and the last one is trivial. By [9], Theorem 6.18
the expression c(dn)”™! f1,(dn,1) is regular for # in a small tubular neighborhood of
E(p.s).u- By Theorem 6.3(iii), the singularities of c¢(dy) for d e W' and for ne U are
poles of order at most one along the mirrors M of #”: which contain . On the other
hand, the expression on the right-hand side of the last equality of equation (5.4) also
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shows that <a, P(17)b) is #:"--invariant as a function of 5. The product of the function
U=n— <a, P(n)b) by

(5.5) n:= ] (P,
(P,a)eR?

extends to a #".-skew invariant analytic function on U. It is a well known basic fact from
the invariant theory of finite real reflection groups that a #":-skew invariant analytic func-
tion on U is divisible by z. This implies that the apparent ﬁrst order poles of <a, P(n)b)
along the mirrors of #:". are removable themselves. Therefore <{a, P(17)b) extends to an
analytic function of y € U. []

Corollary 5.2. (i) For all n € U we have a decomposition

(5.6) vi= @ v

5,1,
seS,reRe

of the #-module VWP as a direct sum of HT-submodules Vsiﬂ defined by
VsPrn' p(s,r,;y)(Vq).

(i) Forall se S, e R, all the irreducible subquotients of the finite length # *-module
V5 o are isomorphic to (0°) 0.

Proof. (i) This is a direct consequence of Proposition 5.1.

(i) Assume that 7 is such that n = (P,d,¢) € U is generic. We have according to [9],
equation (3.6), that

(5.7) iVs) = @ ey, ® Vs,

ue wr

From (5.3) and the orthogonality of the idempotents we then conclude that

(58) Vv T, ;7 @ esnrw, mr ® V‘Sr

weW:":

Using the definition of the normalized intertwining operators (see Remark 3.8 and [9],
equation (3.7)) we see that this is isomorphic to

(5.9) st)r,n = & n(r‘lw_ls_l,swr(iy))(ewm ® Vss ),

o swrt
weW:"

so that the #*-module vk , 1s isomorphic to a direct sum of the irreducible # P_modules
(0%) x> Where w runs over all the elements of W If we substitute 7 =  (this corresponds
to taking 7 = &) then each of these irreducible summands coincides with (3%) . Hence the
character of V[ ¢ (since VYPI , depends smoothly on 7). Proposition 5.1 is simply
|w /"] times the Character of (0°),,0. Therefore all the irreducible subquotients of the finite

length A P-module V, . are isomorphic to (6*) 0. [

Corollary 5.3. The #*-module VSP has a unique irreducible submodule, which is
isomorphic to (0%),, for all x € Rz and all s € S

st0
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152 Delorme and Opdam, Analytic R-groups of affine Hecke algebras
Proof. By symmetry it suffices to prove this for s = e.

By Frobenius reciprocity [9], Proposition 3.18 we have:
(5.10) End (n(¢)) = Hom , » (5, V).

By [9], Corollary 5.4 we know that End (n(¢)) is the complex linear span of the
operators n(g,¢) with g € #¢ ;. We have seen that n(g,¢) is a scalar for g € #".. Thus
End (n(£)) is already spanned by the operators 7(r, &) with r € Re. Hence the dimension
of End (7(¢)) is at most |R¢].

On the other hand, Corollary 5.2 implies that (6),, occurs at least once as a submod-
ule of V(f r.¢» for every r € R, Combining this with the Frobenius reciprocity formula (5.10)
we obtain that (J),0 occurs precisely once as a submodule of VAP ¢ for every r € R, Again
invoking Corollary 5.2 we conclude that this irreducible submodule is in fact the unique

irreducible submodule of be) re O

Theorem 5.4. For all & € E,,, we have

(5.11) End(n(¢)) = Y Cn(x, <),

reRe

the complex linear span of the operators n(r,&) with r € Re. Moreover, these operators are
linearly independent, so that

(5.12) dim End  (n(¢)) = |Re].

Proof. In the course of the proof of Corollary 5.3 it was shown that the dimension
of Endy (n(¢)) is in fact precisely equal to |Re|. It was also remarked in the proof of
Corollary 5.3 that the space of endomorphisms of 7(&) is spanned by the operators 7(r, &)
withre Re. [J

Theorem 5.5. Let & € B, be a standard induction datum for 3 .

(i) Let y: denote the restriction of the 2-cocycle y, z to Wi This 2-cocycle is
cohomologous to the pull-back of a 2-cocycle on R (which we also denote by y: by abuse
of notation) via the natural projection We ¢ — Re.

(i) The map R:>r— n(r,&) extends by linearity to an algebra isormorphism
n(-,&) from the y.-twisted complex group algebra "C[R;] of R¢ to the commutant algebra
El’ld,yf (7‘[(6)) .

(i) Up to the choice of the isomorphism n(-,&) (which depends on our choice of
normalized intertwining operators (3.7)) there exists a unique bijection

(5.13) 'R — Py,

pP— Ty
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(where jﬂfé denotes a complete set of representatives of the finite set of isomorphism classes
of irreducible representations of & with central character W¢ (central character in the sense
of 9], Corollary 5.5)) such that we have a decomposition (recall that V¢ is the vector space on
which n(&) is realized)

(5.14) Ve=@®n,®p
P

as an & — "C[R¢| P-bimodule. Here the sum runs over p € V(C/[iﬁg] (viewed as irreducible right
"C[Re] P-module).

Proof. The first claim (i) comes from the fact that the projective representation
Pr(&) on P(Ve) descends to R by Theorem 4.3(iv). Hence n(r, &) € U(V5) is a lifting of
Pr(w'r, &) e PU(Ve) for all w® e %7 .. Therefore [y:] descends to R x R:. The remaining
part of the theorem follows from Theorem 5.4 by the arguments as in [1], pp. 87-88. []

6. The cocycle y for classical Hecke algebras

In this section we prove the triviality of the 2-cocycles y,,- 5 for the classical Hecke
algebras. The computation is based on the classification [26] of the discrete series represen-
tations of classical affine Hecke algebras.

Theorem 6.1. Let # = (X,Y,Ro, Ry, Fy) be an irreducible root datum of classical
type, and let q be an arbitrary positive parameter function for 4.

(i) We have [y:] =1 for all ¢ € B,.

(i) We have [y, o] = 1 if R is not of type D, withn > 8, or if X is not the root lattice
OfR().

Proof.  We use that the assertion [y, o] = 1 of (ii) implies (i) by taking the pull-back
to #z, (using Definition 3.8). Hence in all cases mentioned in (ii) it suffices to prove (ii).
This is an aggregate of various special cases which are treated separately below. In the
remaining case Ry = D,, with n > 8 and X the root lattice of Ry we will show directly that
(i) holds. [

Remark 6.2. Remarkably, if Ry is of type D, with n > 8 and X equals the root
lattice of Ry then there exist discrete series representations dp of #p such that [yps,)] =+ 1.

We will give the proof of the nontriviality of [yp s,)] in this exceptional case in para-
graph 6.7.2. Using the description of the discrete series for affine Hecke algebras of type D,
as given in [26], the proof consists of tracing the action of #: s on the isomorphisms con-
structed in Lusztig’s first reduction theorem [16].

