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Abstract Yiannis Sakellaridis and Akshay Venkatesh have determined, when the
group G is split and the field F is of characteristic zero, the Plancherel formula for any
spherical space X for G modulo the knowledge of the discrete spectrum. The starting
point is the determination of good neighborhoods at infinity of X/J , where J is a
small compact open subgroup of G. These neighborhoods are related to “boundary
degenerations” of X . The proof of their existence is made by using wonderful com-
pactifications. In this article we show the existence of such neighborhoods assuming
that F is of characteristic different from 2 and X is symmetric. In particular, one does
not assume thatG is split. Our main tools are the Cartan decomposition of Benoist and
Oh, our previous definition of the constant term and asymptotic properties of Eisen-
stein integrals due to Nathalie Lagier. Once the existence of these neighborhoods at
infinity of X is established, the analog of the work of Sakellaridis and Venkatesh is
straightforward and leads to the Plancherel formula for X .
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1 Introduction

LetG be the group ofF-points of a reductive groupG defined over the non archimedean
local field F.
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1178 P. Delorme

In a tremendeous work (cf. [14]), Yiannis Sakellaridis and Akshay Venkatesh have
determined, when the group G is split and the field F is of characteristic zero, the
Plancherel formula for any spherical space X for G modulo the knowledge of the
discrete spectrum.

The starting point is the determination of good neighborhoods at infinity of X/J ,
where J is a small compact open subgroup of G. Notice that G acts on X on the right.
These neighborhoods are related to “boundary degenerations” of X . The proof of their
existence is made by using wonderful compactifications.

In this article we will show the existence of such neighborhoods assuming that F
is of characteristic different from 2 and X is symmetric. In particular, one does not
assume thatG is split. Themain tool is theCartan decomposition (cf. [2]), the definition
of the constant term (cf [6]) and asymptotic properties of Eisenstein integrals due to
Nathalie Lagier (cf. [12]). The use of Eisenstein integrals to prove results geometric
in nature on symmetric spaces goes back to her work (cf. [12] Theorem 7). Notice that
our neighborhoods at infinity are quite explicit in terms of the Cartan decomposition.

Once the existence of these neighborhoods at infinity of X is established, the analog
of part 3 of [14] is straightforward and leads to thePlancherel formula for X . Notice that
our definition of normalized integrals differs slightly from the one in [14] section 15.

Let σ be an involution of G defined over F . Let H be the fixed point group of σ

in G and let X = H\G. We denote by X (G) the group of unramified characters of G
and X (G)σ be the connected component of 1 in {χ ∈ X (G)|χ ◦ σ = χ−1}.

Let P be a σ -parabolic subgroup of G i.e. such that P and σ(P) are opposed. Let
M := P ∩ σ(P) be the σ -stable Levi subgroup of G. Let U ( resp., U− ) be the
unipotent radical of P (resp., P− := σ(P)) and let δP be the modulus function of P .
We define:

HP = U−(M ∩ H), XP = HP\G.

The space XP is called a “boundary degeneration” of X = H\G. It is an important
object whose role has been emphasized by Sakellaridis and Venkatesh.

Let P∅ = M∅U∅ be a minimal σ -parabolic subgroup of G. We will assume in this
introduction that P∅H is the only (P∅, H)-open double coset inG. A split torus is said
to be σ -split if all its elements are antiinvariant by σ . Let A∅ be the maximal σ -split
torus of the center of M∅. Let A+

∅ be the closed positive chamber in A∅ for P∅. Let
�(P∅) be the set of simple roots for A∅ in the Lie algebra of the unipotent radical of
P∅. The Cartan decomposition asserts (cf. [2]):

G = H A+
∅ �,

for some compact subset, �, of G. Let P = MU be a σ -parabolic sugroup of G,
where M is the σ -stable Levi subgroup of P and U is the unipotent radical of P . Let
AM be the maximal σ -split torus of the center of M . Then AM acts on the left on XP

and this action commutes with the right G-action.
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Neighborhoods at infinity and the Plancherel formula for. . . 1179

If C > 0, let

A+
∅ (P,C) := {a ∈ A+

∅ ||α(a)|F > C, α root o f A∅ in U }.

We denote by 1̇ (resp., 1̇P ) the image of the neutral element 1 ofG in X (resp., XP ).
The following Theorem (cf. Theorem 1) is an easy consequence of [6], Proposition
3.14.

Theorem (Constant termmap) There is a unique G-equivariant map cP : C∞(X) →
C∞(XP ) with the following property. For every compact open subgroup J of G, there
exists C > 0 such that for all f ∈ C∞(X) which is J -invariant:

(cP f )(1̇Paω) = f (1̇aω), a ∈ A+
∅ (P,C), ω ∈ �.

The following theorem (cf. Theorem 2 for its detailed version) was suggested by
the work [14] of Sakellaridis and Venkatesh, who constructed similar maps, in their
context, using wonderful compactifications.

Theorem (expP,J -maps) Let P = MU be a standard σ -parabolic subgroup of G
i.e. such that P∅ ⊂ P. Let J be a compact open subgroup of G.

(i) There exists C > 0 such that the correspondence 1̇x J 	→ 1̇P x J , for x ∈
A+

∅ (P,C)�, is a well defined bijective map denoted expP,J from the subset
NX,J (P,C) := 1̇A+

∅ (P,C)�J of X/J , to the subset O ′ := 1̇P A
+
∅ (P,C)�J of

XP/J .
(ii) For J small enough, the map expP,J preserves volumes.
(iii) For f any right J -invariant element of C∞(H\G), one has:

(cP f )(expP,J (x)) = f (x), x ∈ NX,J (P,C).

As said above we need some results of N. Lagier on Eisenstein integrals that we
will recall. Let P = MU be a σ -parabolic subgroup of G. Let (δ, E) be a unitary
irreducible representation of M . Let χ ∈ X (M)σ and let δχ = δ ⊗ χ . We denote by
iGP δχ or πχ the normalized induced representation and let Vχ denote its space.

Let η ∈ E ′M∩H . Let χ ∈ X (M)σ , sufficiently P-dominant. There is a canonical
H -fixed linear form ξ(P, δχ , η) on Vχ , (cf. [4]). One defines the Eisenstein integrals
on X, E(P, δχ , η, v) ∈ C∞(X), v ∈ Vχ . by:

E(P, δχ , η, v)(1̇g) = 〈ξ(P, δχ , η), πχ (g)v〉, g ∈ G.

Let AM be the maximal σ -split torus of the center of M and let μδ be the character of
AM by which AM acts on δ. The following theorem is due to Nathalie Lagier. This is
the analog of a lemma of Langlands on asymptotics of smooth coefficients.
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1180 P. Delorme

One says that the sequence (an) satisfies (an) →P ∞ if an ∈ AM and for
every root α of AM in the Lie algebra of U, (|α(an)|F ) tends to infinity.
Let us assume Re(χ)δ

−1/2
P is P-dominant. Then if (an) →P ∞ the

following limit exists

limn→∞(χδ
−1/2
P )(a−1

n )μδ(a
−1
n )E(P, δχ , η, v)(1̇an)

and is equal to
< η, (A(P−, P, δχ )v)(1) >,

where A(P−, P, δχ ) is the (converging) intertwining integral operator.

(1.1)

The theorem admits a variation when (an) →Q ∞, with P ⊂ Q. This implies easily
(cf. Lemmas 7 and 8):
First Key Lemma

Let us assume that (an) →P ∞ and that (gn) is a sequence in G converging to g.
If 1̇angn = 1̇an for all n, then g ∈ U−(M ∩ H).
Second Key Lemma

Let J be a compact open subgroup of G. Let (an) →P ∞, (a′
n) →P ′ ∞, for

P, P ′ σ -parabolic subgroups of G and let g, g′ ∈ G. Let us assume 1̇angJ =
1̇a′

ng
′ J, n ∈ N.

Then P = P ′ and a subsequence of (an−1a′
n) is bounded.

Definition of expP,J Although we gave a formula for expP,J it is unclear that it is
well defined. This is achieved by using the two previous Lemmas.
Injectivity of expP,J One wants to prove that, for C large, if x, x ′ ∈ NX,J (P,C) and
expP,J (x) = expP,J (x ′), then x = x ′. One introduces the characteristic function f
of x ⊂ X and one will use its constant term cP f . These functions are J -invariant and
their values on a J -coset makes sense. From the properties of the constant term, if C
is large enough one has:

(cP f )(expP,J (x)) = f (x) = 1.

But, from our hypothesis one deduces:

(cP f )(expP,J (x)) = (cP f )(expP,J (x
′)).

Moreover by the properties of the constant term and because C is large, one has:

(cP f )(expP,J (x
′)) = f (x ′) = 1.

This implies that f (x ′) = 1, hence x = x ′, as wanted.
A compact open subgroup J of G is said to have a strong σ -factorization for P∅ if

for all σ -parabolic subgroups P = MU which contains P∅ one has:

(1) J = JU− JM JU for all σ -parabolic subgroups, where JM = J ∩ M, ....
(2) For all a ∈ A+

∅ , a−1 JUa ⊂ JU , aJU−a−1 ⊂ JU− .
(3) J = JH JP , where JH = J ∩ H, JP = J ∩ P .
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Neighborhoods at infinity and the Plancherel formula for. . . 1181

(4) JM satisfies the same properties for P∅ ∩ M .

There are arbitrary small compact open subgroups with a strong σ -factorization
for P∅ (cf. Kato-Takano [10] if the residual characteristic is different from 2, [5] in
general and Lemma 6 of this article for the “strong” version).

A choice of a G-invariant measure on X determines a G-invariant measure on XP .
Third Key Lemma(cf. Lemma 10)

Let J be a compact open subgroupwith a strong σ -factorization for P∅.Let a ∈ A+
∅ .

Then:

1̇aJ = 1̇aJM JU , 1̇Pa J = 1̇Pa JM JU ,

volX (1̇aJ ) = volXP (1̇Pa J ).

The proof is easy. Moreover one can show that the identity of volumes is also
true for any small enough compact open subgroup of G. This implies easily the last
property of expP,J .

Then, one introduces the restriction eP of the transpose map of the constant term
map toC∞

c (XP ). Following an idea given to us by Joseph Bernstein, and using a result
of Aizenbud, Avni, Gourevitch [1], one shows that its image is contained in C∞

c (X)

(cf Theorem 3). This achieves to prove the analog of Theorems 5.1.1 and 5.1.2 of [14].
Then, as was said before, this allows to prove the Plancherel formula, modulo the

discrete spectrum of the XP , by using the same method as [14], Part 3.
More precisely the maps eP allow to define bounded G-maps, iP from L2(XP ) to

L2(X) (cf Theorem 5):

Theorem For every pair of standard σ -parabolic subgroups of G, P, there exists a
canonical G-equivariant map iP : L2(XP ) → L2(X) characterized by the property
that for any � ∈ C∞

c (XP ) and any element a of the set A++
P of strictly P-dominant

elements of AM, we have:

limn→∞(iPLan� − ePLan�) = 0

where the limit is in L2(X). Here L is the normalized unitary representation of AM

deduced from the left action of AM on XP.

One introduces the discrete part of L2(XP ), L2(XP )disc. Then one has (cf. Proposi-
tion 5):

Proposition Let L2(X)P be the image of L2(XP )disc under iP . Then one has:

L2(X) =
∑

P∈Pst

L2(X)P

where Pst is the set of standard σ -parabolic subgroups of G i.e. which contain P∅

Let P = MU, Q = LV be two standardσ -parabolic subgroupsofG. LetP (resp.,
Q) be the set of elements of �(P∅) which are trivial on AM (resp. AL ). We define
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1182 P. Delorme

W (P, Q) as the set of elements of w ∈ W (A∅) such that w(P ) = Q . In particular
if w ∈ W (P, Q), it induces an isomorphism between AM and AL . IfW (P, Q) is non
trivial we say that P and Q are σ -associated. Let c(P) = ∑

Q∈Pst
Card W (P, Q).

Then the scattering theory as in [14] leads to (cf. Theorem 6):

Theorem (Scattering Theorem) Let P = MU, Q = LV, R be three standard σ -
parabolic subgroups of G.

(i) If P and Q are not σ -associated, (iQ)t ◦ iP = 0.
(ii) If P and Q are σ -associated, there exist AM × G-equivariant isometries

Sw : L2(XP ) → L2(XQ), w ∈ W (P, Q)

where AM acts on L2(XQ) via the isomorphism AM → AL induced by w, with
the following properties:

iQ ◦ Sw = iP ,

Sw′ ◦ Sw = Sw′w,w ∈ W (P, Q), w′ ∈ W (Q, R),

(iQ)t ◦ iP =
∑

w∈W (P,Q)

Sw.

Let us denote by (iP )tdisc the composition of (iP )t with the orthogonal projection
to the discrete spectrum. Finally the map

∑

P∈P

(iP )tdisc

c(P)1/2
: L2(X) → ⊕P∈Pst L

2(XP )disc

is an isometric isomorphism onto the subspaces of vectors ( fP )P∈Pst ∈
⊕P∈Pst L

2(XP )disc satisfying:

Sw fP = fQ, w ∈ W (P, Q).

Then, in Theorem 7, we explicate the restriction of the map iP to L2(XP )disc in terms
of wave packets of suitable normalized Eisenstein integrals.

2 Notations

If E is a vector space, E ′ will denote its dual. If T : E → F is a linear map
between two vector spaces, T t will denote its transpose. If E is real, EC will denote
its complexification. If G is a group, g ∈ G and X is a subset of G, g.X will denote
gXg−1. If J is a subgroup of G, g ∈ G and (π, V ) is a representation of J, V J will
denote the space of invariant elements of V under J and (gπ, gV ) will denote the
representation of g.J on gV := V defined by:

(gπ)(g.x) := π(x), x ∈ J.
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Neighborhoods at infinity and the Plancherel formula for. . . 1183

Wewill denote by (π ′, V ′) the contragredient representation of a representation (π, V )

of G in the algebraic dual vector space V ′ of V .
If V is a vector space of vector valued functions on G which is invariant by right

(resp., left) translations, we will denote by ρ (resp., λ) the right (resp., left) regular
representation of G in V .

If G is locally compact, dlg or dg will denote a left invariant Haar measure on G
and δG will denote the modulus function.

Let F be a non archimedean local field. We assume:

The characteristic of F is different from 2. (2.1)

Let |.|F be the normalized absolute value of F.
One considers various algebraic groups defined over F, and a sentence like:

“let A be a split torus” will mean “let A be the group of F-points of a
torus, A, defined and split over F”. (2.2)

With these conventions, let G be a connected reductive linear algebraic group. Let
ÃG be the maximal split torus of the center of G. The change with standard notation
will become clear later.

Let G be the algebraic group defined over F whose group of F-points is G. Let σ be
a rational involution of G defined over F. Let H be the group of F-points of an open
F-subgroup of the fixed point set of σ . We will also denote by σ the restriction of σ

to G.
A split torus A of G is said to be σ -split if A is contained in the set of elements of

G which are antiinvariant by σ . We will denote by AG the maximal σ -split torus of
the center of G.

If J is an algebraic subgroup of G stable by σ , one denotes by Rat(J )σ the group
of its rational characters defined over F which are antiinvariant by σ . Let us define:

aG = HomZ(Rat(G)σ ,R).

The restriction of rational characters from G to AG induces an isomorphism:

Rat(G)σ ⊗Z R � Rat(AG) ⊗Z R. (2.3)

Notice that Rat(AG) appears as a generating lattice in the dual space a′
G of aG and:

a′
G � Rat(G)σ ⊗Z R. (2.4)

One has the canonical map HG : G → aG which is defined by:

e〈HG (x),χ〉 = |χ(x)|F, x ∈ G, χ ∈ Rat(G)σ . (2.5)

The kernel of HG , which is denoted by G1, is the intersection of the kernels of the
characters of G, |χ |F, χ ∈ Rat(G)σ . One defines X (G)σ = Hom(G/G1,C∗). It
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1184 P. Delorme

is a subgroup of the group X (G) of unramified characters of G. It is precisely the
connected component of the neutral element of the group of elements of X (G) which
are antiinvariant by σ .

