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Abstract

We introduce the notion of matrices graph, defining continued fraction
algorithms where the past and the future are almost independent, and we
give an algorithm to convert more general algorithms to matrices graph.
We give an algorithm that computes exact invariant densities of some con-
tinued fraction algorithms, including classical ones and some extensions
of it. For two coordinates, we provide a more precise algorithm that com-
putes invariant density as soon as it is a rational fraction. And for any
finite set of quadratic numbers, we construct a continued fraction algo-
rithm whose invariant density are rational fractions where the quadratic
numbers appears.
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1 Settings

1.1 Matrices graphs and win-lose graphs
Usually, an additive continued fraction algorithm is a map from Rd

+ to Rd
+ which

is linear by pieces, and usually the pieces are polyhedra. In this paper, we
consider continued fraction algorithms given by matrices graph, which is more
restrictive since it corresponds to algorithms where the past and the future are
almost independant. But we will see that usual algorithms can be converted to
matrices graph (see Section 3), and that it has a lot of advantages. See Section 5
for some examples.

A matrices graph is a finite oriented graph, labeled by matrices of size
d× d, such that from each vertex s, if the leaving edges are labeled by matrices
Ms = {m1, ..., mk}, then we have Rd

+ =
⋃

m∈Ms
mRd

+, and the union is quasi
disjoint. In particular, such graph defines a deterministic automaton if we define
some initial state and final states. We denote i

m−→ j if it is an edge (also called
transition) in the graph.

A matrices graph defines a map F : Rd
+ × S → Rd

+ × S by

F (x, i) = (m−1x, j) if i m−→ j such that x ∈ mRd
+,

where S is the set of vertices (also called states) of the graph. We call this map
the continued fraction algorithm associated to the matrices graph. It is well-
defined almost everywhere, and we can also iterate it infinitely often on a set of
full Lebesgue measure (everywhere except a countable union of hyperplanes).
We see that the only information kept from the past is the element of the set S.

A win-lose graph (also called simplicial system in [Fougeron]) is another
way to describe a continued fraction algorithm. It is an oriented graph, labeled
by integers {0, ..., d − 1}, such that from each vertex, there exists at most one
edge labeled by each integer.
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It defines a map F : Rd
+ × S → Rd

+ × S by

F (x, i) = (x′, k) if i j−→ k such that ∀i l−→ k′, xj ≤ xl

where x′ is the vector x where we subtract xj to every xl such that i l−→ k′ with
l ̸= j and k′ ∈ S. A win-lose graph can be seen as a matrices graph, where the
matrix corresponding to an edge i

j−→ k is Id +
∑

i
l−→k′,l ̸=j

Ej,l, where Ej,l is the
matrix with a 1 in coordinate j, l and 0 at every other coordinates.

The continued fraction expansion (or just expansion) of a point (x, i) ∈
Rd

+ × S, is the sequences of matrices (mn)n∈N that appears when iterating
the continued fraction algorithm from (x, i). We say that a continued fraction
algorithm is convergent if for almost every x ∈ Rd

+, its expansion (mn)n∈N
satisfies

⋂
n∈N m0...mnRd

+ = R+x.

1.2 Invariant density
In all this subsection, we consider a matrices graph with vertices S.

We say that µ is an invariant measure on Rd
+ × S if for every measurable

set E we have µ(F−1E) = µ(E), and for every α ∈ R+, µ(αE) = µ(E), where
αE = {(αx, i) ∈ Rd

+ × S | (x, i) ∈ E}.
If an invariant measure is absolutely continuous with respect to the Lebesgue

measure on Rd
+ × S, then its density function is called invariant density.

Let f : Rd
+ × S → R+ be an invariant density. Then, for every α ∈ R+,

x ∈ Rd
+ and i ∈ S, f(αx, i) = 1

αd f(x, i). We call invariant density at state
i ∈ S the map fi : Rd

+ → R+ defined by fi(x) := f(x, i).
An invariant density satisfy for every state j ∈ S and almost every x ∈ Rd

+

the relation
fj(x) =

∑
i

m−→j

|det(m)| fi(mx).

Usually densities are expressed as functions restricted to the standard sim-
plex {x ∈ Rd

+ | (1, ..., 1)x = 1}. In that case, there is a Jacobian of the map
x 7→ mx/ ∥mx∥1 that appears in such functional relations. But it is enough to
take the restriction of functions fj to the standard simplex to get usual densities,
and it avoid making arbitrary choice to parameterize the standard simplex.

We say that a continued fraction algorithm is ergodic if there exists an
unique ergodic invariant measure absolutely continuous with respect to Lebesgue.

1.3 Rational languages and limit sets
A automaton is a finite graph, labeled by letters in a finite alphabet, with some
state (or vertex) called initial state, and a set of final states. In this article,
we denote initial states by thick circles, and final states by double circles. The
language recognized by an automaton is the set of finite words labeling a
path from the initial state to a final state. We denote s0

u1−→ ...
un−−→ sn if there

is a path in the automaton labelled by a word u1...un.
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A rational language (or regular language) is a language recognized by
an automaton. Any rational language is recognized by a deterministic au-
tomaton, that is an automaton such that if s i−→ s′ and s

i−→ s′′, then s′ = s′′.
The set of rational languages is stable by many operations: union, intersec-

tion, complementary, mirror, image by a morphism, inverse image by a mor-
phism, Kleene star. See for example [Carton] for more details. The set of
rational languages is also stable by prefixes: if L is a rational language over an
alphabet A, then

Pref(L) = {u ∈ A∗ | ∃v ∈ A∗, uv ∈ L}

is rational. Indeed, if a pruned automaton recognize L, then the same automaton
where every state is final recognize Pref(L).

Let L be a rational language over an alphabet A ⊂Md(R+) of matrices. We
define the limit set of L by

ΛL =
⋂
n∈N

⋃
k≥n

⋃
u1...uk∈L

u1...ukRd
+.

In other words, the limit set is the set of vectors x such that x ∈ u1..unRd
+ for

infinitely many words u1...un ∈ L.
In the particular case where L is stable by prefixes, we have

ΛL =
⋂
n∈N

⋃
u1...un∈L

u1...unRd
+,

and ΛL is a closed set.
If B and C are two languages over alphabets included in Md(R+), then

ΛB∪C = ΛB ∪ ΛC , and
⋃
w∈B

wΛC ⊆ ΛBC ⊆ ΛB ∪
⋃
w∈B

wΛC .

1.4 Natural extension and dual algorithm
In all this subsection, we consider a matrices graph, defining some continued
fraction algorithm on Rd

+ × S.