6.1. A remark on isogenous affine Hecke algebras. For later use we list the following
useful general fact.

Lemma 6.3. Let A be a semisimple affine Hecke algebra. Let # = (X, Y, Ry, Ry, Fo)

be the based root datum of A, and q its parameter function. Let #° be an isogenous exten-
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154 Delorme and Opdam, Analytic R-groups of affine Hecke algebras

sion of A , i.e. a semisimple affine Hecke algebra with root datum %° = (X°, Y, Ry, Ry, Fo)
where X < X € is an extension of lattices such that Ry, = RS, and such that the parameter q°
of H® is equal to q, viewed as functions on R).. Then # < H° is an isometric embedding of
A as a x-subalgebra of # ¢ of finite index, and the induction and restriction functors between
Rep(#) and Rep(H#°°) send irreducible unitary (resp. discrete series) representations to finite
direct sums of irreducible unitary (resp. discrete series) representations.

Proof. Let A; = X be the root lattice of Ry. We introduce the finite abelian groups
Q= X/A; and Q° = X¢/A,, and we denote by #; < #° the affine Hecke algebra with
root system R (and basis F) and whose root datum has the root lattice A, of Ry as lattice
X . As is well known, we have #°¢ = #; < Q° and # = #; X Q < #°. From this and the
standard description of the Hilbert algebra structures (x and the trace ) on 2 and #° we
see that # < #° is an isometric embedding of a x-subalgebra. It is immediate from this
that the restriction functor preserves unitarity and discreteness.

Now let us consider induction. Multiplication yields an action of Q¢ on ¢ which
permutes the standard orthonormal basis elements {Ny},c e of #°° freely (with W*
the extended affine Weyl group with root system R;). Choose a set wi,...,®, of
representatives for the cosets of Q in Q°. Then we have an orthogonal decomposition
HE = H @ ®w,H.Forall h e # we have w;h = h” w;, where h — h® is a (special)
affine diagram automorphism associated with w; of . Such automorphisms are isometries
since they permute the standard orthonormal basis of # . Let (7, 7) be a finite dimensional
representation of . The underlying vector space i(V') = #° ® V of the induced represen-
tation i(r) is the direct sum of the subspaces V; := w; ! ® V, and we identify each V; with
V by the map V sv— w;! ® ve V;. If (V,x) is unitary then (i(V),i(n)) is unitary with
respect to the Hilbert space structure on i(}") which is the orthogonal direct sum of the
subspaces V; (each equipped with the transfer of the Hilbert structure of 7 under this iden-
tification). We see that the character y; ) satisfies y;,) (wih) = x,(h*") for each i. With the
above orthogonal decomposition of #° and the fact that # — A“ is an isometry of J# we
see that i(7) is a discrete series character if and only if # is a discrete series character. []

6.2. R, has only irreducible components of type A. In this situation we prove a more
general result:

Proposition 6.4. Let Ry be a root system whose irreducible components are all of type
A, and let # = (X,Y,Ro, Ry, Fy) be an arbitrary (not necessarily semisimple) root datum
whose underlying root system is Ro. Then y := 7y, , = 1.

Proof- 1If Ry has only irreducible components of type A then the same is true for
any of its standard parabolic subsystems Rp < Ry. Let #} := #p(X°, ¢°) be the extended
semisimple affine Hecke algebra whose root datum has underlying root system Rp with
basis Fp < Fy and whose lattice X5 = Ap is the weight lattice of Rp. Then #5 is a tensor
product of various extended affine Hecke algebras %QA; = %’f 1(/\271%) of type Aj,_
(for various 4; = 2). Since it is well known [33] that the irreducible discrete series represen-
tations of %’f_f all have dimension 1, it follows from the above that all the discrete series
representations Jy of #5 are one dimensional. In particular, the restriction of an irreduc-
ible discrete series representation of #5 to #p is irreducible. By Lemma 6.3 and by the
adjointness of restriction and induction we see that all irreducible discrete series representa-

tions of #p are obtained in this way, and in particular are one dimensional. The projective
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representation & of %/ is thus one dimensional, hence trivial. In particular, its class [P Al
is trivial. [

6.3. R of type B,. The next result generalizes a result of Slooten [31].

Proposition 6.5. Suppose that X is of type C,Sl) (i.e. Ry is of type B, and X is the
root lattice of Ry) with arbitrary positive parameter function q = (qo,q1,q2), where (using
the standard realization for C,sl)) g0 = q(S2v,)s q1 = q(Sx,—x,.,) and q» = q(s1-2x,). Then
[VW, Al =1

Proof. In order to analyze the cocycle y,,- 5, let us first look more carefully at the
type A case. Let an’i (X, ¢) be an affine Hecke algebra with Ry of type A, and with lat-
tice X (situated between the root lattice A; and the weight lattice A of Ry) and parameter
q = 1 (if ¢ = 1 there are no discrete series). If ¢ # 1 then the set A,i (X, q) of equivalence
classes of discrete series representations of the affine Hecke algebra of type A,,_; with lattice
X is in canonical bijection with the set K | (X) of characters of X which are trivial on the
root lattice A; of Ry, through the central character map. Namely, in terms of the notation
of [26], Section 8 we have K ,(X) = '™ /T where ™ = Hom(A/A,,C*) ~ C,. The
group I'™** acts simply transitively on the set of vertices E(CY) (notations as in loc. cit.).
Hence the group K acts simply transitively on the set of I'-orbits on E(C"), and for each
s e E(CY) we have Ty = 1. By [26], Theorem 8.7, the set A | is a disjoint union over all
I-orbits of E(CY) of the set of discrete series characters of the graded affine Hecke algebra
H(Ry) 1, V', Fye),1, ke). In the type A,_i-case, these are all isomorphic to a graded affine
Hecke algebra of type A,_;, and hence each of these contributes precisely one discrete
series character (since we assume that ¢ # 1, implying that k, = k # 0). If k€ KA |(X)
we denote by J; the unique, one-dimensional discrete series character of the type A,
affine Hecke algebra #* (X,q) whose central character has unitary part k. Then
AN (X)) = {0 | k e KA, (X)}. Through the twisting automorphisms v, (see paragraph

n—1

3.2.2) the group K* | (X) acts on A | (X). We have
(6.1) Ok, = ol = .

Now we return to the case where Z is equal to Cr(,l). The possible pairs (P,0p) with dp € Ap
can be described explicitly as follows. First notice that P — Fj is of type

(62) A).l—l X A,12_1 X X A/lr—l X B[
where / < n and where A = (4, 42, ..., 4,) is a composition of n — /. In this situation #p is
of the form

(63) A AL L) @A (AL_Lq) ® @ AL (AL q1) ® #,(g)

where Jﬁﬁ l(Ajjfl,ql) denotes the extended affine Hecke algebra of type Aj_; whose
lattice equals the weight lattice Aﬁ_l of A;,_; and with parameter ¢;, and where H?(q) is

the affine Hecke algebra of type C,(I) with parameter ¢. Thus

(6.4) Op =01k ®024, @ ®0p i, ®
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where k; € KX l(Af 1) (a cyclic group of order /;), 6; is the unique irreducible discrete
series representation of J{le 1(AA 1,ql) with real infinitesimal character, and where J is
a discrete series representation of Jfl (¢). As discussed in paragraph 3.2.2, an element
g=kxueWpg=KoxWp o gives rise to an automorphism v, : #p — #p. In the
present situation, u is a composition of a permutation of tensor legs of the form
%_I(A;,_l,ql) in (6. 3) with equal /;, with a tensor product of automorphisms of the
tensor factors A 1(AA 1»¢1) induced by a diagram automorphisms of the finite Dynkin
diagram of type AA 1. Recall that Ky = T9 n Ty ~ Hom(Xp/(X nRQ),C*) (by (3.3)).
Therefore Ky is the direct product of the cyclic groups Afl(AAfl) of order A;, and
k=ki xkyx---xk, acts by the tensor product of the automorphisms Yy, described
above. The crucial observation to make here is that the action of ¥, on the last tensor leg
is always trivial. If we choose a basis vector for each of the one dimensional representations
0i k, We obtain a natural identification of the vector space of 6p with the vector space V5 on
which ¢ is realized. With this identification, we can choose y, = Idy; for all g, and hence
ra=1 0O

Proposition 6.6.  Consider the irreducible extended affine Hecke algebra # = A2
with Ry of type B, and X = A2, the weight lattice of type B,. Then [P al = 1.