One denotes by ãG,F (resp., aG,F) the image of G (resp., AG) by HG . The group
G/G1 is isomorphic to the lattice aG,F.

There is a surjective map:
(a′

G)C → X (G)σ → 1 (2.6)

denoted by ν 	→ χν which associates toχ⊗s, withχ ∈ Rat(G)σ , s ∈ C, the character
g 	→ |χ(g)|sF (cf. [16], I.1.(1)). In other words:

χν(g) = e〈ν,HG (g)〉, g ∈ G, ν ∈ (a′
G)C. (2.7)

The kernel is a lattice in ia′
G and it defines a structure of a complex algebraic variety

on X (G)σ of dimension dimRaG . Moreover X (G)σ is an abelian complex Lie group
whose Lie algebra is equal to (a′

G)C.

If χ is an element of X (G)σ , let ν be an element of a′
G,C

such that χν = χ . The
real part Re ν ∈ a′

G is independent from the choice of ν. We will denote it by Re χ .
If χ ∈ Hom(G,C∗) is continuous and antiinvariant by σ , the character of G, |χ |, is
an element of X (G)σ . One sets Re χ = Re |χ |. Similarly, if χ ∈ Hom(AG ,C∗) is
continuous, the character |χ | of AG extends uniquely to an element of X (G)σ with
values in R∗+, that we will denote again by |χ | and one sets Re χ = Re |χ |.

A parabolic subgroup P of G is called a σ -parabolic subgroup if P and σ(P) are
opposite parabolic subgroups. Then M := P ∩ σ(P) is the σ -stable Levi subgroup of
P . If P is such a parabolic subgroup, P− will denote σ(P).

If P is a σ -parabolic subgroup of G, PH is open in G. (2.8)

The sentence: “Let P = MU be a parabolic subgroup of G” will mean that U is the
unipotent radical of P and M is a Levi subgroup of G. If moreover P is a σ -parabolic
subgroup of G, M will denote its σ -stable Levi subgroup.

If P = MU is a σ -parabolic subgroup of G, we keep the same notations with M
instead of G.

The inclusions AG ⊂ AM ⊂ M ⊂ G determine a surjective morphism aM,F →
aG,F (resp., an injective morphism, ãG,F → ãM,F) which extends uniquely to a sur-
jective linear map between aM and aG (resp., injective map, between aG and aM ). The
second map allows us to identify aG with a subspace of aM and the kernel of the first
one, aGM , satisfies:

aM = aGM ⊕ aG . (2.9)

If an unramified character of G is trivial on M , it is trivial on any maximal compact
subgroup of G and on the unipotent radical of P , hence on G. This allows to identify
X (G)σ to a subgroup of X (M)σ . Then X (G)σ is the analytic subgroup of X (M)σ
with Lie algebra (a′

G)C ⊂ (a′
M )C. This follows easily from (2.7) to (2.9).
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Neighborhoods at infinity and the Plancherel formula for. . . 1185

Let P = MU be a σ -parabolic subgroup of G. Recall that AM is the maximal
σ -split torus of the center of M .

Let A+
P , (resp., A++

P ) be the set of P-dominant (resp., strictly dominant) elements
in AM . More precisely, if �(P) is the set of roots of AM in the Lie algebra of P , and
�(P) is the set of simple roots, one has:

A+
P (resp., A++

P ) = {a ∈ AM ||α(a)|F ≥ 1, (resp., > 1) α ∈ �(P)}.

Let A∅ be a maximal σ -split torus contained in M . Let�(U, A∅) be the set of roots of
A∅ in the Lie algebra of U , and let �(P, A∅) be the set of simple roots. One defines
for C > 0 :

A+
∅ (P,C) = {a ∈ A∅||α(a)|F ≥ C, α ∈ �(U, A∅)}. (2.10)

Let A be a σ -split torus and g ∈ G. We will say that g is A-good if and only if g−1.A
is a σ -split torus. Let us prove:

If g is A-good σ(g)g−1 commutes to A. (2.11)

It is enough to prove that if a ∈ A, (σ (g)g−1).a = a. One has (σ (g)g−1).a =
σ(g.σ (g−1.a)) = σ(g.(g−1.a−1) = a.

For the rest of the article, we fix P∅ = M∅U∅ a minimal σ -parabolic subgroup of
G and let A∅ be the maximal σ -split torus of the center of M∅. It is a maximal σ -split
torus of G. One denotes by A+

∅ the set A+
P∅ . A σ -parabolic subgroup of G will be

said standard (resp., semistandard) if it contains P∅ (resp., M∅). We choose a maximal
split torus A0 which contains A∅. From [7], Lemma 1.9, it is σ -stable. Let K0 be the
stabilizer of a special point of the apartment of the extended building of G associated
to A0.

From [4], Lemma 2.4, there exists a finite setWG
M∅ of A∅-good elements

of G, such that if P is any semi-standard minimal σ -parabolic subgroup
of G,WG

M∅ is a set of representatives of the (P, H)-double open cosets.

We will assume that 1 ∈ WG
M∅ .

(2.12)

For sake of completeness we will recall the definition of WG
M∅ . Let (Ai )i∈I be a

set of representatives of the H -conjugacy classes of maximal σ -split torus of G. Let
us assume that A∅ belongs to this set. The groups Ai are conjugate under G (cf.
[7], Proposition 1.16). Let us choose for each i in I , an element xi of G, such that
xi .A∅ = Ai with x∅ = 1. Let Mi be the centralizer of Ai in G. If L is a subgroup of
G, one denotes byWL(Ai ) the quotient of the normalizer in L of Ai by its centralizer.
We will denote WG(Ai ) simply by W (Ai ).

LetWi be a set of representatives in NG(A∅) ofW (A∅)/WHi (A∅)where Hi = x−1
i .H .

Then ([7], Theorem 3.1) one can takeWG
M∅ = ∪i∈IWi x

−1
i .
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1186 P. Delorme

For g ∈ G we define ġ to be the left coset Hg and we define:

XG
M∅ :=

{
ẋ |x−1 ∈ WG

M∅

}
.

3 The G-spaces XP , the constant terms and the maps cP,Q

3.1 The G-spaces XP

One has (cf. [5], Lemma 9.4):

Let P = MU be a σ -parabolic subgroup of G. The union of the (P, H)

open double cosets in G is equal to G ′ := P H ∩ G. The set G ′ is also
equal to the set of g ∈ G such that g−1.P is a σ -parabolic subgroup.

(3.1)

Let us prove:

Let P = MU be a σ -parabolic subgroup of G and g ∈ G such that g.AM

is σ -split. Then g.P is a σ -parabolic subgroup of G.
(3.2)

One has P = Pν for some ν ∈ a′
M in the sense of [5], (2.14). Then g.Pν = Pμ where

μ is the conjugate of ν by g. Our hypothesis implies that σ(μ) = −μ. This implies
that g.Pν is a σ -parabolic subgroup as Pμ and σ(Pμ) = P−μ are opposite parabolic
subgroups.

One easily extends [5], Eq. (7.1), by replacing A∅ by AM , the proof being identical:

Let P = MU be a σ -parabolic subgroup of G. Let y, y′ be AM -good
elements of G such that PyH = Py′H . Then there exist m ∈ M, h ∈ H
such that y′ = myh.

(3.3)

We define an equivalence relation≈M onXG
M∅ by x ≈M x ′ if and only if Px−1H =

Px ′−1H , which by the above equation is equivalent to xM = x ′M , as x−1, x ′−1 are
A∅-good. LetXG

M be a set of representatives of the equivalences classes of this relation.
Let us define

WG
M := {y ∈ WG

M∅ |(y−1)̇ ∈ XG
M }.

From the above and from (2.12) one has:

The set XG
M is a set of representatives of the open (H, P)-double cosets

in G.
(3.4)
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Neighborhoods at infinity and the Plancherel formula for. . . 1187

Lemma 1 Let P = MU be a semistandard σ -parabolic subgroup of G.

(i) The set of elements g of G such that g.AM is σ -split is denoted X Lev
M ⊂ G. It is

left invariant by H. Its quotient by H on the left is denoted by XM ⊂ H\G. One
has XG

M ⊂ XM and:

XM = ∪x∈XG
M
xM ⊂ H\G,

the union being disjoint.
(ii) For each x ∈ XG

M , xM is closed in X.
(iii) We endow XM with the topology induced by the topology of X. Then for each

x ∈ XG
M , xM is open and closed in XM. Moreover the canonical map (M ∩

x−1.H\M) → xM, (M ∩ x−1.H)m 	→ xm, is an homeomorphism.
(iv) For all x ∈ XM , x P is open in X and XM P = XMU is the union of the open

orbits of P in X.

Proof (i) If g ∈ XLev
M , g.P is a σ -parabolic subgroup [cf. (3.2)]. From (3.1) one

has g−1 ∈ G ′. One deduces from (2.12) and the definition of the relation ≈M

that g−1 ∈ PyH for some y ∈ WG
M . From (3.3), one deduces that there exists

m ∈ M, h ∈ H such that g−1 = myh. The equality of (i) follows immediately.
From (3.3), if x, x ′ are distinct elements of XG

M , the sets HxP and Hx ′P are
disjoint. The disjointness follows.

(ii) Changing H into x−1.H , one is reduced to prove (ii) when x is equal to 1̇. If
(mn) is a sequence in M such that (ṁn) converges in X to l, then (σ (mn)

−1mn)

converges. The Cartan decomposition forM∩H\M (cf. [2] Theorem 1.1) allows
to extract a subsequence of (mn) denoted again by (mn) such thatmn = hnxanωn ,
where (ωn) converges, an ∈ A∅, x−1 ∈ M is A∅-good and hn ∈ M ∩ H . Then
using (2.11) one has:

σ(mn)
−1mn = σ(ω−1

n ) σ (x−1)xa2nωn, n ∈ N.

Hence (a2n) is convergent and (an) is bounded. Extracting again a subsequencewe
can assume that (an) is convergent. This implies that (M ∩ H)mn is convergent
in M ∩ H\M and l is element of 1̇M . This proves (ii).

(iii) The fact that xM is closed follows from (ii). As XG
M is finite, (i) implies that xM

is open in XM . The last assertion follows from [4], Lemma 3.1(iii).
(iv) From (3.1) to (3.2) and the definition of XM , one sees that HxP is open in G.

This achieves to prove the first assertion of (iv). The second follows from this
and from (3.4). ��

Definition 1 Let P = MU be a σ -parabolic subgroup of G. Then XM is a P−-space
with the given action of M and with the trivial action of U−. We define:

XP = XM ×P− G.

Then XM identifies to a subset of XP . If x ∈ XM , its image in XP will be denoted by
xP .
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1188 P. Delorme

If x, x ′ ∈ XM the notation x ≈M x ′ will mean that x, x ′ are in the same M-orbit in
XM . The following assertion follows from the definition of XP .

Let x, x ′ ∈ XM . The following conditions are equivalent:

(i) xPG = x ′
PG.

(ii) xM = x ′M in other words x ≈M x ′.
(3.5)

We define HP := U−(M ∩ H). If y ∈ G, let us denote by σy the rational involution
of G defined by:

σy(g) = y−1σ(ygy−1)y,

whose fixed point set is equal to y−1.H Moreover σy depends only on ẏ.

Let x ∈ XM ⊂ H\G. The stabilizer of xP in G is equal to (x−1.H)P
:= U−(M ∩ x−1.H).

(3.6)

Definition 2 Let a ∈ AM . From (3.5) any element y ∈ XP is of the form y = xPg
for a unique element x ∈ XG

M and some element g ∈ G, which is defined up to the left
action ofU−(M ∩ x−1.H). We see easily from (3.6) that ay := xPag is well defined.
It defines an action of AM on XP which commutes to the right G-action.

From the equality in Lemma 1, one deduces the following equality:

Lemma 2 (i) One has:
XP = ∪x∈XG

M
xPG, (3.7)

the union being disjoint and for x ∈ XG
M, the map g 	→ xPg goes through a

bijection from U−(M ∩ x−1.H)\G to xPG.
(ii) For x ∈ XG

M , xP P is the unique open orbit in xPG.
(iii) Let (XM )P be the image of XM in XP or equivalently the set {xP |x ∈ XM }.

The union of the open P-orbits in XP is equal to (XM )P P = (XM )PU and
the map from XM P = XMU to (XM )P P defined by xu 	→ xPu is a bijective
P-equivariant map.

Proof One deduces (i) from the equality in Lemma 1.
(ii) It follows from (3.6) that xPG is isomorphic to U−(M ∩ x−1.H)\G. Then (ii)

follows from the fact that there is a unique open (U−, P)-double coset in G.
The first part of (iii) is clear. It follows from (3.6) that the map XM × U →

(XM )P P, (x, u) 	→ (xPu) is bijective. One checks easily that it is P-equivariant. ��
Let P be a standard σ -parabolic subgroup of G. Let us prove:

{a ∈ A∅||α(a)|F ≥ C, α ∈ �(P∅ ∩ M)} = A+
∅ (P∅,C)AM . (3.8)

The right hand side is clearly included in the left hand side of the equality to prove.
Let a be an element of the left hand side. Let b ∈ AM be strictly P-dominant. Then
for large n ∈ N, one has abn ∈ A+

∅ (P∅,C). Our claim follows.
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Proposition 1 There exists a compact subset � of G such that for all σ -parabolic
subgroups P of G containing M∅, one has:

XP = ∪x∈XG
M∅

xP A
+
∅ AM�.

Proof The claim is true for P = G from the Cartan decomposition for symmetric
space (cf. [2] Theorem 1.1). In general one has G = P−K0 hence

XP = XM P−K0 = XMK0 = ∪x∈XG
M
xPMK0.

The M-space xM ⊂ H\G is a symmetric space for M for the involution σx restricted
to M . As x is A∅ good, P∅ ∩ M is a σx -parabolic subgroup of M (cf. [5] Lemma 2.2).
From the Cartan decomposition for this symmetric space, it is enough to prove the
following lemma.

Lemma 3 The open orbits of P∅ ∩ M in xM are the orbits y(P∅ ∩ M), where y
describes the set of elements in XG

M∅ such that y ≈M x.

By conjugating on the left by x−1 and changing H into x−1.H one is reduced to
prove the lemma for x = 1̇. Any open (P∅ ∩ M)-orbit in (M ∩ H)\M is of the form
(M ∩ H)z(P∅ ∩ M) where z−1 is A∅-good and element of M (cf. (2.12)). As HP is
open, the product map H × P → HP is open (cf. [4], Lemma 3.1(iii)). Hence, as
HzP∅ = H((H ∩ M)z(P∅ ∩ M))U , one sees that HzP∅ is open. Then (2.12) implies
the existence of an element y of XG

M∅ such that:

HzP∅ = HyP∅. (3.9)

As z ∈ M , z is AM -good. As y is also AM -good, it follows from (3.3) that z = hym′
for some m′ ∈ M, h ∈ H and one has y ≈M z. Let us prove:

(HzP∅) ∩ HM = Hz(P∅ ∩ M).

Let p ∈ P∅ and let us write p = p′u with p′ ∈ P∅ ∩ M and u ∈ U . Let us show that
zp′u ∈ HM if and only if u = 1. Let m′ := zp′ ∈ M . If zp′u ∈ HM , there exist
h ∈ H,m ∈ M such that m′u = hm. Then one has

h = m′m−1(m.u).

Hence both sides of the equality are elements of H ∩ P = H ∩ M . It follows that
u = 1. Our claim follows.