Definition 1.1. We say that (Di)i∈S are domains of the matrices graph if

∀i ∈ S, Di =
⊎

j
m−→i

tmDj ,

where
⊎

means that the union is disjoint in Lebesgue measure.

Such domains are not necessarily unique, but they always exists (see [AS]).
Let (Di)i∈S be domains for the matrices graph, and let D =

⋃
i∈S Di × {i}.

Then, the natural extension of the continued fraction algorithm is the map
F̃ : Rd

+ ×D → Rd
+ ×D defined by

F̃ (x, (y, i)) = (m−1x, ( tmy, j))
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where i
m−→ j is a transition such that x ∈ mRd

+. This maps is well-defined
almost everywhere and it preserves the Lebesgue measure of Rd×Rd×S. More-
over, by definition of the set D, this map is almost everywhere one-to-one.

We define the dual algorithm as the map F ∗ : D → D such that

F ∗(y, j) = ( tm−1y, i),

if i
m−→ j is such that y ∈ tmDi. This dual algorithm is well-defined almost

everywhere on D. However, the set D could have zero Lebesgue measure. For
example, the dual of the fully subtractive algorithm is the Arnoux-Rauzy al-
gorithm, defined on a set D of zero Lebesgue measure called the Rauzy gasket
(see [AHS] for more details).

For each state i, we define the domain language Di by the set of words
mt

1...m
t
n such that mn...m1 labels a path toward i in the matrices graph. It is

a rational language. Notice that languages Di are stable by prefixes, thus

ΛDi
= {y ∈ Rd

+ | ∀n ∈ N, ∃in
mn−−→ ...

m1−−→ i0 = i, y ∈ tm1...
tmnRd

+}.

It gives an upper bound of domains.

Lemma 1.2. If (Di)i∈S are domains, then ∀i ∈ S, Di ⊆ ΛDi
.

And in some cases, ΛDi
are domains. It is the case for example with the fully

subtractive on two letters, and it is what we use in Section 4 and in Section 6.
Domain languages are also useful to find domains that are unions of simplicies,
see Section 2.

1.5 Invariant densities from natural extension
In the following, we consider some matrices graph with vertices S, and a set
D =

⋃
i∈S D × {i} for some domains (Di)i∈S . Let Γ be the subset of Rd

+ ×D
defined by

Γ = {(x, (y, i)) ∈ Rd
+ ×D | (y|x) ≤ 1}.

Notice that the natural extension F̃ preserves this set Γ. Hence, we have

Lemma 1.3. The maps fi(x) = λ({y ∈ Di | (y|x) ≤ 1}) define an invariant
density for the continued fraction algorithm.

Such map fi can be explicitly computed if the domain Di is a simplex, thanks
to the following formulae.

Lemma 1.4. Let m be a square matrix of size d. Then we have

λ({y ∈ mRd
+ | (y|x) ≤ 1}) = |det(m)|

d!
∏
( tmx)

,

where
∏
( tmx) is the product of coefficients of the vector tmx.
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Hence, if the domain Di is a finite union of quasi-disjoint simplicies, then
we can compute the density, and it is a rational fraction.

If the domain Di is not a finite union of simplicies, we don’t have an explicit
formulae, but we can write the density as an integral:

Lemma 1.5. For every measurable cone E ⊆ Rd
+ and every x ∈ Rd,

λ({y ∈ E | (y|x) ≤ 1}) =
∫
y∈PE

dy

(y|x)d
,

where y ∈ PE means that we integrate over any set of unique representatives of
(E\{0})/R∗

+.

Notice that if λ(Di) = 0, then the corresponding density is the null function.
Hence, if every domain has zero Lebesgue measure, it doesn’t permits to get a
non-trivial invariant density.

2 Computation of an invariant density for a ma-
trices graph

In [AL], Arnoux-Labbe compute invariant densities by considering a natural
extension, constructed ad hoc for each example, following ideas of [AN]. The
advantage to rather consider matrices graphs rather than general continued frac-
tion algorithms is that a natural extension is easier to define (see subsection 1.4).
Moreover, the computation is easier and gives a regular function, rather than a
piecewise regular map. Another advantage is that it is easier to convert a matri-
ces graph to a win-lose graph, and for a win-lose graph we have an algorithmic
criterion to test if the continued fraction algorithm is ergodic (see [Fougeron]).

The following of this section is devoted to the computation of a decomposi-
tion of domains as finite unions of simplicies, for a matrices graph with set of
vertices S.

2.1 Minimized continued fraction algorithm
The first step of the algorithm is to minimize the continued fraction algorithm.
This is done by seeing the matrices graph as a deterministic automaton, and
computing an automaton recognizing the same language with the minimal num-
ber of states, using for example the Hopcroft’s minimization algorithm.

If the continued fraction algorithm was an extension of a simpler algorithm,
the minimization permits to work with the simpler algorithm.

Example 2.1. Consider the following matrices graph.
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0 1

 1 1 0
0 0 1
0 1 0

  1 1 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 1 1



 0 1 0
1 0 0
0 1 1



Then, the minimized matrices graph is the Cassaigne algorithm since the lan-
guage of both states are all finite words over the alphabet

 0 1 0
1 0 0
0 1 1

 ,

 1 1 0
0 0 1
0 1 0

 .

2.2 Computation of convex polyhedra domains
In this subsection, we give an algorithm to compute convex polyhedra that are
domains, for a given matrices graphs with set of states S.

We say that a cone C ⊆ Rd
+ is a convex polyhedron if there exists a

matrix m ∈ Md,k(R+) such that C = mRk
+. We say that a vector v ∈ C is an

extremal point of a cone C ⊆ Rd
+ if C\R+v is convex.

The algorithm to compute convex polyhedra is based on the following.

Lemma 2.2. Assume that (Di)i∈S are domains with finitely many extremal
points of sum 1. Then, for every i ∈ S and every extremal point V of Di, we
have

V = muVv

where Vv is a positive eigenvector of mv, u and v are two words such that
uv∗ ⊆ Di, with v not the empty word, and mu denotes the product of matrices
of u.

Proof. For every j ∈ S, we have

Dj =
⋃

i
m−→j

tmDi.

Hence, extremal points of Dj are of the form tmV , with V a extremal point
of Di. If we iterate it, we see that if V is an extremal point of Dj , then there
exists a sequence (Vn)n∈N of vectors and an infinite word w, such that for every
n ∈ N, V = w1...wnVn, w1...wn ∈ Dj , and Vn is an extremal point of Dk for
some k ∈ S. Then, the word w is ultimately periodic: there exists u ∈ A∗ and
v ∈ A+ such that w = uvω, and it concludes the proof.