Proof. The proof of Proposition 6.5 changes only slightly. In the present situation
q 1is restricted to the cases where gy = qz. The last tensor leg of the algebra #5 in (6.3)
changes to the extended algebra % . For future reference we note that J#p is again
of the form #p = Jf ‘R Ap Be a tensor product of a number of extended type A Hecke
algebras with an extended type B Hecke algebra (recall that the lattice Xp = Ap underlying
Hp 1s the projection of the weight lattice A onto the vector space RP which is indeed the
weight lattice of Rp). Accordingly we have dp = 55°° ® dp'¢ (analogous to (6.4)).

The group K}]?’A = Tpn TP that needs to be considered in the definition of ¥
equals, as before, the group of characters of Ap which are trivial on the sublattice
A N RP. In the present situation one checks easily that if there exists at least one odd 4,
then A N RP = Ap,,, the root lattice of Rp. Therefore K}}?"A = Kp x C, in this case, where
the group Kp is defined as above for the previous case #° := # (C,(lw,q) (i.e. a direct
product of cyclic groups) and where the extra factor C, (the group with 2 elements) acts
(by twisting automorphisms) on rightmost tensor factor %PB’e only.

On the other hand, if all 4; are even, then AN RP = Ap + (v+ Ap ) Where v e Ap
is a vector having coordinates +1/2 such that for each part /; of 4 the corresponding coor-
dinates of v sum up to zero (which is possible because /; is even). Hence in this case the
group K 1133 A s equal to the kernel of the unique quadratic character p of Kp x C, which
is nontrivial on all factors (recall that all factors are even cyclic groups, hence admit a
unique nontrivial quadratic character). Thus K },3 A is a subgroup of index 2 in Kp x G, in
this case.

It is at this point useful to remark that # is equivalent to a finite union of the iso-
tropy groups #(p.s,), (p,s,) by choosing a complete set of representatives for the #/;-orbits
of pairs (P,dp). Hence it is enough to show that the restriction Yp.5, OF ¥ 10 WPy, (P.sp)

is trivial for each pair (P,dp). Recall that dp :51/3’e ®Jp°. By the above we see that

Ae B,e i
W ps).(p.os) © (;,5,:).,(&5,:) = %/(P A (Po) X WP Sne ‘ (a subgroup of index at
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most 2, depending on P), where the factor "W(?’;B,e) (Pt © Kp (A}S) = (, (recall that the
20p ) \U50p

finite Dynkin diagram of type B; has no nontrivial diagram automorphisms) is either trivial
or isomorphic to C, (depending on 5B‘e) The projective representation dp of #(p s, (p.sp)
(whose class is yp ;,) is the restriction of a projective representation 5 of “f/ (P.op), (P.op)
(which is defined as usual, by twisting Jp —5Ae®5B ¢ with the automorph1sms of
Ap coming from ¥ jp ). (P sp))- Observe that % is the tensor product of a projective

. o’y ).(p.o) @nd a projective representation dpcof W, ? §1> (p.5,)- The
first tensor factor is hnear because it has dimension 1 (and thus is trivial as a projective
representation), and the second tensor factor is linear since H*(C,,C*) =1 (actually
H?(C,,C*) =1 for any finite cyclic group C,, see e.g. [15], Exercise XX 16 (warning: the
even and odd cases have been mixed up in loc. cit.)). Hence by restriction we see that
[7p.5,] = 1, which is what we needed to show. []

representation o5 of %/’

6.4. R of type C,.

Proposition 6.7. Suppose that Ry is of type C,. If X is the weight lattice of Ry we
denote the corresponding affine Hecke algebra # <. In this case we have Al = 1.

Proof. In this case # nC’e is simply a specialization of the three parameter type C,Sl)
affine Hecke algebra, hence the result follows from Proposition 6.5. []

Proposition 6.8. Suppose that # is the non-extended affine Hecke algebra %”nC’Q, ie.
Ry is of type C, and the lattice X equals the root lattice of Ro. Then [y, 5] = 1.

Proof. Again we compare the situation with the standard case C,(ll). The description
of the standard parabolic subsystems P < Fj is as before, where the rightmost factor of
type B, has to be replaced by C; of course. The new complication is that the affine Hecke
algebra #p is not always a tensor product of extended type A-factors and (possibly) a type
C factor. If at least one of the /; is odd then #% is as before, a tensor product of a number
of extended type A-factors Jfﬁl (A,,_,,q1) with at most one type C-factor JKZC‘. In other
words, the lattice associated with the Hecke algebra #p is the weight lattice Ap of Rp.
However if the /; are all even, the algebra s#p is an index two subalgebra of the affine
Hecke algebra just described obtained by taking the fixed points with respect to the twisting
involution Y, corresponding to the unique Wp-invariant quadratic character ¢ of the weight
lattice Ap of Rp which is nontrivial when restricted to any of the weight lattices of the irre-
ducible direct summands of Rp.

In the first case (if there exists at least one odd 4;) then the group K " is of the form
Kp x C, where the last factor C; acts on the extended algebra % ¢ via the twisting auto-
morphism associated with the nontrivial character of the weight lat‘uce A€ of type C; trivial
on the root lattice Ar . The argument to see the triviality of y,,- , is now exactly analogous
to the proof of Proposition 6.6. '

In the second case (when all /; are even) then K ;7 A is the quotient of the previously
described group by the subgroup K, = {¢) generated by &. The second case can be reduced
to the first case as follows. Let #5 be the semisimple affine Hecke algebra whose root sys-
tem 1s Rp and whose lattice X5 equals the weight lattice Ap of Rp. Then K, acts on #5 and
Hp = (A#F)™. We may assume that P + Fy, otherwise there is nothing to prove. But then
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by definition, Xp contains factors of the form A? , with 4; = 2. Thus ¢ is a Wp-invariant
character of X7, and is nontrivial on each of the type /} factors. Now we use the fol-
lowing special feature of the affine Hecke algebras ij__l of type A,,—1 (and any lattice
XA ) For such affine Hecke algebras, twisting by a nontrivial wh 0-1nvar1ant character
ke T , has no fixed points on the set of equivalence classes of discrete series characters
Af‘ (thlS follows from considering the unitary part of the central characters of the discrete
series characters, as in the proof of Proposition 6.5). Since /5 is merely a product of such
type A-factors and a type C factor, this shows in view of the above that “twisting by & acts
on the set A of equivalence classes of discrete series representations of #, without fixed
points. In turn this implies (by elementary Clifford theory, see [27], and Lemma 6.3) that
the restriction functor sends irreducible discrete series of #5 to irreducible discrete series
of #p, and all discrete series of #p are obtained in this way. Hence the action groupoid
Wp, AS of the group Kj < Wp p acting on the set of equivalence classes A, of irreducible
discrete series representations of #5 via twisting automorphisms on #5, is M0r1ta equiva-
lent to #p a,. But #5 PA: is a union of groups ”%/( P.6p).(P.67) which are of the same form as
in the first case, reducing the second case to the first case as required. [J

6.5. R of type D, and X =+ A,.

Proposition 6.9. Suppose that # is an affine Hecke algebra of type D, whose lattice
X is not the root lattice. Then [y, z] = 1.