As z ∈ M, ż ≈M 1̇. Taking into account y ≈M z, one has y ≈M 1̇ and one shows
similarly that:

(HyP∅) ∩ HM = Hy(P∅ ∩ M). (3.10)

From this and (3.9) one sees that:

Hy(P∅ ∩ M) = Hz(P∅ ∩ M).
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This shows that any open P∅ ∩ M-orbit in 1̇M has the required form.
Reciprocally from (3.10) one sees that for all y ∈ XG

M∅ such that y ≈M 1̇, y(P∅∩M)

is open in XM as it is equal to the intersection of an open set of X with the open subset
1̇M of XM (cf. Lemma 1(iii)). This proves the Lemma. ��

Remark 1 (1) There is a minor change with [14]. Here we are interested to X = H\G
but Sakellaridis and Venkatesh study the bigger space (H\G)(F). The space X
appears as one of the finitely many G-orbits in X(F) and every G-orbit in X(F) is
of the same type than X .

(2) If P = MU is a standard σ -parabolic subgroup of G, we define P as the set
of simple A∅-roots in the Lie algebra of M which are simple for P∅. Notice that
P∅ = ∅. We could define also AP = AP . Then AP plays here the role of
AX,P in [14].

3.2 Constant term

Let J be a totally discontinuous group acting continuously on a totally disconnected
topological space Y . We will say that the action is smooth if the stabilizer of any
element of Y is open and we will denote by C∞(Y ) the space of functions which are
fixed by the right action of some compact open subgroup of G.

Let us recall (cf. [6], Proposition 3.14) the following result.

Let P = MU be a σ -parabolic subgroup of G. Let (π, V ) be a smooth
G-submodule of C∞(H\G). The map f → fP is the unique morphism
of P-modules from V to the space C∞((M ∩ H)\M) endowed with the
right action of M tensored by δ

1/2
P and the trivial action of U , such that:

For all compact open subgroup, J , of G there exists C > 0 , such that
for all f ∈ V J :

f (a) = δ
1/2
P (a) fP (a), a ∈ AM (P−,C) = AM ∩ A+

∅ (P−,C),

where A+
∅ (P−,C) has been defined in (2.10).

We have a similar statement by replacing the preceding equality by

f (a) = δ
1/2
P (a) fP (a), a ∈ A+

∅ (P−,C)

(3.11)

We have slightly modified the statement of l.c. by replacing A0 by AM and A∅ but
unicity still holds due to [6] Equation (3.8). It is useful to introduce:

f̃ P = δ
1/2
P fP . (3.12)
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Let us assume that V is of finite length. Let (δ, E) be the unormalized
Jacquet module of V . Then there exists a finite family of complex char-
acters χ1, . . . , χr of AM such that

(δ(a) − χ1(a)) . . . (δ(a) − χr (a)) = 0, a ∈ AM .

From the intertwining properties of the P-module map f 	→ f̃ P , one
deduces that it factors through the module of M . Hence

(ρ(a) − χ1(a)) . . . (ρ(a) − χr (a)) f̃ P = 0, a ∈ AM ,

where ρ denotes the right regular representation of M on C∞((M ∩
H)\M).

(3.13)

Theorem 1 Let P = MU ⊂ Q = LV be two standard σ -parabolic subgroups of G.
If C ≥ 0, let A+

∅ (P, Q,C) be the set of a ∈ A∅ such that |α(a)|F ≥ C for all roots
α of A∅ in the Lie algebra of U ∩ L and |α(a)|F ≥ 0 for all roots of A∅ in the Lie
algebra of U∅ ∩ L.

(i) There exists a unique G-equivariant map cP,Q from C∞(XQ) to C∞(XP ) sat-
isfying the following property:
For all compact open subgroups J of G, there exists C > 0 such that for all
f ∈ C∞(XQ) which is right J -invariant, one has:

(cP,Q f )(xPa) = f (xQa), a ∈ A+
∅ (P, Q,C), x ∈ XG

M∅ . (3.14)

The map does not depend on the choice of XG
M∅ .

(ii) Let R be an other standard σ -parabolic subgroup of G such that Q ⊂ R. Then
one has:

cP,R = cP,Q ◦ cQ,R .

(iii) Let V be a smooth G-submodule of finite length of C∞(XQ). Then there exists a
finite family of complex characters χ1, . . . , χr such that for all f ∈ V:

((λ(a) − χ1(a)) . . . (λ(a) − χr (a))cP,Q f )(xPg) = 0, x ∈ XG
M , g ∈ G, a ∈ AM ,

where λ denotes the representation of AM on C∞(XP ) given by (cf. Defintion 2
for the significance of ax):

λ(a) f (y) = f (ax), a ∈ AM , f ∈ C∞(XP ).

For the proof we will need two lemmas.
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Lemma 4 Let x ∈ XM.

(i) If f ∈ C∞(XQ) and g ∈ G, let fxQ ,g be the map l 	→ f (xQlg) viewed as a map

on (x−1.H)∩L\L.Wedefine a function fxQ ,P−∩L onG by g 	→ ( fxQ ,g )̃P−∩L(1),
where we use the notation (3.12). It is left invariant by (x−1.H)P and it is right
J -invariant if f is right J -invariant.

(ii) The point (i) allows to define a map cP,Q,x : C∞(XQ) → C∞(xPG) by

(cP,Q,x f )(xPg) = fxQ ,P−∩L(g).

It intertwines the right regular representations of G on C∞(XQ) and C∞(xPG).
(iii) One has

(cP,Q,x f )(xPmg) = ( fxQ ,g )̃P−∩L(m),m ∈ M.

(iv) For all compact open subgroup J of G, there exists C > 0 such that for all
x ∈ XG

M∅ , for all f ∈ C∞(XQ) which is right J -invariant, one has:

(cP,Q,x f )(xPa) = f (xQa), a ∈ A+
∅ (P, Q,C), x ∈ XG

M∅ .

(v) We have unicity of the G-maps satisfying the condition above on the sets AM ∩
A+

∅ (P, Q,C).

Proof (i) Due to the intertwining properties of the constant term map (cf. (3.11))
the map ϕ 	→ ϕ̃P−∩L intertwines the right regular representations of P− ∩ L on
C∞((x−1.H) ∩ L)\L) and on C∞((x−1.H) ∩ M)\M), where U− ∩ L acts triv-
ially on the latter space. Also one remarks that fxQ ,vg = fxQ ,g for g ∈ G, v ∈ V .
Altogether this shows (i) and that themap cP,Q,x is well defined. Themap cP,Q,x inter-
twines the right regular representations ofG as the equality (cP,Q,x (ρ(g) f ))(xPg′) =
(cP,Q,x f )(xPg′g) follows from the definitions. This achieves to prove (ii).

(iii) By (ii), it is enough to prove this for g = 1. The intertwining properties of the
map ϕ 	→ ϕ̃P−∩L described above allows to prove (iii).

(iv) By (iii) and from the second equality of (3.11) for P− ∩ L and J ∩ L , one
deduces (iv).

(v) Let us prove unicity for x = 1. For general x , one has simply to change H
into x−1.H . Let c be a G-map satisfying the hypothesis of (v). This is a map from
V = C∞(XQ) to C∞(HP\G). As c is a G-map, it is entirely determined by the linear
form ξ on V defined by:

ξ( f ) = c( f )(1), f ∈ V.

This linear form goes through the quotient to the unormalized Jacquet module (δ, E)

of V for P−. Let ξ ′ be the corresponding linear form on E . We denote by j the natural
projection from V onto E . We fix J and letC given by condition (iv). Let a be a strictly
P-dominant element contained in AM ∩ A+

∅ (P, Q,C), which obviously exists. Then
one has:
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ξ(ρ(a) f ) = ξ ′(δ(a) j ( f )) = c( f )(a), f ∈ V J .

Let us assume that J has an Iwahori factorization for (P, P−). Then by the generalized
Jacquet Lemma of Bernstein (cf. [13] theorem VI.9.1) the map from V J to E J∩M

induced by j is surjective. As δ(a) induces a bijective endomorphism of E J∩M , one
sees that ξ ′ is uniquely determined on this space by the second equality above. By
varying J one sees that ξ ′ itself is uniquely determined. The same is true for ξ hence
for c. This achieves to prove (v). ��
Lemma 5 Let x, y ∈ XM. If x ≈M y, one has cP,Q,x = cP,Q,y .

From Lemma 4(v), it is enough to prove the following assertion.

Let J be a compact open subgroup of G. There exists C > 0 such that
for all f ∈ C∞(XQ) which is J -invariant

(cP,Q,x f )(yPa) = f (yQa), a ∈ AM ∩ A+
∅ (P, Q,C).

(3.15)

Let m ∈ M such that y = xm. Then yP = xPm, yQ = xQm. By the interwinining
properties of cP,Q,x and the commutation of a ∈ AM with m, one has

(cP,Q,x f )(yPa) = cP,Q,x (ρ(m) f )(xPa), a ∈ AM . (3.16)

One remarks that ρ(m) f is fixed by m.J . Hence as x satisfies Lemma 4(iv) , there
exists C > 0 such that for all f ∈ C∞(XQ) right invariant by J :

cP,Q,x (ρ(m) f )(xPa) = (ρ(m) f )(xQa), a ∈ AM ∩ A+
∅ (P, Q,C).

As (ρ(m) f )(xQa) = f (yQa), together with (3.16) this proves (3.15) and the lemma.
��

Proof of Theorem 1 (i) We define cP,Q( f ) for f ∈ C∞(XQ) by:

(cP,Q f )(xPg) := (cP,Q,x f )(xPg), x ∈ XG
M .

From Lemma 4(iv) and (v), one sees that this is well defined and that it has the
required properties including unicity. Also from Lemma 5, cP,Q does not depend
on the choice of XG

M in XG
M∅ . Also, as changing our choice of XG

M∅ involves only
right multiplication by elements of M∅, one sees that cP,Q even does not depend
of the choice of XG

M∅ .
(ii) follows easily from the unicity statement in (i).
(iii) As the right action of G on XP commutes with the left action of AM , it is enough

to prove the equality for g = 1.Weuse the notation of Lemma4(i). Themap f 	→
˜( fxQ ,1)P−∩L is a P−-map from V to a P−-submodule ofC∞((x−1.H)∩M\M)

endowed with the right action of M and the trivial action ofU−. This submodule
is a quotient of the unormalized Jacquet module of V for P−. Hence it is an
M-module of finite length. Then (iii) follows from the definition of cP,Q above
and from (3.13) applied to L instead of G. ��

123



1194 P. Delorme

4 Neighborhoods at infinity of XQ and mappings expXP ,XQ

4.1 Choice of measures

We fix on G (resp., H , resp., the unipotent radical of a semistandard σ -parabolic
P = MU of G) the Haar measure such that its intersections with K0 is of volume 1.
From this we deduce a measure on H\G. We choose the Haar measure on M such
that:

∫

G
f (g)dg =

∫

U×M×U−
f (umu−)δP (m)−1dudmdu−, f ∈ C∞

c (G). (4.1)

Also there exists a constant γ (P) such that:

∫

G
f (g)dg = γ (P)

∫

M×U−×K0

f (mu−k)dmdu−dk. (4.2)

The set XMU is an open subset of H\G (cf. Lemma 1(iv)) which is right invariant
by P . Hence the measure on H\G induces a right P-invariant measure on XMU . But
the map XM ×U → XMU, (x, u) 	→ xu is a homeomorphism. As the Haar measure
on U has been fixed, there is a canonical measure mXM on XM such that:

∫

XMU
f (y)dy =

∫

XM×U
f (xu)dmXM (x)du, f ∈ Cc(XP ). (4.3)

One checks easily that this measure satisfies:

∫

XM

f (xm)dmXM (x) = δP (m)−1
∫

XM

f (x)dmXM (x),m ∈ M. (4.4)

Let x ∈ XM . AsU−P is open in G, xP P is an open set in XP which depends only
on xM . By looking to the stabilizer of x and xP one sees that the map xp 	→ xP p
is a well defined continuous bijection between x P and xP P which depends only on
xM hence on xP P . Thus, our choice of P-invariant measure on x P induces “by
transport de structure” a P-invariant measure on xP P . We fix on xPG the G-invariant
measure which agrees with this measure on xP P . Hence we have a right invariant
measure by G on XP . We want to deduce from mXM an M-invariant measure on XM .
This will depend on our choice of XG

M . If x ∈ XG
M , the map (M ∩ x−1.H)\M →

xM, (M ∩ x−1.H)m 	→ xm is a homeomorphism (cf. e.g. [4] Lemma 3.1(iii)). The
measure on XM determines a measure on (M ∩ x−1.H)\M . Let us show:

The function δP is trivial on M ∩ x−1.H . (4.5)

The group P is a σx -parabolic subgroup of G (cf. [5], Lemma 2.2(iii) where one has
to change x in x−1). This implies that δP is antiinvariant by σx and hence trivial on the
fixed points of σx . This proves our claim. This determines “par transport de structure”
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a function denoted δP,x on xM . Multiplying the restriction to xM of the canonical
quasiinvariant measure mXM by δP,x one gets an M-invariant measure on xM and on
(M ∩ x−1.H)\M . Hence one has:

Our choice of XG
M determines an M-invariant measure on XM . (4.6)

It allows to identify C∞(XM ) to a subspace of the dual of C∞
c (XM ) (we will see

later that this subspace of the dual is the full smooth dual, cf. after (8.1)).
One deduces also a measure on x−1.H by conjugacy. Together with our choice

of measure on M and on (M ∩ x−1.H)\M , this determines a measure on (M ∩
x−1.H)\x−1.H .

We introduce a unitary actionL of AM (cf. (4.4) for unitarity) on the space L2(XP )

called normalized action:

La f (x) = δ
1/2
P (a) f (ax), x ∈ XP , (4.7)

where ax is the left action of a ∈ AM on x ∈ XP of Definition 2.

4.2 Compact open subgroups with a σ -factorization

First we give a definition.

A compact open subgroup J of G is said to have a σ -factorization (resp.
strong σ -factorization) for standard σ -parabolic subgroups of G if it sat-
isfies the following conditions:
(i) For every standard σ -parabolic subgroup P = MU of G the prod-
uct map JU− × JM × JU → J is bijective, where JU− = J ∩ U−,
JM = J ∩ M , JU = J ∩U.

(ii) Let A ⊂ A∅ be the maximal σ -split torus of the center of M and let
A− (resp. A−

∅ ) be the set of its P-(resp. P∅)-antidominant elements. For
all a belonging to A− (resp. A−

∅ for the strong σ -factorization) one has

aJUa
−1 ⊂ JU , a−1 JU−a ⊂ JU− .

(iii) One has J = JH JP , where JH = J ∩ H, JP = J ∩ P .
(iv) For every σ -parabolic subgroup P = MU of G which contains P∅,
J ∩ M enjoys the same properties as J for M and P∅ ∩ M .

(4.8)

From [5] Prop 2.3, there exist arbitrary small compact open subgroups of G with a
σ -factorization. We will need the following lemma later.

Lemma 6 There exists a basis of neighborhoods of the identity in G, (J ′
n)n∈N, made of

a decreasing sequence of compact open subgroups of G with a strong σ -factorization
and such that for all n ∈ N, J ′

n is a normal subgroup of J ′
0.
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Proof We keep the notation of [5] Prop. 2.3, Then, as the basis of u∅ and u−
∅ is made

of weight vectors a∅, one has:

�g = �u ⊕ �m ⊕ �u−,

where �u = �g ∩ u,�m = �g ∩ m,�u− = �g ∩ u− and �u (resp., �u− )

is stable by the adjoint action of A−
∅ (resp., A+

∅ ). Then one shows as in the proof
of [5] proposition 2.3, where only (ii) has to be modified, that there exists a basis of
neighborhoods (Jn)n∈N of the identity inG made of a decreasing sequence of compact
open subgroups of G with a strong σ -factorization.