If moreover uv∗ ⊆ Di is such that
⋂

n∈N mn
vRd

+ = R+Vv, then we have
muVv ∈ Di, for any domains (Di)i∈S .
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The idea is to compute such vectors Vv for many loops of the matrices graph,
and to stabilize it by adding vectors for each edge. It gives some convex cones Di,
and the stabilization step guarantees if it terminates that

⋃
i

m−→j
tmDi ⊆ Dj . If

we considered only vectors that are necessarily in domains as above, then this
union is necessarily Lebesgue-disjoint. And if we consider enough loops and
that there exists domains with finitely many extremal points, then we get the
equality and it gives domains.

More precisely, the algorithm is as follow:

1. For each state i of the matrices graph, compute matrices m of loops start-
ing at i, and for each such matrix m, compute extremal points of sum
1 of limn→∞

tmn(R∗
+)

d with the Jordan form. If we are looking only for
rational vectors, then we can stop as soon as it remains only loops with
strictly positive matrices, otherwise continue this computation and do the
following in parallel.

2. For each transition i
m−→ j in the matrices graph, and for each vector V

computed for state i, we add vector tmV to state j. Then, for each state
i, we keep only extremal points: if a vector is a linear span of the other
vectors with non-negative coefficients, then we remove it.

3. Re-do Step 2 until the number of vectors doesn’t increase, and stop if
∀j ∈ S, mjR

kj

+ =
⋃

i
m−→j

tmmiRki
+ .

Example 2.3. Consider the Cassaigne’s continued fraction algorithm. The two
only loops giving rational vectors are the two trivial ones, labeled respectively by

matrices m0 =

 0 1 0
1 0 0
0 1 1

 and m1 =

 1 1 0
0 0 1
0 1 0

. It gives corresponding

left eigenvectors (1, 1, 0) and (0, 1, 1).
Then, if we consider images of these vectors by the transposed of the matri-

ces, we get one more vector (1, 1, 1).

Then, we easily check that the cone C =

 0 1 1
1 1 1
1 0 1

Rd
+ satisfies

tm0C ⊎ tm1C = C.

Thus the algorithm terminates here, and C is a domain.

2.3 Computation of domains for an extension
We assume that domains (D′

i)i∈S′ have been found for the minimized algorithm,
and we want to compute domains (Di)i∈S for the original algorithm, which is
an extension of the minimized one.

The idea is to decompose each domain language Di of the original algorithm
as a finite union of the languages Wi,jD′

j , where Wi,j are rational languages,
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and D′
j are domain languages of the minimized algorithm. Such decomposition

is quite natural since every language L over an alphabet A can be decomposed
as L =

⋃
a∈A a(a−1L), and since w−1Di are finite union of Dj ’s and D′

k’s are
also finite union of Dj ’s.

If such finite union of languages can be found, then we define

Di :=
⋃
j∈S′

Wi,jD
′
j ,

where we denote Wi,jD
′
j :=

⋃
u1...uk∈Wi,j

u1...ukD
′
j .

Lemma 2.4. (Di)i∈S are domains, and each D′
j is partionned by some Di’s.

Proof. Since D′
k’s are domains, notice that an equality of languages

⋃
k∈S′ AkD′

k =⋃
k∈S′ BkD′

k implies the equality
⋃

k∈S′ AkD
′
k =

⋃
k∈S′ BkD

′
k. Moreover, if W is

a language such that WD′
k ⊆ D′

i, then the union
⋃

w∈W mwD
′
k, that we denote

WD′
k in the following, is Lebesgue disjoint.

States S′ of the minimized algorithm can be seen as sets of states of S:
S′ ⊆ P(S). And for every I ∈ S′, we have D′

I =
⊎

i∈I Di. So, we have D′
I =⋃

i∈I

⋃
K∈S′ Wi,KD′

K . Thus, we obtain D′
I =

⊎
i∈I

⋃
K∈S′ Wi,KD′

K =
⊎

i∈I Di.
By the same argument, we show that for every j ∈ S, Dj =

⋃
j

m−→i
tmDi,

and the union is quasi-disjoint since ∀J ∈ S′, ∀j ∈ J , Dj ⊆ D′
J .

Such a decomposition of rational languages can be obtained with usual op-
erations on rational languages. Indeed, for each i ∈ S, take a deterministic
automaton recognizing Di. For each j ∈ S′, let Sj be the set of states whose
language is equal to D′

j . Then, the language Wi,j is recognized by the automa-
ton where we remove every outgoing edges from Si and we set Si as the set of
final states. Then, we easily check if equalities Di =

⋃
j∈S′ Wi,jD′

j are satisfied.
Then, if languages Wi,j are finite, the formulae of Lemma 1.4 permits to

compute the invariant density, by splitting this union as quasi-disjoint simplicies.

Example 2.5. Consider the following extension of the Cassaigne continued
fraction algorithm.

0 1

 1 1 0
0 0 1
0 1 0

  1 1 0
0 0 1
0 1 0


 0 1 0

1 0 0
0 1 1



 0 1 0
1 0 0
0 1 1



The minimized matrices graph is the Cassaigne algorithm whose a domain

is D′
0 =

 0 1 1
1 1 1
1 0 1

Rd
+, and whose domain language is D′

0 = { tm0,
tm1}∗,
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where m0 =

 0 1 0
1 0 0
0 1 1

 and m1 =

 1 1 0
0 0 1
0 1 0

.

We easily see that D0 is the language of all finite words over { tm0,
tm1}

starting by tm0, and D1 is the language of all words over the same alphabet
starting by tm1.

Thus, we have D0 = tm0D′
0 and D1 = tm1D′

0, so we get that D0 = tm0D
′
0 = 1 1 1

1 1 2
1 0 1

Rd
+ and D1 = tm1D

′
0 =

 0 1 1
1 1 2
1 1 1

Rd
+ are domains.

Then, we get an invariant density thanks to the formulae of Lemma 1.4:
f0(x, y, z) =

1
(x+y)(x+y+z)(x+2y+z) and f1(x, y, z) =

1
(y+z)(x+y+z)(x+2y+z) .

3 Converting a continued fraction algorithm to a
matrices graph

In this section, we give an algorithm to convert a general continued fraction
algorithm defined as a piecewise linear map on pieces that are polyhedra, to
a matrices graph (see subsection 1.1 for a definition). The algorithm may not
terminate, but it terminates for every usual continued fraction algorithms.

We represent the input continued fraction algorithm as a graph with vertices
S and edges i m,D−−−→ j, where m ∈Md(R+) and D is a non-negative matrix with
d rows such that m−1D is non-negative. We denote c(D) the number of columns
of D. And we assume that for every i ∈ S, the union

⋃
i

m,D−−−→j
DRc(D)

+ is quasi-
disjoint.