Proof. Again the standard parabolic subsystems Rp of Rj are products of a number
of type A factors and at most one type D factor. The complicating aspect in the present
case is the more complicated structure of the group of automorphisms of the type D factor
that needs to be considered.

First let us suppose that the lattice X = A, the weight lattice of Ry. In this case the
description of the group K 11,) A similar to K 11,3 A as in the proof of Proposition 6.6, where we
may and will assume now that 4 </ < n, since otherwise Rp either equals Ry (and there is
nothing to prove in this case) or has only type A-factors (which brings us to the situation of
Proposition 6.4). We write

(6.5) A=AY =Ao+A1 =2"+((1/2,1/2,...,1/2) + Z").

If there exists at least one odd 4; then K 1]3 A s a direct product of the cyclic groups cor-
responding to the type A-factors (hence the corresponding twisting automorphisms act
trivially on the type D- factor) and a factor C, = {#) actmg nontrivially only on the type
D-factor, where n € K D(Al ) is the unique character of Al with kernel 7/ (acting by twist-
ing on the tensor factor Q%D(A) of #p). If all A; are even, all the direct factors of the group
just described are even cyclic groups, and thus carry a unique nontrivial quadratic charac-
ter. Then K }P A is the kernel of the product p of all these nontrivial characters on the cyclic
factors.

Let M be the largest part of A = (4y,...,4,)Fn—1 and let y; (fori=1,..., M) be
the multiplicity of i as a part of /. Then it is easy to see that

(6.6) Wp p = (Wo(By,) X - - x Wo(By,) x )™
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where w is the restriction of the unique nontrivial diagram automorphism of D,, to the sub-
diagram of type D;, and where X,4q is the product over all factors WO(B/@M) of the linear
character X5, given by taking the product of the signs of a signed permutation and, in the
last factor, of the unique nontrivial character of <w) ~ C,.

In all cases we define an extension %} , > #p p of order 2, where ¥} , is of the
form ' '

(6.7) Wi = Wit X Wi
with

(6.8) Wy = o) x iy~ Gy x Gy
if A contains odd parts, and

(6.9) Wy =<y~ G

if' 2 has only even parts. In the latter case it is again clear that [y(p 5,)] = 1 asin Proposition
6.6. In the first case we need to show that if a discrete series representatlon o5 of #P(A)
contains (@) x () in its isotropy group then it can be extended to a representation of
HP(AP) % ({w) x {n)). This follows from Lemma 6.10.

Next we assume that X = Z". With the previous situation X = A in mind this case is
easier, since everything is the same except that Kp does not involve the factor {(#)> now
(compare with the proof of Proposition 6.5). The above arguments apply in this simpler
situation as well (but the extension of 5,13 is obvious now, since its isotropy is at most a
;) showing that [y] = 1 in this case.

Finally if » is even, we need to consider two more lattices X = A_ and A with
(6.10) Ar=Ac+ ((1/2,1/2,...,£1/2) + A;).

Let Ap= Af‘ X A}) be the weight lattice of Rp. Observe that the second projection of
Xp < Ap is equal to the full weight lattice A7 of type D; (unless / = n, a case which we
excluded at the start of this proof). Let K5 be the subgroup of the group of characters of
the weight lattice Ap which restrict to 1 on the sublattice X n RP. Restriction of characters
of Ap to Xp induces a quotient map ¢ : K — Kp. The above observation implies that
the first projection p; : Kp — K A (by restriction of a character of Ap to the factor AA)
is injective on the kernel of ¢. Hence, the arguments in the proof of Proposition 6.8
(reducing the “second case” to the “first case”) apply and show that we can replace the
quotient Kp by K via a suitable equivalence of groupoids. In this situation we may write
op = 6A'e ®5D'e for the extension to #, of the discrete series representation dp of #p.
The group #p p = Kp > W}, p of automorphlsms of # that needs to be considered now
is always a subgroup (dependlng on P) of the automorphlsm group Wp'p = W, AP'” X Wp, D -
of #; described by

(6.11) W' = Kp" Wy p
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with

(6.12) Wy p = Wo(By,) x -+ x Wo(By,); Kp™=Cy" x - x Ch,
and with

(6.13) W' = Kp" < {w)

where K, D is the character group of Al / A, ; (a group of order 4). Therefore, arguing as in

the proof of Proposition 6.6, it suffices to show that 5 ¢ extends to a linear representation

of AP ¢ X I p 5oy, Where [, oD) is the isotropy group of [05°°] in #; 3" This follows
P PP

from Lemma 6.10, finishing the proof. [

The following lemma uses a nontrivial property of irreducible discrete series represen-
tations of the graded affine Hecke algebra type D, proved in [26].

Lemma 6.10. Let i be the affine Hecke algebra of type D; (with | = 4) which is maxi-
mally extended, i.e. X = A}) , the weight lattice of Ry. For convenience we take the standard
realization of Ry, with basis {e, — e,...,e,—1 — en,en_1 + ey}. Let K be the group of char-
acters of AP / A?l (a group of order 4) and let w be the diagram automorphism of Ry induced
by the orthogonal reflection in the hyperplane x, = 0. We let the group W := K X {») act
on A by twisting automorphisms as usual. Let 0 € A(A'), and let I5 be the isotropy group of
[0] in #". Then o extends to a representation of A > I;.

Proof. We first observe that #~ &~ Dg, the dihedral group of order 8. Let e € # be
an element of order 4, and let 7 = &> (the generator of the center of #°). Then %" = {&, ).
We define x := we, an element of order 2. There are 3 subgroups of index 2 in Dg, one of
which is cyclic. If / is odd then K = <{e) ~ Cy; if [ is even then K = {5,k> ~ C; x C,. The
other subgroup of index 2 is N = (#,w) ~ C; x C;.

It follows from [26], Theorem 7.1, Theorem 8.7 that any 0 € A(#°) admits (precisely
two) extensions (0_,0, say) to # X {(w) = #B(A}) (with ga,, = 1). In particular, we
always have w € Is. It follows that either /s is cyclic (in which case the desired result is
obvious, since cyclic groups have a trivial Schur multiplier (see the remark at the end of
the proof of Theorem 6.5)) or N < .

We now use [12] that the Schur multiplier of the group Dg is C,, and that ([28], Sec-
tion 3) the restriction of its unique nontrivial class [«] € H*(Dg, C*) to both subgroups of
type C; x C, is nontrivial. Combined with the above remarks we see that it suffices to
prove that J extends to s# > N if N < I, which is what we will assume from now on.

As we have already remarked, J extends to irreducible discrete series representations
o4 of A, (AB) (with gy, = 1). This algebra admits an involutive automorphism 7® whose
fixed point set is %B(Z ) (with g = g» = 1; recall that Ar ; = Z') which fixes @ and which
restricts to 77 on A D(AP) = #B(AP). To prove that § extends to # > N it suffices to
show that 5B is in the isotropy group of [§.+]. We claim actually that this holds true
for any 6 € A(%”,B(AZB)) Indeed, applying [26], Theorem 7.1, Theorem 8.7 to #B(AP)
(with ¢a,, = 1) and to its fixed point algebra #;%(2') = # (C, ) (with g0 = ¢2) (see [26],
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Example 8.3) under 7% we see that |A2(Z")] = 2|AP(A})]. In view of Lemma 6.3 and [27],
Theorem A.13 we conclude on the other hand that if there would exist a ¢ € #,B(AF)

whose class is not invariant for #® then we would necessarily have |[A2(Z')| < 2|AZ(AD)],
proving our claim and thus finishing the proof of the lemma. [

6.6. R, of type D, and X = A,. In the one remaining classical case, the affine Hecke
algebra of type D, with X = AEn, the root lattice of Ry, it is (remarkably) not always true

that [y, ] = 1. Yet we have:

Proposition 6.11.  Let # = #°(A..,) and let W=, be its groupoid of unitary standard
induction data. Then [y, =] = 1.