As �g is compact and open in g, there exists n0 ∈ N such that the adjoint action
of Jn0 preserves �g. Hence by l.c. Lemma 10.1(iii), there exists N ∈ N such that for
all n greater than N , Jn0 normalizes Jn . The sequence (J ′

n) defined by J ′
n = JN+n has

the required properties. ��

4.3 Statement of Theorem 2

Theorem 2 Let P = MU ⊂ Q = LV two standard σ -parabolic subgroups of G.
Let K be a compact open subgroup of G having a strong σ -factorization. Let � be as
in Proposition 1. We may and will assume that K ⊂ � and that � is biinvariant by
K . Let J be a compact open subgroup of G such that for all ω in �, x−1 ∈ WG

M∅ ,
(xω).J ⊂ K.

We define for C > 0 and x ∈ XG
M:

NXQ (x, P,C) := ∪y∈XG
M∅ ,y≈Mx yQ A+

∅ (P, Q,C)�.

Then there exists C > 0 such that:

(i) The union

NXQ (P,C) := ∪x∈XG
M
NXQ (x, P,C)

is disjoint.
(ii) The subset NXQ (P,C) of XQ is right J -invariant. We view NXQ ,J (P,C) :=

NXQ (P,C)/J as a subset of XQ/J . The map NXQ ,J (P,C) → XP/J which
associates xPaωJ to xQaωJ with x ∈ XG

M∅ , a ∈ A+
∅ (P, Q,C), ω ∈ � is well

defined on NXQ ,J (P,C). It is denoted expXP ,XQ ,J . Let R be a σ -parabolic
subgroup of G such that P ⊂ Q ⊂ R. Then the image by expXQ ,XR ,J of
NXR ,J (P,C) is contained in NXQ ,J (P,C).

(iii) The map expXP ,XQ ,J is injective on NXQ ,J (P,C).
(iv) As a map from a set of J -invariant subsets of XQ to a set of J -invariant subsets

of XP , expXP ,XQ ,J preserves volumes.

From the definitions, one sees:
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Corollary 1 If a ∈ AL and z ∈ NXQ ,J (P,C), one sees from the definitions that
az ∈ NXQ ,J (P,C) and that:

expXP ,XQ ,J (az) = aexpXP ,XQ ,J (z), z ∈ NXQ ,J (P,C).

First reduction for the proof of Theorem 2
We will reduce the proof of the theorem to the case where Q = G. The proof when

Q = G will be done in Sect. 6. Let us assume that the theorem has been proved for
Q = G. Let us prove it for arbitrary Q.

We will define expXP ,XQ ,J and prove part (ii) of Theorem 2. We define
N ′
XQ ,J (P,C) = expXQ ,X,J (NX,J (P,C)) which is well defined for C large. Then,

from (3.8), the definition of the left AL -action (cf. Definition 2) and the definition of
expXQ ,X,J one has:

NXQ ,J (P,C) = ALN
′
XQ ,J (P,C). (4.9)

Let y ∈ NXQ ,J (P,C). By the above equality and the definition of N ′
XQ ,J (P,C), there

exist a ∈ AL and z ∈ NX,J (P,C) such that y = aexpXQ ,X,J (z). Let us prove that
aexpXP ,X,J (z) does not depend on the choice of a and z as above.

Let us assume that there exists a′ ∈ AL and z′ ∈ NX,J (P,C) with y =
a′expXQ ,X,J (z′). By choosing b ∈ AL sufficiently Q-dominant we can assume
that ba, ba′ are Q-dominant. As z ∈ NX,J (P,C) one may write z = xazωJ for
some x ∈ XG

M∅ , az ∈ A+
∅ (P,C), ω ∈ �. By abuse of notation, as it may depends

on this writing, one defines baz := xbaazωJ . One defines similarly b′a′z′. Then
baz, ba′z′ ∈ NX,J (P,C). From our hypothesis one has:

baexpXQ ,X,J (z) = ba′expXQ ,X,J (z
′).

From Theorem 2(ii) for Q = G (i.e. the definition of expXQ ,X,J ), one has:

baexpXQ ,X,J (z) = expXQ ,X,J (baz), ba
′expXQ ,X,J (z

′) = expXQ ,X,J (ba
′z′).

From the injectivity in (iii) for Q = G, one deduces:

baz = ba′z′.

One sees from the definition of expXP ,X,J in (ii) that:

expXP ,X,J (baz) = baexpXP ,X,J (z), expXP ,X,J (ba
′z′) = ba′expXP ,X,J (z

′).

As baz = ba′z′, one deduces from this the equality:

aexpXP ,X,J (z) = a′expXP ,X,J (z
′).

This proves our claim and it allows to define

expXP ,XQ ,J (y) := aexpXP ,X,J (z).
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Let y = xQaωJ ∈ NXQ ,J (P,C) with x ∈ XG
M∅ , a ∈ A+

∅ (P, Q,C). By choosing

b′ ∈ AL sufficiently Q-dominant, one has a′ := b′a ∈ A+
∅ (P,C). Let b = b′−1

and y′ = xQa′ωJ One has y = by′ and y′ = expXQ ,X,J (xa′ωJ ). Our definition of
expXP ,XQ ,J shows that:

expXP ,XQ ,J (xQaωJ ) = bxPa
′ωJ = xPaωJ.

This achieves to prove that expXP ,XQ ,J is well defined by the formula given in the
theorem. This implies that the image of NX,J (R,C) is contained in NXQ ,J (P,C).
This achieves the proof of Theorem 2(ii) and Corollary 1 follows.

(iii) Let y, y′ ∈ NXQ ,J (P,C) with expXP ,XQ ,J (y) = expXP ,XQ ,J (y′). One wants
to prove that y = y′. By multiplying y and y′ by a sufficiently Q-dominant element
of AL , one may assume that y, y′ ∈ N ′

XQ ,J (P,C). Then y = expXQ ,X,J (z), y′ =
expXQ ,X,J (z′) with z, z′ ∈ NX,J (P,C). From our definition of expXP ,XQ ,J , one
deduces the equality:

expXP ,X,J (z) = expXP ,X,J (z
′).

From the injectivity of expXP ,X,J one sees that z = z′, hence y = y′. This achieves
to prove (iii).

(iv) One has the equality

volXP (ax J ) = δP (a)volXP (x J ), x ∈ XP , a ∈ AP .

Using this equality for P and Q, using Theorem 2 for Q = G and P successively
equal to P and Q, and our definition of expXP ,XQ ,J one deduces (iv) for all Q.

It remains to prove (i). One has yPG = xPG if and only if x ∈ XG
M and y ∈ XM is

such that x ≈M y (cf. (3.5)). From the “if part” and the definition above of expXP ,XQ ,J ,
the image of NXQ ,(x, P,C) by expXQ ,XP ,J is contained in xPG. Then the “only if
part” implies (i). ��

The following proposition is an easy consequence from the definition in part (ii) of
the Theorem above.

Proposition 2 With the notation of Theorem 2, one has

expXP ,XQ ,J (expXQ ,X,J (x J )) = expXP ,X,J (x J ), x ∈ NX,J (P,C).

The following assertion is an immediate corollary of the Cartan decomposition for
XQ .

Let C > 0. The complementary set in XQ of the union of NXQ (P,C)

when P describes the maximal standard σ -parabolics is a compact set
modulo the action of AL .

(4.10)
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5 Eisenstein integrals and some results of Nathalie Lagier

5.1 Eisenstein integrals

Let P = MU be a semi standard σ -parabolic subgroup of G. Let (δ, E) be a unitary
irreducible smooth representation of M . Let χ ∈ X (M)σ and let δχ = δ ⊗ χ and let
us denote by Eχ the space of δχ . Let (iGP δχ , iGP Eχ ) be the normalized parabolically
induced representation.

The intertwining linear map from iGP δ̌ to (iGP δ)̌ which associates to v̌ ∈
iGP δ̌ the linear form on iGP δ given by the absolutely converging integrals:

v 	→
∫

U−
〈v̌(u−), v(u−)〉du−, v ∈ iGP δ

is an isomorphism.

(5.1)

The restriction of functions to K0 determines a bijection between iGP Eχ and i K0
K0∩P E .

If v is an element of i K0
K0∩P E, vχ will denote its unique extension to an element of

iGP Eχ .

Let V(δ, H) = ⊕x∈XG
M
V(δ, x, H) where V(δ, x, H) = (E ′)M∩x−1.H . (5.2)

Let η = (ηx )x∈XG
M

∈ V(δ, H). Let Jχ be the subspace of elements of iGP Eχ whose

support is contained in PWG
MH which is the union of the open (P, H) double cosets

in G. One defines a linear form on Jχ by

〈ξ̃ (P, δχ , η), v〉 =
∑

x∈XG
M

∫

M∩x−1.H\x−1.H
〈ηx , v(yx−1)〉dy, v ∈ Jχ .

From [4], Theorem 2.7, one sees that

There exists a non zero product q of functions on X (M)σ of the form
χ 	→ χ(m) − c, for some m ∈ M and c ∈ C

∗, such that if q(χ) �=
0, ξ̃ (P, δχ , η) extends to a unique H -invariant linear form on iGP Eχ ,

denoted by ξ(P, δχ , η). Moreover for every element v of i K0
K0∩P E , the

map χ 	→ q(χ)〈ξ(P, δχ , η), vχ 〉 extends to a polynomial function on
X (M)σ .

(5.3)

When ξ(P, δχ , η) is defined, one defines for v ∈ iGP Eχ :

E(P, δχ , η, v)(ġ) = 〈ξ(P, δχ , η), (iGP δχ )(g)v〉, g ∈ G.
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Now, one uses ( 9.3) which extends results of [4] and [12] when the characteristic
of F is equal to zero to the case where this characteristic is different from 2. From
(9.3), [12], Theorem 4(ii), [4], Theorem 2.14 and Equation (2.33), one sees that if
χ ∈ X (M)σ is such that Re(χδ

−1/2
P ) is strictly P-dominant, ξ(P, δχ , η) is defined

and one has:

E(P, δχ , η, v)(ġ) =
∑

x∈XG
M

∫

M∩x−1.H\x−1.H
〈ηx , v(yx−1g)〉dy, g ∈ G, v ∈ iGP Eχ

(5.4)
the integrals being convergent.

5.2 Some results of Nathalie Lagier

One has the following assertion which follows from [16], Theorem IV.1.1. Let P =
MU, P ′ = MU ′ be two σ -parabolic subgroups of G with Levi subgroup M .

There exists R > 0 such that if χ ∈ X (M)σ satisfies

〈Re(χ), α〉 > R, α ∈ �(P) ∩ �(P ′−),

the following integrals are convergent:

(A(P ′, P, δχ )v)(g) :=
∫

U∩U ′\U ′
v(u′g)du′, v ∈ iGP Eχ .

Then A(P ′, P, δχ ) is an intertertwining operator between iGP δχ and iGP ′δχ .

(5.5)

The following results are due to Nathalie Lagier (cf. [12], Theorem 5). We use the
notation and hypothesis of the preceding subsection.

Let P be a standard σ -parabolic subgroup of G. Let (an) be a sequence in AM

such that (an) →P ∞ i.e. such that for every root α of AM in the Lie algebra of U ,
(|α(an)|F ) tends to infinity.

Let (δ, E) be a smooth unitary irreducible representation of M and let μδ be its
central character. Let χ ∈ X (M)σ . Let us assume that the real part of χ̃ := χδ

−1/2
P is

strictly P-dominant and satisfies (5.5) for P ′ = P−. Let v ∈ iGP Eχ and g ∈ G. Recall
that we have choosen XG

M ⊂ XG
M∅ such that 1̇ ∈ XG

M . Then one has:

If η ∈ V(δ, x, H) with x ∈ XG
M different from 1̇, one has:

limn→∞χ̃ (a−1
n )μδ(a

−1
n )E(P, δχ , η, v)(1̇ang) = 0.

(5.6)
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and

If η ∈ V(δ, 1, H), i.e. η ∈ E ′M∩H , one has the equality of

limn→∞χ̃(a−1
n )μδ(a

−1
n )E(P, δχ , η, v)(1̇ang)

with
〈η, (A(P−, P, δχ )v)(g)〉,

(5.7)

Let ε be the trivial representation of M∅. Let χ ∈ X (M∅)σ be such that the real part
of χ̃ := χδ

−1/2
P is strictly P∅-dominant. Let η be the linear form on C corresponding

to 1 and let x ∈ XG
M . We consider the Eisenstein integrals for x−1.H\G. Then x−1

might be viewed as an element of a set XG
M for x−1.H . We view η as an element of

E ′M∩H = V(ε, 1, H) and of E ′M∩xx−1.H = V(ε, x−1, x−1.H). Let v ∈ iGP∅χ . We

denote by Ex (P∅, χ, η, v) the Eisenstein integral for x−1.H\G. Then one has:

E(P∅, χ, η, v)(xg) = Ex (P∅, χ, η, v)((x−1.H)g), g ∈ G,

as it follows easily from (5.4). Using this, it follows from [12], Theorem 5:

Let ε be the trivial representation of M∅. Let χ ∈ X (M∅)σ be such that
the real part of χ̃ := χδ

−1/2
P is strictly P∅-dominant. Let P = MU be a

standard σ -parabolic subgroup of G. Let (an) be a sequence in AM such
that (an) →P ∞.
Let η be the linear form on C corresponding to 1. Let x ∈ XG

M . With the
notation as above, for v ∈ V := iGP∅Cχ , let Ev := E(P∅, χ, η, v). Then

the sequence (χ̃(a−1
n )Ev(xan)) has a limit. If x /∈ 1̇P this limit is equal

to zero. Moreover if x = 1̇, one has:

lim
n→∞(χ̃(a−1

n )Ev(1̇an)) = l(v), v ∈ V

where l is a non zero linear form on V .

(5.8)

Actually l is explicit but what is important for us here is that it is non zero.

5.3 Applications of the results of N. Lagier

Lemma 7 Let P = MU be a standard σ -parabolic subgroup of G. Let (an) be a
sequence in AM such that (an) →P ∞. If (gn) is a sequence in G converging to g ∈ G
and such that for all n ∈ N, 1̇angn = 1̇an, then g is an element of HP = U−(M ∩H).
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Proof One applies (5.7). We use the notation of this result. If J is a compact open
subgroup of G, for n large enough gn J = gJ . Hence, if v ∈ iGP Eχ ,

E(P, δχ , η, v)(1̇angn) = E(P, δχ , η, v)(1̇ang),

for n large enough.
First, let δ be the trivial representation of M . One applies (5.7) to v and (iGP χ(g))v

in order to deduce from the preceding equality

(A(P−, P, χ)v)(g) = (A(P−, P, χ)v)(1), v ∈ iGPCχ

for χ sufficiently P-dominant. If χ is such that A(P−, P, χ) is bijective, one deduces
the following equality:

v(g) = v(1), v ∈ iGP−Cχ . (5.9)

Let us show that this implies g ∈ U−M . Let us write g = p−k with k ∈ K0 and
p− ∈ P−. If k /∈ K0 ∩ P−, there exists v ∈ iGP−Cχ such that v(k) = 0 and v(1) = 1,

as the space of restrictions to K0 of the elements of iGP−Cχ is equal to i K0
K0∩P−C. This

is a contradiction to (5.9). Hence g = u−m with u− ∈ U− and m ∈ M .
Then applying (5.7) to any (δ, E, η), we get similarly the equality:

< δ′(m)η, e >=< η, e >, e ∈ E .

The abstract Plancherel formula (cf. [3], Sect. 0.2) for H ∩M\M impliesm ∈ M∩H .
��

Lemma 8 Let P = MU, P ′ = M ′U ′ be two standard σ -parabolic subgroups of G.
Let (an) (resp., (a′

n)) be a sequence in AM (resp. AM ′ ) such that (an) →P ∞ ( resp.
(a′

n) →P ′ ∞). Let J be a compact open subgroup of G. Let us assume that there
exists g, g′ ∈ G such that for all n ∈ N, 1̇angJ = 1̇a′

ng
′ J . Then, taking possibly

subsequences, one has:

(i) for all χ such that the real part of χ̃ := χδ
−1/2
P is strictly P∅-dominant χ̃(a−1

n a′
n)

has a non zero limit.
(ii) The sequence (a−1

n a′
n) is bounded.