It defines a partial map F : Rd
+ × S → Rd

+ × S by F (x, i) = (m−1x, j) if

i
m,D−−−→ j such that x ∈ DRc(D)

+ . The map is defined almost everywhere if for
every i ∈ S,

⋃
i

m,D−−−→j
DRc(D)

+ = Rd
+, but we don’t need this hypothesis in the

following.
The output of the algorithm is a graph labeled by square matrices, with

states S ×M, where M is a finite set of square matrices. See Algorithm 1 for
the algorithm.

Remark 3.1. In Algorithm 1 there is choices to make, to partition the cone
m−1(DRc(D)

+ ∩ IRd
+) by projective simplicies JRd

+. And we have to normalize
such matrices J in order that same cones give same matrices.

The following proposition explain the link between the input continued frac-
tion algorithm and the output matrices graph. It shows that under a small
hypothesis on the input graph, the output graph is indeed almost a matrices
graph.

Proposition 3.2. Let F : Rd
+×S → Rd

+×S be the continued fraction algorithm
corresponding to the input. Then, the continued fraction algorithm of the output
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Start with an empty result graph;
d← number of lines of matrices;
S ← {(i, Id) | i ∈ S};
while S ≠ ∅ do

Pop (i, I) from S;
Set (i, I) as seen;

for i
m,D−−−→ j do

if dim(DRc(D)
+ ∩ IRd

+) = d then
Compute a set J of square matrices such that⊎

J∈J JRd
+ = m−1(DRc(D)

+ ∩ IRd
+);

for J ∈ J do

Add the edge (i, I)
I−1mJ−−−−→ (j, J) to the result graph;

if (j, J) has not already been seen then
Add (j, J) to S;

end
end

end
end

end
Algorithm 1: Algorithm to convert a continued fraction algorithm to a
matrices graph

G : Rd
+ × S ×M→ Rd

+ × S ×M is well-defined, and we have for every n ∈ N,

Fn ◦ ϕ = ϕ ◦Gn,

where ϕ : Rd
+ × S ×M→ Rd

+ × S is defined by ϕ((x, i, I)) = (Ix, i).
Moreover, if the input graph satisfies

∀i m,D−−−→ j, m−1DRc(D)
+ ⊆

⋃
j

m′,D′
−−−−→k

D′Rc(D′)
+ ,

then the graph obtained by the Algorithm 1 is a matrices graph, up to remove
vertices with the identity matrix.

Proof. Let (i, I) ∈ S ×M be a state of the output graph. By construction,
for every i

m,D−−−→ j, there exists a set Jj such that
⋃

J∈Jj
JRd

+ = m−1(IRd
+ ∩

11



DRc(D)
+ ), thus we have⋃

(i,I)
M−→(j,J)

MRd
+ =

⋃
i

m,D−−−→j

⋃
J∈Jj

I−1mJRd
+

=
⋃

i
m,D−−−→j

I−1mm−1(IRd
+ ∩DRc(D)

+ )

= Rd
+ ∩ I−1

⋃
i

m,D−−−→j

DRc(D)
+ .

Now, let us prove that this union is quasi-disjoint. Let (i, I)
M−→ (j, J) and

(i, I)
M ′

−−→ (k,K) be two distinct edges. Then, there exists i m,D−−−→ j and i
m′,D′

−−−−→
k such that M = I−1mJ and M ′ = I−1m′K. If j = k, then m = m′, and JRd

+

and KRd
+ are quasi-disjoint by construction, thus MRd

+ and M ′Rd
+ are quasi-

disjoint. Otherwise, by hypothesis DRc(D)
+ and D′Rc(D′)

+ are quasi-disjoint, and
we have JRd

+ ⊆ m−1DRc(D)
+ and KRd

+ ⊆ m′−1D′Rc(D′)
+ by construction, thus

MRd
+ and M ′Rd

+ are quasi-disjoint.
Hence, the map G is well-defined, but not necessary on the whole positive

cone. Let us show that we have ϕ(G(I−1x, i, I)) = F (x, i) for all (i, I) ∈ S×M
and for almost every x ∈ IRd

+. Indeed, we have a transition (i, I)
M−→ (j, J) in

the matrices graph only if we have a transition i
m,D−−−→ j in the input graph,

with M = I−1mJ and JRd
+ ⊆ m−1(IRd

+ ∩ DRc(D)
+ ). Thus, if G(I−1x, i, I) =

(M−1I−1x, j, J), then we have I−1x ∈MRd
+, so x ∈ mJRd

+ ⊆ DRc(D)
+ . Hence,

F (x, i) = (m−1x, j) = ϕ((I−1m−1x, j, J)) = ϕ(G(I−1x, i, I)). Then, we get the
equality for every n ∈ N by iterating.

If moreover we assume the additional hypothesis on the input graph and
that I ̸= Id, then Rd

+ ∩ I−1
⋃

i
m,D−−−→j

DRc(D)
+ = Rd

+ since by construction IRd
+

is included in m′−1(KRd
+ ∩ D′Rc(D′)

+ ) ⊆
⋃

i
m,D−−−→j

DRc(D)
+ for some transition

k
m′,D′

−−−−→ i in the input graph, and some K. Thus, the output graph is a
matrices graph up to remove states with the identity matrix.

We can recover the invariant density of the original continued fraction algo-
rithm from the invariant density of the computed matrices graph thank to the
following formulae.

Lemma 3.3. Let a continued fraction algorithm defined by a graph with set of
vertices S, and let a corresponding matrices graph with vertices S×M, obtained
from Algorithm 1. Let (fi,I)(i,I)∈S×M be an invariant density for the matrices
graph. Then, for every i ∈ S the maps

fi(x) =
∑

I∈M, x∈IRd
+

∣∣det(I−1)
∣∣ fi,I(I−1x)

12



define an invariant density for the input continued fraction algorithm.

Proof. Let µ be the measure on Rd
+ × S with density (fi)i∈S with respect to

Lebesgue, and let ν be the measure on Rd
+×S×M with density (fi,I)(i,I)∈S×M

with respect to Lebesgue. We easily check that µ = ϕ∗ν, where ϕ : Rd
+ × S ×

M → Rd
+ × S is defined by ϕ(x, i, I) = (Ix, i). Then, we check that µ is an

invariant density, using the fact that ν is an invariant density and using the
Proposition 3.2.

Notice that the invariant density for a general continued fraction algorithm
is not continuous in general, since the condition x ∈ IRd

+ is not continuous.