Proof. Let { = (P,d,t) € E,. We need to show that the 2-cocycle y: of #¢ ¢ is a
coboundary. Let P be as in (6.2) with 4 </ < n and as before, let x; denote the multiplicity

of the part i in A = n — /. The group Wp p does not depend on the lattice X, so is still given
by (6.6). Let us write (6.6) as

(6.14) Wp p = (Wj p x WP ) >

with QBR p = {w) (o being the unique nontrivial automorphism of the diagram of type D;
that extends to D,) and

(615) QB?,P = WO(BM) X X WO(BHM)

and X,qq the linear character defined in the text just below (6.6). Recall that X,44 is trivial
on QBI/: p iff all parts of 4 are even. We introduce the projections

(6.16) iy 39BP,P_>QB£P7 o 5QBP.,P_’QB11?),P-

Notice that zg) is an isomorphism (always) and #d, is trivial iff all parts of 4 are even. We
have by definition

(617) “pr’p:KPNQBP_p.

Let us now compute the lattice X and the abelian group Kp (this is similar to the proof of
Proposition 6.8). The orthogonal projection Xp of the root lattice APn onto RRp is the
product of the weight lattice of the type A factors of Rp with the lattice Z' for the type Dy
factor of Rp, provided that A has odd parts. Hence in this case we have

(6.18) Hp = AP Ap) @ #P(Z").

If 1 has only even parts then Xp is a sublattice of index two of the lattice just described,
namely the kernel of the product ¢ of the unique nontrivial Wp-invariant quadratic charac-
ter of the direct summands of the above lattice corresponding to the irreducible compo-
nents of Rp. Hence if / has odd parts then

(6.19) Kp=Kp x KP
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where

(6.20) Kp~ Cl2 x oo Ol
and where

(6.21) KP = x>

with «x the unique nontrivial character of the lattice Z which is trivial on the root lattice
Afl of the root system D;. In this case we denote by

(6.22) ng:Kp— Kpt, nR:Kp— KpP

the projections onto the type A and the type D factors. We remark that z is invariant for
the action of #p p on Kp. If 4 is even then Kp is the quotient of this group by <{&). If 4 has
odd parts then we define

(6.23) AP =mpxag: Wpp— Wpp:=Wp px Kp = Aut(#,°(2")).
Observe that %'?P = {w) X (k) ~ C; x C,. Similarly we define
(6.24)  nt=mp xR Wpp— Wiy =W , X K} = Aut(# 3 (Ap)).

If 4 is even, then (as in the proof of Proposition 6.8) we extend the lattice Xp of #p to
obtain #, > #p (a quadratic extension) whose associated lattice X is the product of the
weight lattices of the type A factors of Rp with the lattice Z' for the type D; factor of Rp.

As in Proposmon 6.8, this leads to a groupoid % AS which is Morita equivalent to #p a.

Using that #l} = 1if 1 is even we can now apply the same argument as given in the proof of
Proposition 6.8 to conclude that yj ,. is trivial. As we know this implies the triviality of
Vwi p.zp, s Well in this case.

So let us assume from now that 1 contains at least one odd part. To prove the triviality
of yy; , =, it is enough to prove the triviality of y: for the isotopy group #: ¢ of an arbi-
trary object £ = (P,0p,t) with p = oM ® ... ®0™ 1 ®6. Let us therefore consider the
action of #p p on the space Ep of parameters first. Using the action of K» we may and
will assume that the one dimensional type A discrete series representations 64! all have
a real central character.

In the present situation we have 7 = (C*)"/{41). Recall that T = T is the subto-
rus of the characters of the orthogonal projection of X = Ar , onto the subspace RP*. For
each part i of 4 this projection is generated by generators Ej, .. E say, which we normal-
ize by requiring that E; ! has coordinates 1/i at the i slots correspondlng to the j-th part of
size i of /, while its remammg coordinates are 0. Accordingly, for the element in e T*
such that #(E/) = 1] € C* we write:

I .1 M—1
(6.25) t=(t],t,...,1t} tl,zz,...,zﬂwl Mot

) )
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In order to see how Kp acts on 77 and on Ap we need to identify Kp = Tp NnT P as a sub-
group of T explicitly. The group K} is the subgroup of elements ¢ with (t )" =1, and acts
by multiplication on 7°. However, there exists an additional generator k e T " Tp < T
(since 4 is not even), which has its first n — / coordinates (in 7' = (C*)"/{+£1)) equal to 1
and its last / coordinates equal to —1. Indeed, this description makes it obvious that x € Tp.
On the other hand, x can also be given by a row of n — / coordinates equal to —1 and a tail
of / coordinates equal to 1. This description makes it obvious that x € T*. Hence we have
ke Tpn TP By (6.19), Kp is generated by Kj* and . In the coordinates (6.25) on 7°°

the element x € Tp N T* equals —1 € T* (i.e. x/ = —1 for all i, j). The subgroup Kp = T”
is thus given by those 7 € T* with either (¢ N =1 (for all i), or with (7] N =—1 (for all 7).
The projection 72 : KX — K}? is given by nR (k) = w if (k)" = -1 for some palrs (i, /)

(hence all) with i odd, and #2 (k) = 1 else. The projection onto K5 is given by ng (k) = k
if 7P(k) = 1, and g (k) = —k else.

The group W5 p acts on T by signed permutations on the E/ which leave the super-
script i unchanged. If g € #p p and ¢ = (P, 6, 1) then g¢ := (P,67, gt), where 69 ~ 6 0 ¢,. By
(6.18), 0 = 6* ® 0P and thus

(626) 09 = (éA ®5D>g — (6A)7TA(!]> ® (5D)7‘£D

Let us show first that [y:] = 1 if the map =°|,. — WP p_p 18 not surjectlve We ex-
tend Wp p to Wj, , = ﬂBP p X QBP p and accordingly define “//Pep = "//P p X "//P p- By the

assumption we see that #: : "/Vp,p = “//P p x Cy where G < “//P p 1s a suitably chosen
subgroup. But then the projective representation of "f/})’ p defines a trivial 2- cocycle
(as in the proof of Proposition 6.6, using also (6.18)), hence in particular [y:] = 1 in this
case.

So let us now assume that nD’“ﬂ"é.g is onto #p . By (6.18) this implies in par-

ticular that ()" =6P and (6°)” =06P. Thus 6" defines a 2-cocycle ys of # 7 p- By
(6 26) the desired result follows frorn the claim: The pullback of y; under the restriction

g s Wee— "//P p of the map n° of (6.23) is a coboundary. The remaining part of this
proof is devoted to the proof of this claim.