(iii) One has P = P ′.
(iv) If Q is a σ -parabolic subgroup of G such that P ⊂ Q, one has 1̇QangJ =

1̇Qa′
ng

′ J for n large.

Proof (i) For all n ∈ N, there exists jn ∈ J such that

1̇ang = 1̇a′
ng

′ jn . (5.10)

As J is compact, one may take a subsequence and we may assume that ( jn) converges
to j ∈ J . Let g′′ = g′ jg−1. One will apply the result (5.8). With its notations,
let v ∈ iGP∅Cχ and let us denote by Ev the function E(P∅, χ, η, v). As Ev is right
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invariant by an open compact subgroup of G, one has Ev(1̇a′
ng

′ jng−1) = Ev(1̇a′
ng

′′)
for n large. From (5.8), one has:

limnχ̃ (a−1
n )Ev(1̇an) = l(v), limnχ̃(a′

n
−1

)Ev(1̇a
′
ng

′ jng−1) = l ′(v) (5.11)

where l, l ′ are non zero linear forms on iGP∅Eχ . Also from (5.10) one has:

1̇an = 1̇a′
ng

′ jng−1. (5.12)

Let us show that there exists v1 ∈ V = iGP∅Cχ such that l(v1) and l ′(v1) are non zero.
Let v ∈ V such that l(v) �= 0. Then l does not vanish on v + Ker(l). If l ′ vanished
identically on v + Ker(l) it would vanish on V , a contradiction which shows that l ′
does not vanish identically on v + Ker(l). This proves our claim.

For such a v1, one sees from (5.11) to (5.12) that:

The sequence (χ̃(ana′
n
−1

)) tends to a non zero limit. (5.13)

This proves (i).
(ii) By varying χ such that χ = Reχ and such that Reχ describes a basis of a∗

∅ one
gets (ii).
(iii) If P is different from P ′, by exchanging possibly the role of P and P ′, there
exists a simple root α of A∅ in the Lie algebra of U which is not a root in the Lie
algebra of U ′, hence which is a root in the Lie algebra of M ′. Then |α(a′

n)|F = 1
and |α(ana′

n
−1

)|F is unbounded. This would contradict (ii). Hence P = P ′ and (iii)
is proved.
(iv) From (ii), one writes a′

n = anbn where the sequence (bn) in AM is bounded.
Taking a subsequence we can assume that (bn) converges to b ∈ AM .

Taking into account (5.10), one has 1̇an = 1̇ancn where cn = bng′ jng−1. One deduces
from Lemma 7 that the limit c of (cn) is in HP . One has a′

ng
′ J = ancngJ . Hence for

n large one has:

1̇Pa
′
ng

′ J = 1̇PancngJ = 1̇PancgJ.

As c ∈ HP and as an ∈ AM normalize HP , one deduces that, for n large:

1̇Pa
′
ng

′ J = 1̇PangJ.

This proves (iv) for Q = P .
Let g, g′ ∈ G. In view of Theorem 1, applied to the right translates of f

by g, g′, there exists N ∈ N such that for all n ∈ N greater than N and for
all f ∈ C∞(HQ\G) which is J -invariant (cP,Q f )(1̇Pang) = f (1̇Qang) and
(cP,Q f )(1̇Pa′

ng
′) = f (1̇Qa′

ng
′). Let f be the characteristic function of 1̇QangJ ⊂

XQ . Let n be an integer greater than N and let x = ang, x ′ = a′
ng

′. From the above
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remark, one has:

(cP,Q f )(1̇P x) = f (1̇Qx) = 1,

(cP,Q f )(1̇P x
′) = f (1̇Qx

′).

From (iv) for Q = P , one has 1̇P x ′ J = 1̇P x J . By J -invariance, this implies:

(cP,Q f )(1̇P x
′) = (cP,Q f )(1̇P x).

Hence, one has

f (1̇Qx
′) = 1

and x ′ ∈ 1̇Qx J . This implies 1̇Qx J = 1̇Qx ′ J . ��

Lemma 9 Let P = MU, P ′ = M ′U ′ be two standard σ -parabolic subgroups of G.
Let (an) (resp., (a′

n)) be a sequence in AM (resp., AM ′ ) such that (an) →P ∞ (resp.,
(a′

n) →P ′ ∞). Let g, g′ ∈ G and x, y ∈ XG
M∅ . Let us assume that the sequences

(xangJ ) and (ya′
ng

′ J ) are equal. Then one has P = P ′, x P = yP and y = xm for
some m ∈ M.

Proof Letχ ∈ X (M∅)σ such thatχ = |χ | and such thatRe(χ̃) is strictly P∅-dominant.
By exchanging possibly the role of x and y, and by taking a subsequence, one may
assume that χ̃ (an) ≥ χ̃(a′

n). Changing H into x−1.H , one is reduced to the case
where x = 1̇. Using the notation and the result of (5.8), one sees that there exists a
non zero linear form l on Vχ := iGP∅Cχ such that for all v ∈ Vχ , one has:

limnχ̃ (an)
−1Ev(1̇ang) = l(v). (5.14)

Let v ∈ Vχ such that l(v) �= 0. One chooses jn ∈ J such that 1̇ang = ya′
ng

′ jn . By
extracting a subsequence, one may assume that ( jn) converges to j ∈ J . One has:

Ev(1̇ang) = Ev(ya′
ng

′ j) for n large (5.15)

and χ̃ (an) ≥ χ̃(a′
n). Let us assume y /∈ 1̇P ′. Then from (5.8)

limnχ̃ (a′
n)

−1Ev(ya
′
ng

′ j) = 0.

Together with (5.15) this contradicts (5.14). Hence y ∈ 1̇P ′ which implies (cf. (3.3))
y = 1̇m′ for some m′ ∈ M ′. This implies the equality ya′

ng
′ = 1̇a′

nm
′g′ as a′

n ∈ AM ′ .
Hence one has 1̇angJ = 1̇a′

nm
′g′ J . Using Lemma 8, one sees that P = P ′. Hence

M = M ′ and the lemma follows. ��
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6 End of Proof of Theorem 2

6.1 Definition of expXP ,X,J

We have to deal only with the case Q = G i.e. XQ = X . If it does not exist a constant
C > 0 satisfying (i) of Theorem 2 for Q = G, there would exist x, y ∈ XG

M∅ , and

sequences (an), (a′
n) ∈ A+

∅ , (ωn), (ω
′
n) ∈ � such that x P �= yP, (|α(an)|F) tends to

infinity for all roots α of A∅ in the Lie algebra of U and such that:

xanωn J = ya′
nω

′
n J, n ∈ N.

By extracting subsequences, one may assume that ωn (resp., ω′
n) converges to ω (resp.

ω′). Let Q = LV be the standard σ -parabolic subgroup ofG such that for α ∈ �(P∅),
the sequence (|α(an)|F) is unbounded if and only if α ∈ �(Q, A∅). Clearly one has
Q ⊂ P .

By extracting subsequences, one will show that one can write an = bncn where the
sequence (bn) in AL satisfies (bn) →Q ∞ and where the sequence (cn) converges in
G. Let (δ1, . . . , δp) be the union of �(Q, A∅) viewed as subset of a′

∅ and of a basis
of a′

G viewed as a subset of a′
∅ (cf. (2.9)). Let us look to the map φ : A∅ → R

p

given by a 	→ (δ1(H∅(a)), . . . , δp(H∅(a)). Its image is a lattice of dimension p as
the image a∅,F of A∅ by H∅ is a lattice of dimension equal to the dimension of a∅. Its
restriction to AL has the same property as it factors through HL and (δ1, . . . , δp)might
be viewed as a basis of a′

L . Henceφ(AL) is of finite index inφ(A∅). Hence one can find
x1, . . . , xq ∈ A∅ such that for all a ∈ A∅ there exists b ∈ AL and i ∈ {1, . . . , q} such
that φ(a) = φ(bxi ). This allows to define bn and cn = an(bn)−1. One has cn = xin
for some in ∈ {1, . . . , q}. Then extracting a subsequence one may even assume that
(cn) is constant hence it converges. Moreover as φ(bn) = φ(an) − φ(xin ) one has
(bn) →Q ∞.

Hence, for n large, xanωn J = xbncωJ where c is the limit of (cn). We introduce
similarly Q′, b′

n and c′
n . From Lemma 9 applied to G one deduces Q′ = Q and

xQ = yQ. Hence, as Q ⊂ P , one has x P = yP . A contradiction which shows that
there exists C > 0 which satisfies (i). It is clear that any constant greater than such a
constant enjoys the same property.

Let us assume that there is no constant satisfying (i)which satisfies also (ii). Proceed-
ing as above, there would exist two standard σ -parabolic subgroups Q = LV, Q′ =
L ′V ′ ⊂ P of G , two sequences (bn) in AL , (b′

n) in AL ′ , c, c′ ∈ G and x, y ∈ XG
M∅

such that, (bn) →Q ∞, (b′
n) →Q′ ∞, and

xbncJ = yb′
ncJ.

xPbncJ �= yPb
′
ncJ.

(6.1)

From Lemma 9, one sees that Q = Q′ and x ≈L y. In particular y = xl for some
l ∈ L and, as l commutes to the elements (b′

n) of AL ′ , one has:
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1206 P. Delorme

xbncJ = xb′
nlc

′ J.

Conjugating by x−1, one gets an equality of left x−1.H cosets. From Lemma 8(i), (ii)
and (iii), applied to x−1.H instead of H , one deduces that (b′

nbn
−1) is bounded. Hence,

by taking a subsequence one can assume that it has a limit. Then from Lemma 8(iv)
one gets for n large:

(x−1.H)PbncJ = (x−1.H)Pb
′
nlc

′ J.

Hence there exists a sequence in J, ( jn) such that

(x−1.H)Pbncjn = (x−1.H)Pb
′
nlc

′.

Hence bncjnc′−1l−1b′−1
n ∈ (x−1.H)P . As the stabilizer of xP is equal to (x−1.H)P ,

one deduces from this the equality:

xPbncjn = xPb
′
nlc

′.

As y = xl and l ∈ L ⊂ M , one has yP = xPl. As l ∈ L commutes to b′
n ∈ AL , one

deduces from this the equality

xPbncJ = yPb
′
nc

′ J,

for n large. This contradicts our hypothesis (6.1). Hence there exists C > 0 which
satisfies (i) and (ii).

6.2 Injectivity of expXP ,X,J

Let us prove that one can chooseC > 0 such that expXP ,X is injective on NX,J (P,C).
Let us assume that every constant C > 0 satisfying conditions (i), (ii) of Theorem 2
does not satisfy condition (iii). From the finiteness of XG

M∅ and proceeding as in

Sect. 6.1, one sees that there would exist x, x ′ ∈ XG
M∅ , two σ -parabolic subgroups

Q = LV, Q′ = L ′V ′ ⊂ P of G, a sequence (an) in AL , a sequence (a′
n) in AL ′ such

that (an) →Q ∞, (a′
n) →Q′ ∞ and two elements d and d ′ of A∅� such that:

xand J �= x ′a′
nd

′ J

and

xPand J = x ′
Pa

′
nd

′ J.

Let fn be the characteristic function of xand J . For n0 large enough one can use
Theorem 1(i) for the right translates of fn0 by d and d ′ and one has, by setting a =
an0 , f = fn0 , etc.:

f (xad) = (cP,G f )(xPad), f (x ′a′d ′) = (cP,G f )(x ′
Pa

′d ′).
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But, by our assumptions f (xad) = 1 and xPad J = x ′
Pa

′d ′ J . Hence, by J invariance,
one has:

f (x ′a′d ′) = 1,

which implies

xad J = x ′a′d ′ J.

This is a contradiction to our hypothesis. This achieves to prove that there exists a
constant C > 0 such that the properties (i), (ii) and (iii) of Theorem 2 are satisfied.

6.3 Volumes

The following lemma will allow to finish the proof of Theorem 2.

Lemma 10 Let K be a compact open subgroup of G with a strong σ -factorization for
standard σ -parabolic subgroups (cf. (4.8)). Let P = MU be a standard σ -parabolic
subgroup of G. Let a ∈ A∅ which is P∅-dominant. Then

(i)

HaK = HaKMKU .

where KM = K ∩ M, KU = K ∩U.
(ii)

volX 1̇aK = volXP 1̇PaK .

Proof (i) As KM∅KU∅ = K ∩ P∅ and KMKU = K ∩ P , it is enough to prove (i) when
P = P∅. Let us assume this in the sequel. If u− ∈ KU− , as a is P∅-dominant, one has
a.u− = au−a−1 ∈ KU− ⊂ K = KH KMKU (cf. (4.8)(ii) and (iii)). Hence one has:

Hau− = H(a.u−)a ∈ HKMKUa.

But KMKUa = a(a−1.KM )(a−1.KU ). As M = M∅ and a ∈ A∅, a−1.KM = KM .
As a is P∅-dominant a−1.KU ⊂ KU (cf. (4.8)(ii)). Altogether, this shows:

HaKU− ⊂ HaKMKU .

One deduces (i) from the equality K = KU−KMKU .
Let us prove (ii). Let P be a standard σ -parabolic subgroup of G. As U− ⊂ HP

and K = KU−KMKU , and a.KU− ⊂ U−, (cf. (4.8)(ii) ) one has:

1̇PaK = 1̇PaKMKU .
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Then (ii) follows from (i), from the fact that aKMKU ⊂ P and from our choice of
measure on XP (cf. Sect. 4.1). ��
End of proof of Theorem 2 Let K and J be as in the theorem. Using (4.9) and Propo-
sition 2, the proof of (iv) reduces to prove the statement for subsets of NX (x, P,C)/J
for x ∈ XG

M . Using our choices of volumes and translating sets on the left by x−1

and changing H in x−1.H , one is reduced to the case x = 1. For K and J as in the
theorem, we have:

ω.J ⊂ K , ω ∈ �.

Letω ∈ � and one sets J ′ := ω.J ⊂ K . As� is compact and is left K -invariant,�/J
is finite and J ′ varies in a finite set. Let us assume that C > 0 satisfies Theorem 2(i),
(ii) and (iii) for all groups J ′ . One has to prove that for a ∈ A+

∅ (P,C):

volX (1̇aωJ ) = volXP (1̇PaωJ ).

As the measures on X and XP are right invariant by G, in order to prove this equality,
it is enough to prove the equality:

volX (1̇aJ ′) = volXP (1̇Pa J
′).

Let Ka (resp., K ′
a) be the stabilizer in K of 1̇a (resp., 1̇Pa). We need the following

fact. Let K1 be a closed subgroup of K . Let us assume that a Haar measure is given
on K and let K1\K be endowed with the image of this measure. Let X ⊂ K and Y
its image in K1\K . Then volK1\K (Y ) = volK (K1X). From this applied to K1 = Ka

and K1 = K ′
a and from Lemma 10(ii), it is enough to prove the equality:

Ka J
′ = K ′

a J
′.

The image of the set 1̇aK ′
a J

′ by the map expXP ,X,J ′ is equal to 1̇Pa J ′, as it follows
from the definition in Theorem 2 and the equality 1̇PaK ′

a J
′ = 1̇Pa J ′. From the

definition of expXP ,X,J ′ , this image is also equal to the image of 1̇aJ ′. Hence from
the part (iii) of Theorem 2, one deduces the equality:

1̇aJ ′ = 1̇aK ′
a J

′.

Looking to the orbit of 1̇a under K one deduces from this the inclusion:

K ′
a J

′ ⊂ Ka J
′.

We recall that K ⊂ �. To prove the reverse inclusion let us remark that 1̇aKa J ′ is
equal to 1̇aJ ′. From the definition of expXP ,X,J ′ one deduces the equality:

1̇PaKa J
′ = 1̇Pa J

′
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which implies as above:

Ka J
′ ⊂ K ′

a J
′.