4 Win-lose graph on two letters
In Section 2, we gave an algorithm to compute the invariant density for some
matrices graphs. But the algorithm may fail to find the invariant density, al-
though it is rational fractions. In this section, we give an algorithm to compute
the exact invariant density for every continued fraction algorithm given by a
win-lose graph on two letters, as soon as it is rational fractions. The algo-
rithm decides if the invariant density is rational fractions and if it is the case it
computes it. It is done by describing domains, by computing their boundaries.

4.1 Computation of boundaries
In this subsection, we give a way to compute the boundary of the limit set of
some rational language L stable by prefixes, over the alphabet {0,1}, where we

denote 0 =

(
1 1
0 1

)
and 1 =

(
1 0
1 1

)
to lighten the notations.

In order to describe the boundary of the limit set, we need to understand
which words correspond to neighboring cones. It is given by the following.

Lemma 4.1. For every n ∈ N and every (u, v) ∈ ({0,1}2)n, we have

uRd
+ ∩ vRd

+ ̸= ∅

if and only if (u, v) is recognized by the automaton

(0,0)

(1,1)

(0,1)(1,0)

(1,0)(0,1)

where the central state is initial, and every state is final.

Proof. Easy verification.

13



We call the automaton of this lemma the relations automaton, and its
language is denoted by Lrel. It permits to compute the boundary:

Proposition 4.2. Let L ⊆ {0,1}∗ be a rational language stable by prefixes.
The boundary of the limit set of L is the limit set of the rational language

∂L := prune∞(p1(L× Pref(Lc) ∩ Lrel)) ∪ Lmin ∪ Lmax,

where Lc = {0,1}∗\L denotes the complementary of L, Lmin and Lmax are
respectively the languages recognizing the smallest and the greatest words of L
in lexicographical order, p1 : ({0,1}2)∗ → {0,1} is the projection on the first
coordinate, and prune∞(L) remove all words of L that cannot be extended to an
arbitrarily longer word of L.

Proof. Language Lmin (respectively Lmax) is rational and is easily computed by
following the minimal (respectively maximal) path in the automaton of L up to
a loop. Then, the language ∂L is rational since it is obtained by usual operations
on rational languages (complementary, prefixes, intersection, union, image by
the morphism p1). The prune∞ also preserves the fact to be rational: indeed, if
a pruned automaton recognize a language L′, then prune∞(L′) is recognized by
the same automaton where we remove every state from which we cannot reach
a loop. The operation prune∞ doesn’t change the limit set of the language, but
it permits to get a simpler language.

Remark that ∂L is stable by prefixes, since this property is stable by product,
intersection, union, projection on the first coordinate, and prune∞.

Let us show that ∂ΛL = Λ∂L. The boundary ∂ΛL is equal to (Rd
+\ΛL ∩

ΛL) ∪ ΛLmin ∪ ΛLmax , since the lexicographical order corresponds to the order
on R2

+ defined by (x, y) ≤ (x′, y′) if and only xy′ ≤ x′y.
Let x ∈ Rd

+\ΛL∩ΛL. Then, there exists a sequence of elements xn ∈ Rd
+\ΛL,

such that limn→∞ xn = x. Let n ∈ N. As x ∈ ΛL, there exists u1...un ∈ L such
that x ∈ u1...unRd

+. Let N ∈ N be large enough such that xN ∈ v1...vnRd
+, for

some word v1...vn ∈ {0,1}n such that (u1, v1)...(un, vn) ∈ Lrel. As xN ̸∈ ΛL,
there exists an extension of the word v1...vn that belongs to Lc. Thus, we have
u ∈ p1(L× Pref(Lc) ∩ Lrel), and we conclude that x ∈ Λ∂L.

Reciprocally, let x ∈ Λp1(L×Pref(Lc)∩Lrel). Then, for every n ∈ N, there
exists u1...un ∈ L and v1...vn ∈ Pref(Lc) such that (u1, v1)...(un, vn) ∈ Lrel and
x ∈ u1...unRd

+. In particular, x ∈ ΛL. And for every v1...vN ∈ Lc, the interior
of v1...vNRd

+ is disjoint of ΛL, and the distance between v1...vNRd
+ and x is less

than 2 ∥x∥1 /n. Thus, there exists a sequence (xn)n∈N ∈ (Rd
+\ΛL)

N such that
x = limn→∞ xn, so x ∈ ∂ΛL.

4.2 Non-rational density
In this subsection, we prove the following proposition. With the computation of
boundary done in the previous subsection, it permits to algorithmically decide
if the invariant density is a rational fraction.

14



Proposition 4.3. Let a win-lose graph on two letters with vertices S. Then, the
unique densities (fi)i∈S are rational fractions if and only if the unique domains
(Di)i∈S are finite union of intervals up to a set of zero Lebesgue measure.

The remaining of this subsection is devoted to the proof of this proposition.
First of all, remark that the fully subtractive algorithm for d = 2 is con-

vergent and auto-dual, thus it implies that domains Di for any extension are
unique.

Domains Di are limit sets of rational languages Di, thus they are a countable
union intervals

⋃
w∈A mwR2

+, up to a set of zero Lebesgue measure ΛA ∪ ΛB

thank to the following.

Lemma 4.4. Let L be a rational language over the alphabet {0,1}. Then,
there exists two rational languages A and B such that L = A{0,1}∗ ∪ B, with
λ(ΛB) = 0 and λ(ΛA) = 0. Moreover, A and B are computable.

Proof. Consider the minimal automaton recognizing the language L. In this
automaton, there is at most one state whose language is {0,1}∗. If such state
doesn’t exists, then take A = ∅. Otherwise, remove every outgoing edge from
such state, and set it as the unique final state. Then, the language recognized by
this new automaton is A. We then obtain B = {0,1}∗\A. Obviously we have
L = A{0,1}∗ ∪B, and A and B are rational. Then, if we consider the minimal
automaton with sink state recognizing the language B, it gives a win-lose graph
on two letters satisfying the Fougeron’s criterion (see [Fougeron]), and the sink
state is reachable from every other state, thus λ(ΛB) = 0. The same argument
shows that λ(ΛA) = 0.

Let Mi ⊂ M2(R+) be a countable set such that Di = E ∪
⋃

m∈Mi
mR2

+,
where λ(E) = 0. We can moreover assume that such projective intervals mR2

+,
m ∈Mi, are pairwise disjoint (they intersect only at (0, 0)).

Furthermore, the win-lose graph on two letters is ergodic thanks to Fougeron’s
criterion, and the unique invariant density is

fi(x) =
∑

m∈Mi

|det(m)|∏
( tmx)

, ∀i ∈ S.