The cond1t1on for g =kwe Kp X Wp p to be in #: ¢ is that (5A) =6" and
gt = t. Since W5 p.p fixes o™ (by our choice to take the central character of 5A real) and
K5 acts freely on A%, the first equation is equivalent to 7*(k) = 1. Hence k = +1e T7
(recall that —1 € T'? is the element x € Kp), and accordingly +wt = ¢. Hence we have

(6.27)  Ween{weWp p = Wo(By,) x -+ x Wo(By,)|wt = +1}

and in this realization the homomorphism 72, : #% : — "/fP]?P is given by

ﬂ?g(w) — wa(w) % Ks(w)

where g, : #: : — C, are two linear characters defined by (—1)"(”’) = Zoqd(w) (with Zggq

as in the proof of Proposition 6.9), and wt = (—1)"")z.
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164 Delorme and Opdam, Analytic R-groups of affine Hecke algebras

The torus T7 is a direct product T¥ = H TP of the tori TP of characters of

the root lattice of B,,. Now 7% has a double cover T2 the torus of characters of the
weight lattice of B, The kernel of the covering map is denoted by (#V> where ¥ is the
unique nontrivial WO(B )-invariant element of 7% (). Thus we have

(6.28) 1= g0y = 720 7P 1,
Putting these together we get an exact sequence
(6.29) 1_><,7(1)’.__’,7(r)>_>7-1>_,TP_>1

where W, .. ny ~ C). By (6.27) we see that the action of #:; on T? extends
to TP,

Consider the set S, = {se T"|s — {+¢} = T"}. This set admits a free, transitive
action (by multiplication) of the subgroup M := (yV, ... 4y x (&> of T?, where & de-
notes a lift of —1 = x € T?. This abelian group is isomorphic to C;~! x Cy if 1 contains
parts with an odd multiplicity and is isomorphic to Cy™ otherwise. Clearly M is stable
for the action of #; : on T?, making M a module over #; ;. To describe the module struc-
ture explicitly, remark that the element & is not Wy(B,,) x --- x Wy(B,, )-invariant. In fact,
itw=wl x...xwleWyB,) x - x Wy(B,,) then

(6.30) w(K) = n(w)k

where
(6.31) n(w) =10 " e ... o0

with (—1)7 = Z;(w®), where X; is the character on W;(B,, ) whose kernel is Wy(D,,). The
elements 5" are all fixed for the action of #; ¢.

The M-orbit S, is stable for the action of # : on T as well. Hence, any lift 7 € S; of
t defines a 1-cocycle u: Wi s — M of W s with values in M by the formula wi = u(w)z.
We fix such a lift 7 once and for all. Consider the abelian group N := {(5,x) defined by
the relations #> = 1 and #* = # (if the number of odd i with x; odd is odd) or else #* = 1
(hence N is isomorphic to Cy if there is an odd number of odd i with odd y;, and N
is isomorphic to C; x C, else). Consider the #: :-module structure on N defined by
w(n) =n for all we #¢ ¢, and by

(6.32) w(i) = "Wk

(the fact that this defines a #; :-module is equivalent to saying that ¢ is a character of
W ¢). The module N is a quotient of M via the unique homomorphism o : M — N satisfy-
ing a(ic) = &, a(n") = 5 if i is odd, and a(y?) = 1 if i is even (in fact, the definition of N
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is such that o exists). The cocycle i induces a cocycle of #: ; with values in N which we
denote by x,. Consider the diagram

N Wee
r] 7 ‘. J{nD
/‘L."' DS
(6.33) ny < Ds ; Wpp == (o) x {K)
I
()

where Dg = (@, k) is a dihedral group of order 8 in which @ has order two and # (or more
precisely i(7)) is the nontrivial central element. The defining relations in Dg are given by
ok = nk. The map j is defined by requesting that j(@) = w and j(k) = «.

We claim that there exists a homomorphism y : #:: — Dg as indicated in the
diagram. Obviously the vertical exact sequence is split. We choose the splitting w — @ of
this sequence. The homomorphism n& gives rise to a homomorphism 7 : #; : — Dg with

image (@) obtained by composing n(f ¢ with the first projection {w, x) — {w) and the lift
o — @. We can write this explicitly by z(w) = @™ . We now define a map y : We e — Dy
by

(6.34) x(w) = i(,uN(w))n(w).

We claim that y is a group homomorphism. Indeed, the action of #: : on N is related to 7
by the formula i(n") = z(w)i(n)(w) " (using the explicit formulas for the module N and
for 7). It follows that (6.34) indeed defines a homomorphism. Next we claim that y makes
(6.33) commutative as indicated. Indeed, i(uy(w)) = ") mod<(n) as follows from the
definition of u (and uy) and of &. On the other hand, by construction of 7 we see that
n(w) = @°™) mod{y). Together these two congruences (modulo the center (5> of D)
imply the claim.

Since Dy is the Schur extension of {(w,x) it now follows that the pullback of y;
under the homomorphism 7P £ ¢ is indeed a coboundary (since né ¢ factors through the Schur
extension map), finishing the proof of the claim and of the theorem. []

6.7. Final remarks.

6.7.1. Multiplicity one W, -types. We would like to comment on a natural alter-
native approach to proving the triviality of the cocycles y; for ¢ = (P,6,t) € E,. The
equivalence class of the restriction to #(Wy,qo) of n(&) is independent of the continu-
ous parameter ¢ € TP. We will refer to an irreducible representation of #(Wy,qo) as a
“Wo-type” in this paragraph. If there exists a Wy-type appearing in (Vg, n(f)) with multi-
plicity one then we can normalize the action of Rz on V: such that the operators 7(r, &)
are equal to 1 on this multiplicity one isotype, and this trivializes the cocycle ;.

Proposition 6.12. Let # = #(R,q) be an affine Hecke algebra, and let
&= (P,0,t) € E, be a standard tempered induction datum such that the central character of
0 is positive (i.e. infinitesimally real). Then v is trivial.
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Proof. In view of the above argument, it is sufficient to prove the existence of a mul-
tiplicity one Wy-type in 7(&). We thank Dan Ciubotaru for communicating to us that it can
be shown that any irreducible representation of # with positive central character admits
a multiplicity one W-type (see [6], Introduction, paragraph 1.3). The proof of this fact is
based on case-by-case verifications. Now consider & = (P,d, ¢) with J a discrete series with
real central character. If 7 e T* is positive and sufficiently generic, n(¢) is irreducible and
has positive central character. By Ciubotaru’s result mentioned above, this implies the
existence of a multiplicity one Wj-type. As explained above, it follows that (&) has a
multiplicity one Wy-type for all 7 € T*, hence in particular for all r € T as desired. []

We do not know how to generalize this argument to general J.

6.7.2. Examples where p, is nontrivial. In this subsection we present an example
showing that y, is not trivial for #.° (A, ,) if n > 8. In the notation of the proof of Prop-
osition 6.11, we write / =n—1if nis odd, and / =n — 2 if n is even, and put / = 2m in
both cases. We define 4 = (1) or A = (1, 1) depending on n being odd or even. Recall that
conjugate partition of 4 is denoted by z; hence we have i« = (1) in the first case and x = (2)
in the second case. By (6.6), (6.17), (6.20) and (6.21) we see that

(635)  Wpp= (Wo(By) x <K x <)) ™™ < Wiy x WPy~ Wy(By,) x C3

where w € QB? pand k€ K }]? are as in the proof of Proposition 6.11, and where X,4q is the
linear character which is equal to the product of the signs of a signed permutation in
Wo(By, ), Wthh is trivial in <K> and which is nontrivial on {w). In particular the homo-
morphism 7P : Wp p — Wy p_p Of (6.23) is surjective (even has a section), with

(6.36) W},I?P = () x {w) = C5.
Equation (6.18) reduces in this case to

(6.37) Hp = AP

2m

(sz)

and the action of #p p by automorphisms of 2#p factors through the surjective projection
7P to an action (denoted by ) of %I?P on #p by automorphisms.