This implies the required equality. This finishes the proof of the theorem. ��

6.4 Eventual equivariance

It is good in Theorem 2 to emphasize on the dependence of NXQ ,J (P,C)) ⊂ XQ

on � by denoting it NXQ ,J (P,C,�). If it satisfies the properties (ii), (iii), (iv) of
Theorem 2 and Proposition 3 it will be said J -good. We want to prove the analogue
of the eventual equivariance of Proposition 4.3.3.

Lemma 11 Let h be an element of C∞
c (G) biinvariant by J and let S be its support.

Let N = NXQ ,J (P,C,�) be good and let�′ be a compact subset of G which contains
�SS−1 ∪�S∪�S−1 ∪� and satisfies the properties of � in Theorem 2.. Let C ′ ≤ C
such that N ′ = NXQ ,J (P,C ′,�′) is good and let N ′′ = NXQ ,J (P,C ′,�) ⊂ N.

Let φ be the map expXP ,XQ ,J from N ′to XP/J .The image of N ′ (resp. N ′′) is denoted
N ′
P (resp.N ′′

P). If f is in C
∞
c (N ′

P ) let φ∗ f = f ◦φ ∈ C∞
c (N ′). We view f (resp. φ∗ f )

as an element of C∞
c (XP )J (resp. C∞

c (XQ)J ).

(i) Let f ∈ C∞
c (N ′′

P ) ⊂ C∞
c (N ′

P ). Then f � h has compact support in N ′
P and hence

is an element C∞
c (N ′

P ). Moreover one has:

φ∗( f � h) = (φ∗ f ) � h.

(ii) Let f ∈ C∞
c (N ′

P ). Then

( f � h) ◦ φ|N ′′ = [( f ◦ φ) � h]|N ′′

Proof (i) One has�S ⊂ �′ and the definition of φ implies N ′′
P S ⊂ N ′

P . The assertion
on the support in (i) follows. Also one has for z ∈ N ′′

P S and x ∈ S , φ(zx−1) =
φ(z)x−1. Then a direct computation leads to the equality in (i).

(ii) is proved in a similar way. ��

7 Bernstein maps and scattering theorem

7.1 Constant term and exp-mappings

The following proposition is an immediate corollary of Theorems 1 and 2.

Proposition 3 Let P ⊂ Q be two standard σ -parabolic subgroups of G. Let J be
a compact open subgroup of G small enough to satisfy the conditions of Theorem 2.
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1210 P. Delorme

There exists C > 0 such that expXP ,XQ ,J is well defined on NXQ ,J (P,C) and satisfies
for all J -invariant function f on XQ:

(cP,Q f )(expP,Q,J (x J )) = f (x J ), x J ∈ NXQ ,J (P,C).

Remark 2 In [14], for G split and X spherical, the exp-mappings are introduced
before the maps cP,Q , by means of wonderful compactifications, and the maps cP,Q

are defined by the relation above.

7.2 Bernstein maps eQ,P

We thank Joseph Bernstein for having suggested to us the proof of the following
Theorem.

Theorem 3 Let P = MU ⊂ Q = LV two standard σ -parabolic subgroups of G.
The right G-invariant measure on XP allows to identify C∞

c (XP ) to a subspace of the
dual of C∞(XP ). Let eQ,P be the restriction of the transpose map of cP,Q to C∞

c (XP ).
Let J and let C > 0 be as in Theorem 2.

(i) Let x J ∈ NXQ ,J (P,C) and y = expXP ,XQ ,J (x J ). Then the image by eQ,P of the
characteristic function of y J ⊂ XP is the characteristic function of x J ⊂ XQ.

(ii) For f ∈ C∞
c (XP ) supported in expXP ,XQ ,J (NXQ ,J (P,C)), eQ,P f has its sup-

port in NXQ ,J (P,C) and

(eQ,P f )(x J ) = f (expXP ,XQ (x J )), x J ∈ NXQ ,J (P,C).

(iii) The map eQ,P has its image in C∞
c (XQ).

Proof (i) We fix a compact open subgroup J and C as in the preceding proposition
from which we use the notations. Let x J ∈ NXQ ,J (P,C) ⊂ XQ/J . Let f be the
characteristic function of expXP ,XQ ,J (x J )which is a J -invariant function on XP .
Let g ∈ C∞(XQ)J . One has

〈eQ,P f, g〉 = 〈 f, cP,Qg〉

and by the preceding proposition one sees:

〈eQ,P f, g〉 = g(x J ).

This implies that eQ,P f is the characteristic function of x J . This proves (i).
(ii) follows by linear combinations.
(iii) Let a ∈ AM be strictly P-dominant. Let y ∈ XP . From theCartan decomposition

for XP one sees that for n large, an y is of the form an y = expXP ,XQ ,J (xn J ) ∈
XP/J for some xn J ∈ NXQ ,J (P,C) ⊂ XQ/J .

For n ∈ Z, let fn be the characteristic function of an y J ⊂ XP . One has just seen
that for n large in N, eQ,P ( fn) is in C∞

c (XQ)J . Let us assume that it is not true for all
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n ∈ N. Then there would exist N ∈ N such that eQ,P ( fn) ∈ C∞
c (XQ)J for n > N

and such that eQ,P ( fN ) /∈ C∞
c (XQ)J .

We want to apply Theorem A of [1] in order to prove that the C∞
c (G)J -module

C∞
c (XP )J is finitely generated. For this it is necessary to see that one may apply

it to each homogeneous space xPG which is isomorphic to U−(M ∩ x−1.H)\G.
The first thing to prove is that for each parabolic subgroup R of G, the number of
(U−(M ∩ x−1.H), R)-double cosets is finite. By using conjugacy, one can assume
that R contains A0. By the Bruhat decomposition, one has G = ∪i Pxi R, where (xi )
is a finite family of elements of G normalizing A0. It is enough, to prove our claim, to
show that for each i, Ri := (xi .R) ∩ M has a finite number of orbits in the symmetric
space (M ∩ x−1.H)\M . But Ri is a parabolic subgroup of L and our claim follows
from [8], Corollary 6.16.

The second thing to prove, in order to apply Theorem A of [1] is that :

For each finite length smooth G-module V , the dimension of the space
V ′U−(M∩x−1.H) is finite.

(7.1)

But this dimension is precisely the dimension of j (V )′M∩x−1.H where j (V ) is the
Jacquet module of V with respect to P−. This space is finite dimensional (cf. [6],
Theorem 4.4.)

Now, one can apply Theorem A of [1] to conclude that the C∞
c (G)J -module

C∞
c (XP )J is finitely generated. Moreover the algebra C∞

c (G)J is Noetherian (cf.
[13] Corollary of Theorem VI.10.4).

Hence, it follows that an ascending chain of C∞
c (G)J -submodules of C∞

c (XP )J is
stationnary.

We apply this to the C∞
c (G)J -submodules of C∞

c (XP )J , Mn , generated by
f0, . . . f−n . Hence there exists n ∈ N and φ0, . . . φn ∈ C∞

c (G)J such that:

f−n−1 = f0 ∗ φ0 + · · · + f−n ∗ φn .

Using that the right G-action and the left AM -action commute (cf. Definition 2)
and applying the left action of an+1+N to the above identity, one gets:

fN = fn+1+N ∗ φ0 + · · · + f1+N ∗ φn .

FromTheorem 1, cP,Q is a morphism ofG-modules. Hence it is also the case for eQ,P .
Hence eQ,P ( fN ) is in C∞

c (XQ)J . From the definition of N , we get a contradiction.
Hence in particular, eQ,P f is in C∞

c (XQ)J . The theorem follows by linearity.

Let (π, V ) be a smooth representation of a parabolic subgroup P = MU of G.
One denotes by (πP , VP ) the tensor product of the quotient of V by the M-submodule
generated by the π(u)v−v, u ∈ U, v ∈ V , with the representation ofM onC given by
δ
−1/2
P . We call it the normalized Jacquet module of V along P . We denote the natural
projection map from V to VP by jP and sometimes πP will be denoted jP (π).
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Lemma 12 Let P be a semistandard σ -parabolic subgroup of G.

(i) If f ∈ C∞
c (X) has its support in XM P we define, using (4.5), f P ∈ C∞(XM )

by

f P (xm) = δ
1/2
P (m)

∫

U
f (ẋmu)du, x ∈ XG

M ,m ∈ M.

Then f P ∈ C∞
c (XM ).

(ii) The map f 	→ f P goes through the quotient to an intertwining map between
the normalized Jacquet module C∞

c (XM P)P of the P-module C∞
c (XM P) and

C∞
c (XM ).

(iii) This intertwining map is bijective and its inverse defines an intertwining injective
map mX

P : C∞
c (XM ) → C∞

c (X)P .
(iv) One can replace X by XP in (i), (ii) and (iii) and one gets an injective intertwining

map mP : C∞
c (XM ) → C∞

c (XP )P .

Proof (i) follows easily from the definition.
(ii) It is clear that ourmap goes through the quotient to amap between the normalized

Jacquet module C∞
c (XM P)P of the P-module C∞

c (XM P). On the other hand,
for f ∈ C∞

c (XM P) one has:

(ρ(m0) f )
P (xm) = δ

1/2
P (m)

∫

U
f (xmm0m

−1
0 um0)du.

One makes the change of variable u′ = m−1
0 um0 to achieve to prove the inter-

twining property of (ii).
As an U -space, XM P is isomorphic to XM ×U where U acts trivially on the first

factor. This implies easily (iii).
(iv) is proved similarly. ��

Proposition 4 Wedenote by jP (eP ) themap between the normalized Jacquetmodules
C∞
c (XP )P and C∞

c (X)P determined by eP := eG,P . Then

jP (eP ) ◦ mP = mX
P .

Proof One has to prove;
jP (eP )(mP ( f )) = mX

P ( f ) (7.2)

for all f ∈ C∞
c (xM) and x ∈ XG

M . Changing H to x−1.H , one is reduced to prove
(7.2) for x = 1. One writes the Cartan decomposition for M ∩ H\M :

M ∩ H\M = ∪x∈X M
M∅

x A+
∅ (P∅, P, 0)�M ,

where �M is a compact set of M and X M
M∅ is the analog of XG

M∅ . The M-module of

compactly supported smooth functions on 1̇M is the linear span of the characteristic
functions of 1̇xaωJ where J describes a basis of neighborhoods of 1 in M made of
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compact open subgroup ofM, x ∈ X M
M∅ , ω ∈ �M , a ∈ A+

∅ (P∅, P, 0). AsmP ,mX
P , eP

are M-equivariant, one has to prove (7.2) for every f among a set of generators of
this M-module. Again we reduce to x = 1. Taking into account (3.8), one can write
a = a′b with a′ ∈ A+

∅ and b ∈ AM . As b commutes to J , one is reduced to prove
(7.2) for the characteristic functions of 1̇aωJ , with a ∈ A+

∅ and ω ∈ �M .
As ωJ = ωJω−1ω, the characteristic functions of 1̇aJ ′ where J ′ describes the set

of ω.J for J as above, a ∈ A+
∅ , ω ∈ �M is a set of generators of C∞

c (1̇M).
Let (J ′

n)be as inLemma6.By continuity and compacity, there exists a neighborhood
V of 1 in M such that:

ω.V ⊂ (J ′
0)M , ω ∈ �M .

One can assume that all the groups J above are contained in V . Hence all the groups
J ′ are contained in (J ′

0)M . For such a group, let n ∈ N such that (J ′
n)M ⊂ J ′. Then as

J ′ is the disjoint union of the left (J ′
n)M -cosets, the characteristic function of 1̇aJ ′ is

a linear combination of the characteristic functions of 1̇aj ′(J ′
n)M where j ′ describes

J ′. But as J ′
n is normal in J ′

0 (cf. Lemma 6) and J ′ ⊂ (J ′
0)M , (J ′

n)M is normal in J ′.
Hence 1̇aj ′ J ′

n = 1̇aJ ′
n j

′. Hence, again by M-equivariance, one has to prove (7.2) for
f equal to the characteristic function of 1̇a(J ′

n)M , n ∈ N, a ∈ A+
∅ .

For simplicity we write J instead of J ′
n and let g = vol(JU )δP (a)1/211̇a JM and let

f = 11̇Pa JM JU ∈ C∞
c (XP ). Then f P = g. Then, by definition of mP , one has:

mP(g) = jP ( f )

where jP ( f ) is the imageof f in the normalized Jacquetmodule ofC∞
c (XP ). Similarly

the characteristic function h of 1̇aJM JU satisfies hP = g. Hence one has:

mX
P (g) = jP (h)

and

( jP (eP ))(mP(g)) = jP (eP ( f )).

It remains to prove:

( jP (eP ))(mP(g)) = mX
P (g)

i.e.

( jP (eP ))( jP ( f )) = jP (h).

For this, it is enough to prove:

eP ( f ) = h.
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One has

1̇aJM JU = 1̇aJ

from Lemma 10. As JU− is normalized by a ∈ A+
∅ (cf. Lemma 6), one has

1̇Pa JM JU = 1̇Pa J.

Then the required equality follows from Theorem 3(i). ��

7.3 Discrete spectrum

An irreducible subrepresentation of C∞(X), (π, V ), is said discrete if the action of
AG is unitary and the elements of V are square integrable mod AG . Obviously if ψ

is an element of the group X (G)σ,u of unitary elements of X (G)σ , the representation
πψ of G in the space Vψ := {ψv|v ∈ V } is also a discrete series. Moreover πψ is
isomorphic to π ⊗ ψ . Let χ be a unitary character of AG and let L2(X, χ)disc be the
sum of all X -discrete series on which AG acts by χ .

Theorem 4 Let J be a compact open subgroup of G and χ a unitary character of AG.
Then the space L2(X, χ)Jdisc of J -invariants of L

2(X, χ)disc is finite dimensional.

Proof One will see that the proof of Theorem 9.2.1 of [14] adapts by changing Z(G)0

to AG , and, for a standard σ -parabolic subgroup P = MU ofG by changing Z(XP ) to
AM acting on the left. As in [14], the proof is essentially reduced to the case AG = {1}.

Let A+
P be the set of P-dominant elements of AM . Let N ′

P be equal to NX,J (P,C)

for C > 0 large enough in such a way that the exp-maps are defined and such that
the identity of Proposition 3 holds. Let NP = N ′

P \Q⊂P,Q∈P,Q �=P N ′
Q . Then the NP

covers X . We remark that expXP ,X,J (N ′
P ) is stable by the left action of A+

P as well as
N ′′
P := expXP ,X,J (NP ). One sees from the definitions that there is a finite subset �P

of XP/J , such that N ′′
P = A+

P�P . Let ( Â)
JM
C

be the set of complex characters of AM

which are trivial on AM ∩ J . Let P be the set of standard σ -parabolic subgroups of
G. We choose a map R : P → N, P 	→ rP and we define SR := ∏

P∈P (( Â)
JM
C

)rP .
An element of x ∈ SR is denoted [(χi )i=1,...,rP ]P∈P . We consider for a ∈ AM

∏

i=1,...,rP

(La − χi (a)), (7.3)

whereL has be defined in (4.7). Let x ∈ SR .We consider the subspace Vx ⊂ C∞(X)J

of J -invariant functions on X, f , such that for all standard σ -parabolic subgroup P
of G and a ∈ AM , cP,G f is annihilated by (7.3). Then Vx is invariant by the Hecke
algebra of C∞

c functions on G which are right and left invariant by J : this is due to the
fact that cP,G is a G-morphism and that the right action of G on C∞(XP ) commutes
with the left action of AM .
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Recall that from our hypothesis on C that:

(cP,G f )(expXP ,X,J (x)) = f (x), x ∈ NP .