For z ∈ C, let φi(z) =
∑

m∈Mi

|det(m)|∏
( tm(1/2−z,1/2+z)) . It is the unique holomorphic

extension of the map z 7→ fi(1/2 − z, 1/2 + z) to the whole C but a countable
number of points (one for each end point of the projective intervals).

Then, the map fi is a rational fraction if and only if φi has a finite number
of poles, if and only if Mi is finite.

4.3 The algorithm for two letters win-lose graphs
In this subsection, we present the algorithm to test if a win-lose graph on two
letters has invariant densities that are rational fractions, and to compute it if it
is the case. The algorithm is as follow:

15



• Compute domain languages Di. For each Di, do the following.

• Decompose Di as Di = A{0,1}∗ ∪B, as in Lemma 4.4.

• Compute the language ∂L, defined in Proposition 4.2, describing the
boundary of the limit set of the language L = A{0, 1}∗.

• Compute non-trivial strongly connected components of the minimal au-
tomaton of ∂L.

• If there exists a component which is not a loop or which is not terminal,
then we know by Proposition 4.3 that the invariant density fi is not a
rational fraction since Di is an infinite union of disjoint intervals,

• Otherwise, we can decompose ∂L = Pref(u1v
∗
1 ∪ ... ∪ u2Nv∗2N ), where v1,

..., v2N are labels of loops, and ∂ΛL is the set of quadratic half lines
muVvR+, where mu is the product of matrices of u, and where Vv is
such that R+Vv = limn→∞ mn

vR2
+. Then, we order these vectors for the

relation (x, y) ≤ (a, b) ⇔ xb ≤ ya. We get a finite increasing sequence
of vectors V1, ..., V2N . For every k ∈ {1, ..., N}, let mk be the matrix
with columns V2k−1 and V2k. Then, the domain Di is equal to the union
m1R2

+∪...∪mNR2
+ up to a set of Lebesgue measure zero. Thus, we deduce

that the density at state i is fi(x) =
∑N

k=1
|det(mk)|

(V2k−1|x)(V2k|x) .

Example 4.5. Consider the win-lose graph

0

1

0 0 1

1

0

The domain of the state 0 is the limit set of the language D0 of the automaton

0

1
0

01

The decomposition of Lemma 4.4 gives B = ∅, thus we compute the language
∂L for L = D0. The language Pref(Lc) is recognized by the automaton

0

1
1

01

Then, the language L× Pref(Lc) ∩ Lrel is recognized by

16



(0,0)

(0,1)

(1,1)
(0,1)

(1,0)

If we project on first coordinate then we get the language Pref((01)∗001). Then,
after prune∞ we get the language Pref((01)∗). The languages Lmin and Lmax

are respectively 0∗ and Pref((01)∗), thus ∂L = 0∗∪Pref((01)∗). We deduce that
the boundary of ΛL is R+{(1, 0), (φ, 1)}, where φ is the golden number. Indeed,
we have 0nR2

+
n→∞−−−−→ R+(1, 0) and (01)nR2

+
n→∞−−−−→ R+(φ, 1). We obtain that

the domain of state 0 of the win-lose graph is the projective interval
(
1 φ
0 1

)
R2

+.

Thus, the invariant density of state 0 is f0(x, y) =
1

x(φx+y) .

5 Examples
In this section, we apply our algorithms to classical continued fraction algo-
rithms, and extensions of it.

5.1 Cassaigne
The Cassaigne continued fraction algorithm is described by a matrices graph
with a single state and with matrices

 0 1 0
1 0 0
0 1 1

 ,

 1 1 0
0 0 1
0 1 0

 .

We found that

 0 1 1
1 1 1
1 0 1

R3
+ is a domain, thus an invariant density is

1

(x0 + x1 + x2)(x0 + x1)(x1 + x2)
.

The Cassaigne continued fraction algorithm can be slowed down to the win-
lose graph of figure 1, with initial state 1. The invariant densities for this
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Figure 1: Win-lose graph for the Cassaigne algorithm
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[1 1 1]
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[1 1 0]
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[1 1 1]
[1 0 0]

[1 0 0]
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[1 0 0]
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[1 1 0]
[1 0 0]
[0 0 1]

[1 0 0]
[0 1 1]
[1 0 1]

[1 0 0]
[0 1 0]
[1 1 1]

[1 1 0]
[0 0 1]
[1 0 0]

[1 0 0]
[1 1 0]
[0 0 1]

[1 1 1]
[0 1 0]
[0 0 1]

[1 1 0]
[1 0 0]
[0 1 1]

[0 1 0]
[1 0 1]
[0 1 1]

[1 0 0]
[0 1 0]
[1 1 1]

[0 1 1]
[1 0 0]
[0 1 0]

[1 0 0]
[1 0 1]
[0 1 0]

[1 1 1]
[0 1 0]
[0 0 1]

[1 1 0]
[1 0 0]
[0 1 1]

[0 1 1]
[1 0 0]
[0 1 0]

[0 1 0]
[1 0 1]
[0 1 1]

[1 0 0]
[0 1 0]
[1 1 1]

Figure 2: Matrices graph describing the Brun algorithm for d = 3

win-lose graph are

f0(x0, x1, x2) =
1

(x0 + x1 + x2)(x0 + x1)(x0 + x2)
,

f1(x0, x1, x2) =
1

(x0 + x1 + x2)(x0 + x1)(x1 + x2)
,

f2(x0, x1, x2) =
1

(x0 + x1 + x2)(x0 + x2)(x1 + x2)
.

Thanks to Fougeron’s criterion (see [Fougeron]), we can check that this al-
gorithm is ergodic. This algorithm is almost auto-dual: in restriction to the
domain, the dual is the Cassaigne’s algorithm, up to permutation.

5.2 Brun
The Brun continued fraction algorithm subtract the second greatest coordinate
to the greatest one. This is not directly described by a matrices graph but we
can convert it to a matrices graph thanks to the algorithm described in section 3.
For d = 3, we obtain the matrices graph of figure 2.
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Figure 3: Win-lose graph of the Brun algorithm for d = 3

Then, we can compute the domains. For d = 3, we get

∅,

 1 1 2
1 1 1
0 1 1

R3
+,

 1 1 2
1 1 1
0 1 1

R3
+,

 0 1 1
1 1 2
1 1 1

R3
+,

 1 1 2
1 1 1
0 1 1

R3
+,

 0 1 1
1 1 2
1 1 1

R3
+,

 1 1 2
0 1 1
1 1 1

R3
+,

thus, we get the densities for the matrices graph

0,
1

(2x0 + x1 + x2)(x0 + x1 + x2)(x0 + x1)
,

1

(2x0 + x1 + x2)(x0 + x1 + x2)(x0 + x1)
,

1

(x0 + 2x1 + x2)(x0 + x1 + x2)(x1 + x2)
,

1

(2x0 + x1 + x2)(x0 + x1 + x2)(x0 + x1)
,

1

(x0 + 2x1 + x2)(x0 + x1 + x2)(x1 + x2)
,

1

(2x0 + x1 + x2)(x0 + x1 + x2)(x0 + x2)
.