The spectral diagram (in the sense of [26], Definition 8.1) of #p is the affine Dynkin
diagram of type D, equipped with the action of the unique nontrivial diagram automor-
phism # whose set of fixed points is the set of non-extremal vertices of the diagram. In
Figure 1 this spectral diagram is displayed, with the action of # indicated by the solid
arrows. In addition we have indicated in Figure 1 the middle vertex e (the encircled vertex)
of the diagram, and the action of three diagram automorphisms x, @ and @’ (by the dashed
arrows). The group G of diagram automorphisms generated by ¥ and & is isomorphic to
the dihedral group Dg, and We have a projection ¢ : G — “//P » with kernel {(#) (the center
of G). Observe that 7 = @'® = k@k® in G. Recall that Tp = Hom(Z*",C*) = (C* ),
and denote by Tp the double cover Tp = Hom(AZM,(DX) of Tp. There is a canonical
identification of the group of special diagram automorphisms <{x) x () with the group
Kp:=(AD,)" ) (An) = C3 < T* of fixed points for natural action of Wy(Da,) on Tp.
We can extend the action of Wy(Da,) on Tp to Wy(By,) = Wo(Daw) X< {@). Then 5
is the unique nontrivial fixed point for this action of W;(By,), while @(k) = nk. We

have Tp = Tp/<{n), and the action of W,(B,,) on Tp admits a unique nontrivial fixed
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point k = (—1,...,—1) = k(). The group G = Kp > {@) acts naturally on #° (A,,) via
an action f defined as follows: f(®) is the diagram automorphism arising from the auto-
morphism of the root datum of #3)(A,,) which @ induces, and k € Kp acts on the
Bernstein basis of #5> (Azn) by B(k)(0xN,,) = k(x)0.N,. Since 7 is central in G, we see
that #p = (,}le; (Az,n))'7 1s stable for the action of G via ﬁ~ If we restrict the action of ,BN
to the subalgebra #p, this restricted action descends to an action of #;°, on #% which
coincides with the action f on #p defined above.

Figure 1. Spectral diagram of #5, with the action of @, @’ and &.

Recall Lusztig’s parameterization ([16], [26], Theorem 8.7) of the discrete series repre-
sentations of #p = #,2 (Z>™). According to this result the discrete series representations of
HAp whose central character Wy(Dy,)r < Hom(Zz’", C*) contains points with unitary part
equal to s(e) = (1,...,1,—1,...,—1) € Tp (with the same number m of 1’s and —1’s) cor-
respond to discrete series representations of the extended graded affine Hecke algebra of the
form

(6.38) H, := (H(D,,) @ H(D,,)) > <{n)

where H(D,,) is shorthand for H(R;, V', Fi, k) (in the notation of [26]), where R; is a root
system of type D,, in V'*, with basis of simple roots F;. The underlying based root system
of the Hecke algebra H, is the root system Ry | of type D,, x D,, obtained from the spec-
tral diagram by deleting the vertex e. The group G = Dy of diagram automorphisms fixes ¢;
this yields an action (denoted by o) of G on the algebra H, by diagram automorphisms.
Observe that «(7) is inner on H,, hence o gives rise to a homomorphism of G to the group

of outer automorphisms of H, which factors through %, }’],)P via q.

To explain the above mentioned correspondence between the discrete series on both
sides, recall from [26], proof of Theorem 7.1 that every discrete series representation ¢ of
H(D,,) is fixed for twisting with the action of the unique nontrivial diagram automorphism
@ of D, and can in fact be extended to H(B,,) = H(D,,) < (@) in precisely two ways,
denoted by J. and J_. In particular, the central character Wy(D,,)¢ of J is fixed for the
action of @. If 6 (@) = Q € GL(Vj) then 0_(@®) = —Q. A discrete series representation of
H. is therefore of the form d; ,, ® >, (With &; = +, and where J; is a discrete series repre-
sentations of H(D,,)) and has a central character of the form

Cy ‘= ((WO(Dm) X WO(Dm)) ~ <7]>) (51762) = (WO(Dm)(él)a WO(DmXéZ))

Notice that the identity map defines an equivalence of H,-representations

(639) 51,81 ®52,82 l> (51,—81 ®52,—82'
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This representation corresponds (in the sense of [26], Theorem 8.7) to a discrete series rep-
resentation o of #p with central character cc := Wy(Da,,)(ry) with r, := s(e) exp(&y, &,).
We note that c:=s(e)expcy = s(e)(Wo(Dp)(exp(&)), Wo(Di)(exp(&r))) = cc is an
equivalence class in the sense of [16], paragraph 8.1. The correspondence discussed above
is completely determined, using Lusztig’s isomorphism [16], Section 8, Section 9

(640) D ec(%ﬂcc)ec = ﬁe,c;m

by the requirement that the action of H, on a(e.)(V,) < V, via @ is equivalent to the
representation J; ., ® Ja,,. It is clear by the above that these representations of H, are
invariant for twisting by @, and that they are invariant for x if and only if 6; =d, :=0 (a
discrete series representation of H(D,,)). Write ¢(J) for the discrete series representation of
HAp corresponding to 0. ® J.. and (J) for the one corresponding to d; ® J_.

Proposition 6.13. The discrete series representations of #p of the form &(0) are in-
variant for twisting by the group %],)P = (k) x {w) ~ C} of automorphisms of #p, and the
corresponding factor set y (see [8], 8.32) is a nontrivial cocycle of “//PI?P.

Proof. The invariance of &(J) was discussed above. We trace the action § of % on
Hp o through Lusztig’s isomorphism (6.40). But since the equivalence class ¢ is w-invariant
but not  invariant we are forced to work with the ¥} p-invariant idempotent e, + e,
rather than e.. Following Lusztig [16], we choose w € Wy (Dy,,) such that x(c) = we and
such that w has minimal length (or equivalently, such that w(Fy.),1) = Fy),1). We have
an algebra isomorphism

(641) Y (ec + ewc)J?P,cc(ec + ewc) = Mat2><2(ﬁe,c‘y)7

@(echE) (I)(echwciS;)
X — .
d)(l.g,f]echec) q)(ig,flechewciS;)

We transfer the action f of WP'?P on (e, + eye) #p cc(€c + eye) to the matrix algebra on the
right-hand side via W; we shall denote the resulting action of "/VPI?P by u. We use the iso-
morphism Maty,»(H, ., ) = Maty,2(C) ® H, ., , and write I for the identity automorphism
of Mat,»(C). Using the results of [16], Section 8, it is not difficult to show that

(6.42) () :==Pof(w)o P! = C(l 0) o (I®a(®))
075

where, for an invertible matrix M, Cy, denotes the inner automorphism of conjugation
with M. Similarly, we see that
(6.43) ) =Fohk)o¥ ! = C(o 1) o (I ®a(k)).
10
Observe the relation (,u(rc),u(a)))2 =1d (use (oc(z%)oc(d)))2 = a(y), the inner automorphism
of conjugation by # on H, ,), showing that we indeed defined a representation of %]?P,

and not just of G. Recall that G(J) has the defining property that H, acts via ® on
7(0)(ec) (V) = Vs ® Vs according to d, @ . It follows that

Mat2><2(He,cV) = MatZXZ(C) ® He,cV
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acts via ¥ on Ve e = G(0)(ec + ewe) (V) * C* @ (Vs ® Vs) by id ® (0 ®6_) (here id
denotes the defining action of Mat,,»(C) on C?). We write elements of C*> ® (Vs ® Vs) as

a column vector of size 2 with entries in V5 ® Vj, so that the action of Maty,»(H,,,) can
be written as matrix multiplication where the matrix entries act on V; ® Vs viad, ® 0_.