Then Vx is finite dimensional, as it is shown in the proof of Theorem 9.2.1 of [14].
The rest of the proof is entirely analogous to the proof of this Theorem. ��
Corollary 1 Let J be a compact open subgroup of G. There exists finitely many
discrete series for X, (πi , Vi ), i = 1, . . . , n such that any discrete series, (π, V ) for
X which has a non zero vector fixed by J is of the form (πi )χ where χ is element of
the group X (G)σ,u of unitary elements of X (G)σ and i ∈ {1, . . . , n}.
Proof Looking to Lie algebras one sees that the restriction map from the group
X (G)σ,u of unitary elements of X (G)σ to the group X (AG)u of unitary elements
of X (AG) is surjective. On the other hand the action by multiplication of X (AG)u on
( ÂG)Ju has finitely many orbits (cf. 2.6). Hence one is reduced to the case where the
restriction of the central character of π is one of the representatives of these orbits.
Then the corollary follows immediately from the Theorem. ��

The proof of the following Lemma is immediate.

Lemma 13 Let δP,XG
M
be the function on XM such that, for all x ∈ XG

M, its restriction
to xM is equal to the function δP,x occuring in (4.6). For a function f on XP we
associate the map T ( f ) on G with values in the space of functions on XM defined by:

(T ( f )(g))(x) = δ
−1/2
P,XG

M
(x) f (xg), x ∈ XM , g ∈ G.

(i) One has

T ( f )(mg) = (ρ ⊗ δ
1/2
P )(m)T ( f )(g),m ∈ M, g ∈ G.

(ii) The map T induces a bijective G-intertwining map between C∞
c (XP ) and

iGP−C∞
c (XM ) (resp., C∞(XP ) and iGP−C∞(XM )).

(iii) Let χ be a unitary character of AM. The map T induces a bijective isometric
G-intertwining map between L2(XP ) and the unitarily induced representation from
P− to G of L2(XM ) ( resp., L2(XP , χ)disc and the unitarily induced representation
from P− to G of L2(XM , χ)disc).

Proof (i) is immediate.
(ii) From (i), it remains only to prove the bijectivity. The inverse map to T is easily

described using the fact that XP = XM ×P− G.
(iii) follows easily from the definition of the scalar product on unitary induced rep-

resentations from P to G (cf. (5.1)) and from the definition of the M-invariant
measure on XM (cf. (4.6) and (4.3)). ��

We define L2(XM )disc etc as in [14] section 9.
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Lemma 14 L2(XP )disc is unitarily equivalent to the unitary induced representation
from P− to G of (L2(XM )disc)

Proof The Lemma follows from the analog of Corollary 9.3.4 in [14] and of
Lemma 13(iii). Notice that this Corollary follows from l.c. Equation (9.1). To establish
its analog, one remarks that AM acts freely on the left on XP . ��
Lemma 15 The G-space XP satisfies the discrete series conjecture 9.4.6 of [14]
for the parabolic subgroup P− and the torus of unitary unramified characters of
P−, D∗ := X (M)σ,u.

Proof From Corollary 1 of Theorem 4, there is a denumerable family of X (M)σ,u-
orbits of discrete series. Then the Lemma follows from Lemma 14. ��

7.4 Bernstein maps

The proof of the following theorem is entirely analogous to the proof of Theorem
11.1.2 in [14].

Theorem 5 For every pair of standard σ -parabolic subgroups of G, P ⊂ Q, there
exists a canonical G-equivariant map iQ,P : L2(XP ) → L2(XQ) characterized by
the property that for any � ∈ C∞

c (XP ) and any element a of the set A++
P of strictly

P-dominant elements of AM, we have:

limn→∞(iQ,PLan� − eQ,PLan�) = 0

where the limit is in L2(XQ).

Then as a corollary of Theorem 5 and of the analog of Proposition 11.6.1 of [14],
one has the following analog of l.c Corollary 11.6.2. The proof requires the criteria
for discrete series of symmetric spaces due to Kato and Takano [11]:

Proposition 5 Let L2(X)P be the image of L2(XP )disc under iP := iG,P . Then one
has:

L2(X) =
∑

P∈Pst

L2(X)P

where Pst is the set of standard σ -parabolic subgroups of G.

7.5 Scattering theory

From Lemma 15, one proves the analog of Proposition 13.2.1 in [14] in which we use
AM and AL instead of AX, and AX,� and where P = MU, Q = LV are σ -parabolic
subgroups of G. This is a step for the analog of Proposition 13.3.1 in l.c.. We will only
recall part (2) of it.
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Proposition 6 Let P = MU, Q = LV be two standard σ -parabolic subgroups of G.
If the dimensions of AM and AL are distinct, L2(X)P is orthogonal to L2(X)Q.

Let P (resp., Q) be the set of elements of �(P∅) which are trivial on AM (resp.
AL ). We define W (P, Q) as the set of elements of w ∈ W (A∅) such that w(P) =
Q . In particular if w ∈ W (P, Q), it induces an isomorphism between AM and
AL . If W (P, Q) is non trivial we say that P and Q are σ -associated. Let c(P) =∑

Q∈Pst
Card W (P, Q).

The proof of the analog of l.c. Theorem 14.3.1 (Tiling property of scattering mor-
phisms) is entirely similar. Then one proves the following theorem like Theorem 7.3.1
of l.c. is proved in Section 14 of l.c.. Notice that one needs for this proof to establish
part of this Theorem for spaces XP , but this works like for X . We recall that iP is the
map iG,P .

Theorem 6 (Scattering Theorem) Let P = MU, Q = LV, R be three standard σ -
parabolic subgroups of G.

(i) If P and Q are not σ -associated, (iQ)t ◦ iP = 0.
(ii) If P and Q are σ -associated, there exist AM × G-equivariant isometries

Sw : L2(XP ) → L2(XQ), w ∈ W (P, Q)

where AM acts on L2(XQ) via the isomorphism AM → AL induced by w, with
the following properties:

iQ ◦ Sw = iP ,

Sw′ ◦ Sw = Sw′w,w ∈ W (P, Q), w′ ∈ W (Q, R),

(iQ)t ◦ iP =
∑

w∈W (P,Q)

Sw.

Let us denote by (iP )tdisc the composition of (iP )t with the orthogonal projection
to the discrete spectrum. Finally the map

∑

P∈P

(iP )tdisc

c(P)1/2
: L2(X) → ⊕P∈Pst L

2(XP )disc

is an isometric isomorphism onto the subspaces of vectors ( fP )P∈Pst ∈
⊕P∈Pst L

2(XP )disc satisfying:

Sw fP = fQ, w ∈ W (P, Q).

In the next section we will explicate the maps iP .
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8 Explicit Plancherel formula

8.1 Injectivity of the map a′/W(A) → ã′/W( Ã)

Lemma 16 (i) Let A be a maximal σ -split torus and let Ã be a maximal split torus
containing A. It is σ -stable (cf. [7], Lemma 1.9).

(ii) The set of non zero weights of A (resp., Ã) in the Lie algebra of G is a root system
�(A) ( resp., �( Ã)) which appears as a subset of a′(resp., ã′).
The set �(A) is equal to the set of non zero restrictions of elements of �( Ã).

(iii) Let W (A) (resp. W ( Ã)) be the quotient of the normalizer of A (resp., Ã), NG(A)

(resp. NG( Ã)), by its centralizer, CG(A) (resp., CG( Ã)).
Then W (A) (resp., W ( Ã)) identifies with the Weyl group of �(A) (resp., �( Ã))

and is the set of restrictions to a of the elements of W ( Ã) which normalize a.
(iv) Letμ, ν ∈ a′ which are conjugate by an element of W ( Ã), then they are conjugate

by an element of W (A).

Proof (i) follows from [7], Lemma 2.4.
(ii) and (iii) follows from [8], Propositions 5.3 and 5.9.
(iv) It is clear that one may replace μ and ν by a conjugate element by W (A).

Hence one may assume that μ and ν are dominant for some choice of a set positive
roots of �(A),�+(A). Then we choose a set of positive roots for �+( Ã) whose non
zero restrictions are precisely the elements of �+(A). Hence μ and ν are dominant
for�+( Ã) and conjugate by an element ofW ( Ã). Hence they are equal, which proves
(iv). ��

Remark 3 It follows from (iv) of the previous lemma that the map a′/W (A) →
ã′/W ( Ã) is injective. This allows to apply the analog of Lemma 14.2.3 of [14].

8.2 Coinvariants

Let P = MU be a semistandard σ -parabolic subgroup of G. Let us prove:

Using our G-invariant measure on XP , the smooth dual of C∞
c (XP ) is

isomorphic to C∞(XP ).
(8.1)

An element of the smooth dual of C∞
c (XP ) is fixed by some compact open subgroup

J of G and is the composition of the J -average with a linear form on the space of
J -fixed elements of C∞

c (XP ). A basis of this later space is given by the characteristic
functions of J -cosets. Hence a linear form on this space is given by integration against
a J -fixed element of C∞(XP ). This proves (8.1).

Similarly one has:

Using our choice of an M-invariant measure on XM (cf. (4.6)), we will
identify the smooth dual of C∞

c (XM ) with C∞(XM ). This identification
depends on our choice of XG

M .
(8.2)
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Let (π, V ) be a smooth representation of G of finite length. Let us define the space
of coinvariants as in [14](6.1) :

C∞
c (XP )π := HomC(HomG(C∞

c (XP ), π), π). (8.3)

As HomG(C∞
c (XP ), π) is finite dimensional (cf. (7.1)), one has:

HomG(C∞
c (XP )π , π) = HomG(C∞

c (XP ), π).

Definition 3 If π is a smooth admissible representation of G, there is a canonical
projection

C∞
c (XP ) → C∞

c (XP )π → 0.

If π = iGP−δ, we denote this map i tP,δ

The canonicalmap fromC∞
c (XP ) toC∞

c (XP )π is defined as follows. If f ∈ C∞
c (XP ),

one defines φ ∈ C∞
c (XP )π by associating to each T ∈ Hom(C∞

c (XP ), π), the
element φ(T ) := T ( f ) of the space of π . It is easy to see that this map is surjective.

Let (δ, E) be a unitary irreducible smooth representation of M . Let T ∈
HomM (C∞

c (XM ), δ). Due to (8.2), the transpose map T t might be viewed as an
element T̃ t of Hom(δ̌,C∞(XM )). Let us define ηT = (ηT,x )x∈XG

M
∈ V(δ̌, H) [cf.

(5.2) for the notation] by:

ηT,x (ě) := T̃ t (ě)(x), ě ∈ Ě . (8.4)

One defines HomM (C∞
c (XM ), δ)disc as the space of T ∈ HomM (C∞

c (XM ), δ) such
that the image of T̃ t is a discrete series for XM . Let us define:

C∞
c (XP )δ := (HomM (C∞

c (XM ), δ)disc)′ ⊗ iGP−δ. (8.5)

C∞
c (XP )δ[δ] = (HomM (C∞

c (XM ), δ)disc)′ ⊗ δ. (8.6)

Hence we have:
C∞
c (XP )δ = iGP−C∞

c (XP )δ[δ]. (8.7)

It can be viewed as a quotient ofC∞
c (XP ) as follows (cf. [14] before Equation (15.12)).

From the Lemma 13, one has an injective map defined by induction:

0 → HomM (C∞
c (XM ), δ)disc → HomG(C∞

c (XP ), iGP−δ).

Hence, using the transpose map and taking into account the notation (8.3) one has a
surjective map:

C∞
c (XP )iG

P− δ = HomG(C∞
c (XP ), iGP−δ)′ ⊗ iGP−δ → C∞

c (XP )δ → 0.
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Together with Definition 3, this shows that

C∞
c (XP )δ is a quotient of C∞

c (XP ). (8.8)

The smooth dual of C∞
c (XP )δ is denoted C∞(XP )δ̌ and one has

C∞(XP )δ̌ = HomM (C∞
c (XM ), δ)disc ⊗ iGP− δ̌.

From (8.8) it can be viewed as a subspace of C∞(XP ).

8.3 Eisenstein integral maps and their transpose

Definition 4 We use the fact that the Eisenstein integral associated to δχ are well
defined for χ in the complementary set of the zero set of a non zero polynomial
function on X (M)σ . For such a χ , we define a map called Eisenstein integral map in
[14]:

EP,δχ ∈ HomG(HomM (C∞
c (XM ), δ̌χ )disc ⊗ iGP δχ ,C∞(X))

by

EP,δχ (T ⊗ v) = E(P, δχ , ηT , v), T ∈ HomM (C∞
c (XM ), δ̌χ )disc, v ∈ iGP δχ .

We keep the notation of the preceding subsection. Let us denote by ev1 the map

ev1 : (HomM (C∞
c (XM ), δ̌χ )disc)′ ⊗ iGP δ̌χ → (HomM (C∞

c (XM ), δ̌χ )disc)′ ⊗ Ě

defined by:

ev1(θ ⊗ v) = θ ⊗ v(1), θ ∈ (HomM (C∞
c (XM ), δ̌χ )disc)′, v ∈ iGP δ̌χ .

Ifφ ∈ C∞
c (XM ), letqδ(φ)be the canonical element of (HomM (C∞

c (XM ), δ̌)disc)′⊗Ě
defined as follows. The latter space appears as the smooth dual of
HomM (C∞

c (XM ), δ̌)disc) ⊗ E and we define

〈qδ(φ), T ⊗ e〉 := 〈e, T (φ)〉, e ∈ E, T ∈ HomM (C∞
c (XM ), δ̌)disc.

Identifying the smooth dual of C∞
c (XM ) to C∞(XM ) (cf. (8.2)), one has also:

〈qδ(φ), T ⊗ e〉 = 〈T̃ t (e), φ〉. (8.9)

Let us denote, by abuse of notation, the restriction of the transpose map of EP,δχ

to C∞
c (X) by Et

P,δχ
.
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Lemma 17 One has

Et
P,δχ

∈ HomG(C∞
c (X), (HomM (C∞

c (XM ), δ̌χ )disc)′ ⊗ iGP δ̌χ )

and

ev1((EP,δχ )t ( f )) = qδ( f
P ), f ∈ C∞

c (X),

where f P has been defined in Lemma 12.

Proof Let e ∈ E, T ∈ HomM (C∞
c (XM ), δ̌χ )disc. Let J be a compact open subgroup

of G with a σ -factorization for P and such that JM fixes e and f and let vχ := v
P,J
e,δχ

the element of iGP δχ which is invariant by J , whose support is equal to P J and whose
value at 1 is equal to e (for the existence see e.g. [5] Equation (3.2)). Notice that, from
(4.8), one has:

vχ has its support equal to P JU− = P JH ⊂ PH . (8.10)

We will compute in two ways:

I := 〈Et
P,δχ

( f ), T ⊗ vχ 〉.

We take into account the expression of the duality of iGP δ and iGP δ̌ (cf. (5.1) and (8.10)).
This leads to our first expression of I :

I = vol(JU−)〈ev1(Et
P,δχ

( f )), T ⊗ e〉. (8.11)

In order to compute I in an other way we use a transposition:

I =
∫

H\G
f (ġ)EP,δχ (T ⊗ vχ)(ġ)dġ.

For Reχ sufficiently P-dominant, one has from (5.4) and the definition of ηT (cf.
(8.4)):

I =
∫

H\G
f (ġ)

∑

x∈XG
M

∫

M∩x−1.H\x−1.H
T̃ t (vχ (yx−1g))(x)dydġ.

One makes the change of variable g′ = x−1.g and then the Fubini theorem that one
can use because f is compactly supported. One gets:

I =
∑

x∈XG
M

∫

(M∩x−1.H)\G
f (x .g)T̃ t (vχ (gx−1))(x)dġ.
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We make the change of variable g′′ = gx−1. We use the integration formula (4.1) and
our choice of measure on M ∩ x−1.H\M . As vχ has its support in P JU− and f and
vχ are J -invariant, one gets:

I = vol(JU−)
∑

x∈XG
M

∫

M∩x−1.H\M
δP (m−1)

∫

U
f (xum)duT̃ t (vχ (m))(x)dm.

But the change variable u′ = m−1um shows that:

I = vol(JU−)
∑

x∈XG
M

∫

M∩x−1.H\M

∫

U
f (xmu)duT̃ t (vχ (m))(x)dm.