We deduce the invariant density for the original algorithm:

f(x) =
∑

m∈M, x∈mRd
+

fm(m−1x),

whereM⊂Md(R) is the set of states of the matrices graph. For d = 3, and for
x0 < x1 < x2, we get

f(x0, x1, x2) =
1

(x0 + x2)x1x2
.

The matrices graph can be decomposed to a win-lose graph. The figure 3
shows the strongly connected component of this graph for d = 3. Thanks to
Fougeron’s criterion, we can check that this algorithm is ergodic for every d
(see [Fougeron]).

5.3 Poincare
The Poincaré algorithm subtract the second greatest coordinate to the greatest,
the third greatest to the second, etc... For d = 3, it is defined by the matrices
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Figure 4: Domains of the win-lose graph of the Brun algorithm for d = 3
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Figure 5: Poincaré algorithm as a win-lose graph for d = 3

graph with one state and with matrices 1 0 0
1 1 0
1 1 1

 ,

 1 1 1
0 1 1
0 0 1

 ,

 1 0 0
1 1 1
1 0 1

 ,

 1 1 0
0 1 0
1 1 1

 ,

 1 0 1
1 1 1
0 0 1

 ,

 1 1 1
0 1 0
0 1 1


Since the set of matrices is stable by transposition, the algorithm is auto-

dual, and the full positive cone Rd
+ is a domain, thus 1∏

x is an invariant density.
For d = 3, the algorithm can be described by the win-lose graph of Figure 5,

and we can check that it is not ergodic and not convergent (see [Nogueira]). For
d = 4, it can be described by a win-lose graph with 20 states, but it doesn’t
satisfy the Fougeron’s criterion, and it is an open question to determine if it is
ergodic.

5.4 Reverse
The reverse algorithm is defined as the Arnoux-Rauzy’s one if one coordinate
is greater than the sum of the others, and it sends the remaining center in
the whole positive cone. It is given by the matrices graph with one state and
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matrices 1 0 0
0 1 0
1 1 1

 ,

 1 0 0
1 1 1
0 0 1

 ,

 1 1 1
0 1 0
0 0 1

 ,

 0 1 1
1 0 1
1 1 0

 .

A domain is

 0 1 1
1 0 1
1 1 0

R3
+, thus an invariant density is

f(x0, x1, x2) =
2

(x0 + x1)(x0 + x2)(x1 + x2)
.

This algorithm is almost auto-dual: in restriction to the domain, the dual is
the reverse algorithm.

5.5 Fully subtractive
The fully subtractive algorithm subtract the smallest coordinate to every other
ones. It is described by the win-lose graph with one state and d letters.

The unique domain is the Rauzy gasket for d = 3 and generalization of it if
d ≥ 4. It has zero-Lebesgue measure (see [AHS] for more details for d = 3), thus
we cannot find an invariant density by this method. For d ≥ 3, this algorithm is
not ergodic nor convergent. The dual of this algorithm is the Arnoux-Rauzy’s
one, that subtract to the greatest coordinate the sum of the others.

5.6 Jacobi-Perron
The Jacobi-Perron continued fraction algorithm subtract as many times as pos-
sible the smallest coordinate to the other ones.

For d = 3, we can describe a slowed down version of this algorithm by
a matrices graph with 4 states whose main strongly connected component is
depicted in figure 6. And we can decompose this strongly connected component
to the win-lose graph of Figure 7. Thanks to Fougeron’s criterion, we can check
that this algorithm is ergodic for d = 3.

The invariant density for this algorithm is unknown. The domain is frac-
tal, and we don’t know if it has zero Lebesgue measure. See Figure 8 for an
approximation of the domains of the win-lose graph.

5.7 Arnoux-Rauzy-Poincaré
The Arnoux-Rauzy-Poincaré continued fraction algorithm is a combination of
Arnoux-Rauzy and Poincaré’s one. We apply the Arnoux-Rauzy algorithm if
possible (i.e. we subtract to the greatest coordinate the sum of the others),
otherwise we apply the Poincaré’s one (i.e. we subtract to the second greatest
coordinate the smallest, and to the greatest the second greatest).

The Arnoux-Rauzy-Poincaré algorithm can be represented by a matrices
graph, thanks to the algorithm of section 3. We get the graph of figure 9.
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Figure 6: A matrices graph for the Jacobi-Perron algorithm for d = 3
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Figure 7: Win-lose graph for the Jacobi-Perron algorithm for d = 3

Figure 8: Approximation of domains of the win-lose graph for the
Jacobi-Perron algorithm for d = 3
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Figure 9: Matrices graph for the Arnoux-Rauzy-Poincaré algorithm

The invariant density is unknown for this algorithm. The domains are frac-
tal, and we don’t know if they have non-zero Lebesgue measure.

5.8 Two letters win-lose graph with non-rational density
The win-lose graph

0

3

1 20

1

0

1

1
0

1

0

have domain languages D0 = 02{0,1}∗, D1 = 01{0,1}∗, D2 = 1+01{0,1}∗ and

D3 = 1+02{0,1}∗. Thus, domains are D0 =

(
1 2
0 1

)
R2

+, D1 =

(
2 1
1 1

)
R2

+,

D2 =
⋃

n≥1

(
2 1

2n+ 1 n+ 1

)
R2

+ and D3 =
⋃

n≥1

(
1 2
n 2n+ 1

)
R2

+. And all
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these interval are pairwise quasi-disjoint. We get that an invariant density is

f0(x, y) =
1

x(2x+ y)
, f1(x, y) =

1

(2x+ y)(x+ y)
,

f2(x, y) =
∑
n≥1

1

(2x+ (2n+ 1)y)(x+ (n+ 1)y)
,

f3(x, y) =
∑
n≥1

1

(x+ ny)(2x+ (2n+ 1)y)
.

By Proposition 4.3, f2 and f3 are not rational fractions.

5.9 Other examples
More examples can be found here: http://www.i2m.univ-amu.fr/perso/paul.
mercat/ComputeInvariantDensities.html.