It follows straight from the definition of the correspondence that the factor set y for
“WP]?P defined the by module (J) via the action f is equal to the factor set defined by the
module V.. . via the action x. The following linear involutions M (x), M(w) on V.., define
intertwining operators from V, . to its twists by u(x) and u(w) respectively:

(6.44) M(x)(ﬁigfj‘j) :<Zigf‘ll>’
o) - (w58

We see that (M (k)M (a)))2 = —Id, proving that M lifts to a linear representation of the
Schur extension G = Dg of %‘?P in which # acts by —Id. In particular, y is nontrivial. []

Corollary 6.14.  The 2-cocycle y, of Wa for #.°(A,.,) is nontrivial if n > 8.

Proof. By definition (cf. paragraph 3.2.3) the pullback of y, to
We.p 2 (Wa)p.50)), (p.56))

is equal to the pullback (zP)"(y) of the factor set y via z° : #p p — “WP]?P. Using (6.35) it is
easy to see that 7P has a section s : %],DP — Wp p, implying that (zP)" is injective on co-
homology classes by contravariant functoriality of H2(?, C*). By the above proposition we
conclude that (zP)(y) is a nontrivial 2-cocycle, implying that y, is nontrivial. []

7. Appendix: The Weyl groupoid

In this paragraph and in the next we recall some well known facts about Weyl groups
and standard parabolic subgroups of Weyl groups. These results are essentially due to
Langlands, and the basic references for this material are [5], [19].

Let a = Lie(T}s) be the finite dimensional real vector space R ®; Y. Then Ry < a* is
a reduced, integral root system. Recall however that we do not assume that RRy = a*.

The Weyl group W, of Ry acts naturally as a real reflection group on a. The set of
simple reflections in Wy corresponding to the basis of simple roots Fj is denoted by Sp.

A parabolic subgroup of W} is the isotropy subgroup of an element of a. A standard
parabolic subgroup of W is a subgroup Wp = W, which is generated by the set of simple
reflections corresponding to a subset P < Fj. Clearly every parabolic subgroup is conjugate
to a standard parabolic subgroup.

Let us denote by £ the power set of Fy. Given P, Q € 2 we denote

QBP,Q = {W € W() | W(P) = Q} [ W().
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Definition 7.1. The Weyl groupoid 21 is the finite groupoid whose set of objects is 2
and Homg (P, Q) := Wp o.

For a standard parabolic subgroup Wp we have a distinguished set W7’ of left coset
representatives for Wp, characterized by W7’ := {we Wy|w(P) = Ry .}. We denote by
wo the longest element of W, and by wp the longest element of Wp. Then the longest
element in W7 is equal to w? = wywp. Observe that P := wP(P) € 2, so that we always
have w” € W, 5. The element P € # is called the conjugate of P.

If P,Qe 2 and Wp o + 0 then P, Q are called associates. In particular, for every
P € 2 the conjugates P and P are associates.

Given P € # we put
a? = {xeala(x) =0Vae P}

Consider the set G := {(P,x)| P e 2,x € a’}. Then & is a collection of real vector spaces
which is naturally fibred over 2. The set & carries a natural action of I3 defined by
w(P,x) = (Q,wx) if we Wp o.

7.0.3. Chamber system of 23.  We denote by a™ the positive Weyl chamber in a. Every
face of at is of the form at N a® for a unique P e 2, and this sets up natural bijection
between the facets of at and 2.

The subset of Ry consisting of the roots of Wp is denoted by Rp, thus Rp = Ry N RP.
We choose the set of positive roots Rp . in Rp corresponding to the basis P of Rp.

We adopt the notation (P,«) to denote the restriction of & € Ro\Rp to a”. We write
R? = aP*\{0} for the set of restrictions (P, a) of roots o € Ry\Rp which are in addition
primitive in the sense that if f € Ro\Rp and (P, o) € R” such that (P, ) and (P, 8) are pro-
portional, then (P, f) = ¢(P, o) with ¢ € Z. We write R for the primitive restrictions corre-
sponding to the positive roots « € Ry +\Rp +. An element (P, «) is called simple if (P, a) is
indecomposable in Z+Rf. This is equivalent to saying that (P,«) is the restriction of an
element of Fy\P.

To each (P,a) € RY we associate a hyperplane (P, H,) = Ker(P,«) = a”. The hyper-
planes (P, H,) are called the walls in a”.

A chamber of W in & is a pair (P, C) with P e 2, and C < a” a connected compo-
nent of the complement of the collection of walls in a”. The collection of chambers is
denoted by C(2B, a, Fy). This is a finite set, which has a natural fibration (P, C) — P over
the set 2. The action of 2B on S maps chambers to chambers, and thus induces a natural
action of the groupoid W on C(W, a, Fp).

The set R? determines a distinguished chamber (P,a” ") of af, defined by
af T ={xea”|a(x) > 0Voe RL}. Observe that the chambers are simplicial cones, and
that (P, aP 1) is the face of a* corresponding to P.

An (irredundant) gallery of length 7 in a is a sequence Cp, Cy, ..., C, of chambers
contained in af such that each pair C;_j,C; (i =1,...,n) consists of distinct chambers
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which share a common face. A minimal gallery is a gallery of shortest length between its end
points. The distance between two chambers is the length of a minimal gallery between them.

Given a chamber (P, C), we define its height ht(P, C) to be the number of walls of a”
separating (P,a”*) and C. Thus ht(P, C) is equal to the distance between (P, a”*) and C.

7.0.4. Elementary conjugations. The faces of a”* are of the form
a®t =aP* N (P,H,),

where Q € 2 is such that P = Q and Q\P = {a}. Thus the faces of a?** are in bijective
correspondence with the Q € 2 containing P as a maximal proper subset. Given Q € 2
containing P as a maximal proper subset we define an element sg € Wp pr by 55 = wowp.
Here P’ = s{(P) = Q is the conjugate of P in Q. Notice that s} = (55)71. In particular,
P < Q is self-opposed (in the terminology of [4], Section 10.4, i.e. P < Q is its own conju-

gate as a maximal standard parabolic subsystem of Q) iff s 5 is an involution. The following
result is well known (see [5], [19]).

Theorem 7.2. (i) The action of V3 on the set C(W, a, Fy) of chambers of W3 is free, and
every W-orbit in C(W, a, Fy) contains a unique positive chamber (P, a”*) (with P € ).

(ii) Every element (P,x) € S is W-conjugate to a (Q, y) € S with y € a@+.

(iii) If (P, C)) and (P,Cy) are distinct neighboring chambers then Ci = wi(aftt),
Cy = wy(af>*) and wilwy is the elementary conjugation 552 in W with respect to a uniquely
determined Q € P which contains both P, and Py as maximal proper subsets.

Corollary 7.3. (i) Every w € Wp o can be written as a product of elementary conjuga-
tions in 3.

(i) The minimal length of a word consisting of elementary conjugations representing
w e Wp, ¢ is equal to the height of (Q, w(a™T)).

(iii) The reduced expressions for we Wp o as a product of elementary conjuga-
tions correspond bijectively to the minimal galleries in a2 from a2t to w(al*). If
a%t =Cy,Cy,...,Co=w(al™) is a minimal gallery with C; = wi(a¥*) and we put
xi=w; \wi e Wp, p,_,, then w = x| - - - x,, is the corresponding reduced expression for w.

-1
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