From the intertwining property of T one has:

T̃ t (vχ (m))(x) = δ
1/2
P (m)T̃ t (e)(xm).

With our choices of measures one deduces:

I = vol(JU−)
∑

x∈XG
M

∫

M∩x−1.H\M
f P (ẋm)T̃ t (e)(ẋm)dm.

In other words

I = vol(JU−)〈 f P , T̃ t (e)〉,

and (8.9) implies:

I = vol(JU−)〈qδ( f
P ), T ⊗ e〉.

From (8.11) and Lemma 17 one deduces the equality:

ev1((EP,δχ )t ( f )) = qδ( f
P ).

��
8.4 Canonical quotient and the small Mackey restriction

We follow the terminology of [14], section 15. Let τ be a finite length smooth repre-
sentation of M . If the intertwining integral:

A(P, P−, τ ) : iGP−τ → iGP τ

is well defined, the canonical quotient is the composition:

(iGP−τ)P
jP (A(P,P−,τ ))−→ (iGP τ)P → τ
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where the right map is the evaluation at 1 (cf. [14] Equation (15.8)). If τ =
C∞
c (XP )δ[δ], the canonical quotient in this case is denoted cδ and taking into account

(8.7) one has:

cδ : (C∞
c (XP )δ)P → C∞

c (XP )δ[δ].

Let (π, V ) be a smooth representation of G. The Mackey restriction (cf. [14] section
15.5.3) is the map

Mack : HomG(C∞
c (X), π) → HomM (C∞

c (XM ), πP )

obtained by taking the Jacquet functor to any element T of HomG(C∞
c (X), π), and

restricting it to C∞
c (XM ) which is identified by mX

P (cf. Lemma 12) with a subspace
of the normalized Jacquet module of C∞

c (X).
If π = iGP−τ , and the intertwining integral A(P, P−, τ ) : iGP−τ → iGP τ is bijective

the small Mackey restriction is the composition of the canonical quotient with the
Mackey restriction Mack:

sMack : HomG(C∞
c (X), π) → HomM (C∞

c (XM ), τ ).

If π = C∞
c (XP )δ , and T ∈ HomG(C∞

c (X), π) one has

sMack(T ) ∈ HomM (C∞
c (XM ), HomM (C∞

c (XM ), δ)disc)′ ⊗ δ).

8.5 Normalized Eisenstein integrals

Definition 5 Let P be a semistandard σ -parabolic subgroup of G. We define the
normalized integral

E0
P,δχ

∈ HomG(HomM (C∞
c (XM ), δ̌χ )disc ⊗ iGP−δχ ,C∞(X))

by:

E0
P,δχ

:= EP,δχ ◦ (I d ⊗ A(P−, P, δχ )−1)

which is rational in χ ∈ X (M)σ .

By the formula of the transpose of intertwining integrals (cf. [16] IV.1(11) and denoting
by (E0

P,δχ
)t the restriction of the transpose of E0

P,δχ
to C∞

c (X), one has

(E0
P,δχ

)t = (I d ⊗ A(P, P−, δ̌χ )−1) ◦ (EP,δχ )t .

From this it follows

sMack((E0
P,δχ

)t ) ∈ HomM (C∞
c (XM ), HomM (C∞

c (XM ), δ̌χ )disc)′ ⊗ δ̌χ )
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is equal to

ev1 jP (A(P, P−, δ̌χ ) ◦ (E0
P,δχ

)t ).

From Lemma 17, one deduces:

The map sMack((E0
P,δχ

)t ) is equal to the map qδχ . (8.12)

Our definition of normalized Eisenstein integrals differs from the one in
[14], Equation (15.30) forG split and X spherical. Here we do not use the
Radon transform, but we use that the opposite of a σ -parabolic subgroup
is a σ -parabolic subgroup. From (8.12), our Eisenstein integrals maps
have the same small Mackey restrictions than the ones defined in l.c. (cf.
(15.36)).

(8.13)

8.6 Explicit Plancherel formula

Let

L2(XM )disc =
∫ ⊕

M̂
Ǐδdνdisc(δ)

where Ǐδ is a unitary representation of M isomorphic to a direct sum of copies of δ.
From Lemma 14 , one has

L2(XP )disc =
∫ ⊕

M̂
Ȟδdνdisc(δ)

where Ȟδ is the unitarily induced representation from P− to G of Ǐδ . Let Ȟ∞
δ be its

space of smooth vectors. With the notation of (8.5), its space of smooth vectors is
equal to C∞(XP )δ .

Let f ∈ C∞
c (XP ) and let us write its discrete component

fdisc =
∫

M̂
f δdνdisc(δ),

where f δ ∈ C∞(XP )δ . Its image by the Bernstein morphism iP ( fdisc) satisfies:

iP ( fdisc) =
∫

M̂
iP,δ( f

δ)dνdisc(δ).

for some maps iP,δ : Ȟ∞
δ → C∞(X) defined for almost all δ (cf. [14] Equation

(15.6)).
One has the analog of Lemma 15.5.4 of [14]. As the analog of the beginning of

section 15.6 of [14] is identical, together with (8.12), this leads to the analog of Th
15.6.3 in [14]:

123



Neighborhoods at infinity and the Plancherel formula for. . . 1225

Proposition 7 The small Mackey restrictions sMack((E0
P,δχ

)t ) and sMack(i tP,δχ
)

are equal for almost all χ ∈ X (M)σ,u.

Also by the uniqueness result of [4] recalled in (5.3), for almost all χ ∈ X (M)σ,u ,
every element F of HomG(C∞

c (X), iGP− ˇδχ ) has its transpose given in term of the
normalized Eisenstein integral i.e. is of the form

(E(P, δχ , ηT , v) ◦ A(P−, P, δχ )−1)

for a unique T ∈ HomM (C∞
c (XM ), δ̌χ ). Using (8.12) or rather its immediate gener-

alization by replacing HomM (C∞
c (XM ), δ̌χ )disc by HomM (C∞

c (XM ), δ̌χ ) one sees
that the small Mackey restriction of F is equal to T . Hence one has:

Proposition 8 The small Mackey restriction

sMack : HomG(C∞
c (X), iGP− δ̌χ ) → HomM (C∞

c (XM ), δ̌χ )

is injective for almost all χ ∈ X (M)σ,u.

Corollary 2 For almost all χ ∈ X (M)σ,u, one has:

iP,δχ = E0
P,δχ

.

Theorem 7 Let f ∈ C∞
c (XP ) and let us write its discrete component

fdisc =
∫ ⊕

M̂
f δdνdisc(δ),

where f δ ∈ C∞(XP )δ .
Its image by the Bernstein morphism iP ( f ) satisfies:

iP ( f )(x) =
∫

M̂
E0
P,δ( f

δ)(x)dν(δ), x ∈ X.

In combination with the scattering theorem (cf. Theorem 6), one deduces:

Theorem 8 The norm on L2(X)P , ‖.‖P , admits the decomposition:

‖�‖2P = 4

Card(W (P, P))

∫

M̂
‖E0t

P,δ(�)‖2δdν(δ),

where the measure and norms on the right hand side of the equality are the discrete
part of the Plancherel decomposition of L2(XP ).
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9 Appendix: Rational representations

In this section we establish some results on rational representations of G which are
needed to extend the results of [12] and [4], which are established when F is of
characteristic zero, to the case where F is simply of characteristic different from 2.

9.1 Rational representations and parabolic subgroups

Let G be a reductive algebraic group defined over a non archimedean local field F,
whose group of F-points is equal toG. We will use similar notations for the subgroups
of G.

Let A0 be a maximal split torus of G and let P0 = M0U0 be a minimal parabolic
subgroup of G with A0 ⊂ M0. Let T be a maximal F-torus of G which contains A0.
Let B be a Borel subgroup ofG, which contains T and is contained in P0. One denotes
by �(T ) the set of roots of T in the Lie algebra of G. One denotes by �(T ) (resp.,
�(T )rac) the weight lattice (resp., the root lattice) of T with respect to G. We adopt
similar notations for A0. Let � be the absolute Galois group of F which acts on these
lattices. Let �+(T ) be the set of dominant weights for T relative to B. Let �+(A0)

(resp., �+(A0)rac) the set of dominant elements for P0 of �(A0) (resp., �(A0)rac).

Definition 6 Let P = MU be a parabolic subgroup ofG which contains P0, whereM
is its Levi subgroupwhich contains A0. One denotes by�+

M (T ) the set of elements λ of
�+(T )such thatG has a rational finite dimensional irreducible representation, defined
over F, with highest weight λ relative to B, (πλ, Vλ), with the following property:

Any non zero vector of weight λ under T, vλ, transforms under M by a
rational character of M , denoted �.

(9.1)

The goal of this subsection is to produce sufficiently many elements of �+
M (T ).

Proposition 9 (i) Let Tan be the anisotropic component of T . There exists n ∈ N
∗

such that any element λ of n�+(A0) extends uniquely to an element μ of �(T )rac
trivial on Tan.

(ii) If λ is orthogonal to the simple roots of A0 in the Lie algebra of U0 ∩ M then μ

is element of �+
M (T ).

For the proof we need several lemmas.
Let β be an element of the set, �(A0), of roots of A0 in the Lie algebra of G. One

defines:

β :=
∑

α∈�(T ),α|A0=β

α.
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One sees easily that:

There exists n′ ∈ N
∗ such that, for all β ∈ �(A0), there exists n′

β ∈ N
∗

such that n′
ββ |A0

= n′β. (9.2)

We fix, once for all, such integers n′ and n′
β

Lemma 18 Every element λ of n′�rac(A0) extends uniquely to an element μ of
�rac(T ) trivial on the anisotropic component Tan of T , invariant by � and by
W (M0, T ).

Let us denote by (n′�rac(A0))̃ the lattice generated by the n′
ββ, β ∈ �(A0). From

their definition, one sees that the elements of (n′�rac(A0))̃ are invariant under �

and are elements of �rac(T ). One remarks that every element μ of (n′�rac(A0))̃ is
invariant by the Weyl group of M0 relative to T,W (M0, T ).

Let us show any elementμ is trivial on Tan . One can choose T such that it contains a
maximal torus defined over F, T1, of the derived group of M0. Actually, by conjugacy,
one sees that any T has this property. Moreover T contains the maximal anisotropic
torusCan of the center ofM0. The product T1Can A0 is a torus. For reasons of dimension
it is a maximal torus of G. Hence T = T1Can A0. Notice that T1Can is the anisotropic
component Tan of T . As μ is W (M0, T )-invariant, the restriction of μ to T1 is trivial.
AsCan is anisotropic, the invariance by� ofμ shows that its restriction toCan is trivial.
This proves the existence part of the Lemma. As T = Tan A0 the unicity follows. ��
Lemma 19 (i) There exists n ∈ N such that n�(A0) ⊂ n′�rac(A0).
(ii) If λ ∈ n�+(A0), its extensionμ to T given by the preceding lemma is the highest

weight of a rational representation of G, defined over F, denoted (πμ, Vμ).

Proof (i) The lattice n′�rac(A0) is contained in the lattice �(A0). As these lattices
are of the same rank, there exists n ∈ N

∗ such that n�(A0) ⊂ n′�rac(A0).

(ii) From (i) and the preceding lemma, if λ ∈ n�+(A0), μ is in �rac(T ) ⊂ �(T ).
Moreover if α is a root of T in the Lie algebra of G, 〈μ, α〉 = 〈λ, α|A0〉. Hence
μ is a dominant weight. From the preceding Lemma, it is invariant by �. Then
[15], Theorem 3.3 and Lemma 3.2 implies (ii). ��

Lemma 20 Let λ ∈ n�+(A0) and μ as in Lemma 18. Then, with the notation of
the preceding lemma, M0 acts on a non zero highest weight vector of (πμ, Vμ) by a
rational character of M0 again denoted by μ.

Proof Asπμ is defined overF, it is enough to prove that vμ transforms under a rational
character of M0. In order to prove this, one can work with the algebraic closure. The
invariance ofμ byW (M0, T ) (cf. Lemma 18), the fact that the space of weightμ in Vμ

is of dimension one (cf. [9], Proposition 33.2) together with the Bruhat decomposition
of M0 allow to prove the Lemma. ��
Proof of Proposition 9 (i) follows from Lemmas 18 and 19.

Let λ ∈ n�+(A0) be as in the statement of Proposition 9(ii) i.e. λ is orthogonal to
the simple roots of A0 in the Lie algebra of U−

0 ∩ M . Let μ be as in Lemma 18. Let
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(πμ, Vμ) be as in Lemma 19, and let vμ be a non zero highest weight vector. One has
to prove that vμ transforms under M by a rational character of M that we will still
denote by μ. It is enough to prove that the line Fμ is stable by the action of M . One
shows, using the preceding Lemma, by a proof analogous to the one of [9], Proposition
31.2 and using the density of U−

0 M0U0 in G, that the A0-weight space of Vμ for the
weight λ is one dimensional. The Weyl group, W (M, A0), of M relative to A0 fixes λ

from the hypothesis on λ. One finishes the proof of our assertion on the action M on
vμ by using the Bruhat decomposition of M relative to P0 ∩ M . Hence μ ∈ �+

M (T ).
��

9.2 H-distinguished rational representations of G

Proposition 9 allows to extend the results of [4] section 2.7 and especially Propositions
2.9, 2.11 to a non archimedean local field, F, of characteristic different from 2. Let
�(G, A0) (resp., �(P0, A0) or �(P0)) the set of roots of A0 in the Lie algebra of G
(resp., P0). We denote by �(P0) the set of simple roots of �(P0).

Let P = MU be a standard σ -parabolic subgroup of G. We will use the notation
of the main body of the article. Let us assume that A∅ ⊂ A0, which is automatically
σ -stable, and P0 ⊂ P∅. Let {α1, . . . , αm0} be the simple roots of�(P0)written in such
a way that {α1, . . . , αm∅} are the simple roots in the Lie algebra of U∅, {α1, . . . , αm}
are the simple roots in the Lie algebra of U . One has the fundamental weights of
�(P0, A0), δ1, . . . , δl .
Let i = 1, . . . ,m and λi = nδi with n as in Proposition 9. From this proposition,
λi ∈ �+

M (T ) and there exists a unique rational character of T, μ, trivial on Tan and
whose restriction to A0 is equal to λi andμ is the highest weight of an irreducible finite
dimensional rational representation of G, denoted by (πμ, Vμ). Moreover if vμ is a
non zero highest weight vector in Vμ, the space Fvμ is P-invariant. We denote again
by μ the rational character of M which describes the action of M on vμ. One denotes
by v′

μ the unique element of V ′
μ of weight μ−1 under M and such that 〈v′

μ, vμ〉 = 1.

Let ν := μ(μ−1 ◦ σ) ∈ �(T ) and let (π̃ν, Ṽν) be the rational representation of
G (πμ ⊗ (π ′

μ ◦ σ), Vμ ⊗ V ′
μ). Let ṽν := vμ ⊗ v′

μ which is of weight ν under the
representation π̃ν restricted to M . Then there exists a non zero H -invariant vector,
under π̃ν in Ṽ ′

ν = (Vμ ⊗ V ′
μ)′ � V ′

μ ⊗ Vμ � End(Vμ), namely the identity that we
will denote e′

ν,H . It satisfies 〈e′
ν,H , ṽν〉 = 1.

Let us show that ν = 2μ. As σ preserves Tan , the character μ−1 ◦ σ of T is trivial
on Tan . Its restriction to A0 is equal to λ. From the unicity statement of μ, it is equal
to μ. This proves our claim.

From this it follows that

Proposition 2.9 and 2.11 of [4] extend to a non archimedean local field,
F, of characteristic different from 2. This shows that the results of [4],
section 2.8, 2.9 are valid for such a field. Also, the Lemma 1 (resp., section
3.2) in [12] is true also for such a field F due to Proposition 2.3 of [5]
(resp., the Proposition 9 of the present article). Hence the results of [12]
are valid for such a field F.

(9.3)
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