And many other examples can be easily tested since algorithms described
in this article are implemented in a package for the Sage maths software (see
https://www.sagemath.org/). The package is freely available here: https:
//gitlab.com/mercatp/badic. It can be installed with the command line

$ sage −pip i n s t a l l g i t+https : // g i t l a b . com/mercatp/ badic

6 Construction of extensions from sets of quadratic
numbers

In this section, we present an algorithm that inputs a finite set of quadratics
numbers, and that outputs a win-lose graph on two letters with an invariant

density where the quadratic numbers appear. We denote 0 =

(
1 1
0 1

)
and

1 =

(
1 0
1 1

)
to lighten the notations.

The algorithm is as follow:

• If the number of elements of the set is odd, add or remove the number 0
to the set. Change signs in order to have non negative numbers.

• Compute the continued fraction expansion of (x, 1) for each quadratic
number x, for the fully subtractive algorithm on two letters. Each ex-
pansion is of the form uvω, where u and v are two finite words over the
alphabet {0,1}.

• For each quadratic number x with expansion uvω, compute the rational
language Lx of finite words less than uvω in lexicographical order. A
deterministic automaton recognizing this language is easily computed by
considering the minimal automaton recognizing the language uv∗, and
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Figure 10: Automaton recognizing L√
2

then adding adding a new state s with edges s
0−→ s and s

1−→ s, and
adding edges t 0−→ s for each state t that have no outgoing edge labeled by
0.

• If x0 < x1 < ... < x2n+1 are the ordered quadratic numbers, compute the
language

L =
⋃

i∈{0,...,n}

Lx2i ∩ Lc
x2i+1

.

• Take the mirror Lmirror (i.e. the language of words of L in reverse order).

• Compute a deterministic automaton recognizing this mirror Lmirror. This
deterministic automaton gives a win-lose graph on two letters.

Example 6.1. Consider the set {0,
√
2}. The expansion of (0, 1) is 1ω and

the expansion of (
√
2, 1) is (0110)ω. Then, the rational language L0 is {0,1}∗,

and the rational language L√
2 is recognized by the automaton of Figure 10.

The mirror of the language L = L0 ∩ Lc√
2

is recognized by the deterministic
automaton of Figure 11. It is a win-lose graph whose domains are projective
intervals between points

{(0 : 1), (
√
2− 1 : 1), (

√
2− 1 : 2−

√
2), (
√
2 : 1), (

√
2− 1 : 3− 2

√
2), (1 : 0)}.

Then, we easily deduce the invariant density, where
√
2 appears.

Remark 6.2. More examples and an implementation of this algorithm can be
found here: http: // www. i2m. univ-amu. fr/ perso/ paul. mercat/ AlgoQuadraticSet.
html It is implemented in the Sage mathematical software using the badic pack-
age, see Subsection 5.9 for more details.

Proposition 6.3. The algorithm above give a win-lose graph whose domains
are finite unions of projective intervals and (x, 1) is in the boundary, for every
quadratic number x of the input.

Proof. One way of computing the main component a minimal deterministic au-
tomaton recognizing the mirror of the language L is with the Algorithm 2. This
is the part of the minimal automaton which is strongly connected and for which
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Figure 11: Automaton recognizing the language Lmirror of Example 6.1

Data: A rational language L, over an alphabet A.
Result: A automaton without initial state.
P ′ ← {L,Lc};
do

R← ∅;
P ← P ′;
P ′ ← ∅;
for L ∈ P do

for a ∈ A do
Compute a−1L = {u ∈ A∗ | au ∈ L};
for L′ ∈ P do

L′′ ← L′ ∩ a−1L;
Add L′′ to P ′;
Add L′′ a−→ L to R;

end
end

end
while P ≠ P ′;
Return the automaton with set of edges R and final states
{L′ ∈ P | L′ ⊆ L}, after removing every state that are not co-reachable
from every state;

Algorithm 2: Algorithm that computes the strongly connected component
of the minimal deterministic automaton of the mirror
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every state has a domain with non-empty interior (or in other words, states with
non-zero invariant densities). Indeed, by construction, the automaton given by
this Algorithm 2 before the last step of pruning has states (Li)i∈S , where Li are
rational languages whose disjoint union is {0,1}∗, and such that ∀u ∈ {0,1}∗,
∀i, j, muLi ⊆ Lj if and only if u is the label of a path from Li to Lj . Thus
we have ∀i ∈ S, Lj =

⊎
Li

a−→Lj
aLi. It gives that ΛLj =

⊎
Li

a−→Lj
aΛLi , thus

(ΛLi
)i∈S are domains for the win-lose graph obtained by replacing 0 by 0 and

1 by 1. It is easily seen that if ΛLi
has non-empty interior, then the state Li

is co-reachable from every other state, and it cannot reach states Lj such that
ΛLj

has empty interior. Thus, the pruning keep exactly states having non-zero
invariant density. And we see that the given quadratic numbers appears in
the density, since by construction if F is the set of final states returned by the
algorithm, then

⋃
L′∈F L′ = L. Thus, we have

⋃
L′∈F DL′ = ΛL. And by con-

struction ΛL is an union of disjoints projective intervals whose end points are
R+(x, 1), where x is the given set of quadratic numbers. Indeed for every z ∈ R
the language Lz describe the projective interval {(x, y) ∈ R2

+ | x ≥ zy} between
R+(z, 1) and R+(1, 0).

Now let us show that domains are finite union of projective intervals. The
Algorithm 2 consists in refining the partition L ∪ Lc of {0,1}∗, up to have a
partition

⋃
i∈S Li such that for every i ∈ S and every letter a, a−1Li is an union

of L′
ks. It corresponds to refine the partition ΛL ∪ ΛLc = R2

+ up to have a
quasi-partition

⋃
i∈S ΛLi = R2

+ such that F (ΛLi) is an union of ΛLk
’s. This

refinement will give only finitely many intervals since quadratic numbers are
ultimately periodic.

Remark 6.4. The construction proposed here works more generally for any
rational language L over {0,1} such that ΛL has non-empty interior. If we
consider a deterministic automaton recognizing the mirror of L, it gives a win-
lose graph such that the limit set of L is an union of domains. If for example
we consider the automaton

0

1

0

1 1
01

it has a limit set ΛL with infinitely many accumulation points. The mirror of L
give the win-lose graph of Figure 12, and we have D0 ∪D1 ∪D2 ∪D3 = ΛL.

7 Greetings
I thank Charles Fougeron and Vincent Delecroix for interesting discussions.
Without them, this article wouldn’t exists.
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Figure 12: Win-lose graph with domains that have infinitely many
accumulation points
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Figure 13: Some steps of Cassaigne, Brun, reverse, Jacobi-Perron,
Arnoux-Rauzy-Poincaré, fully subtractive, and Poincaré’s algorithms
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