Rauzy fractals, one dimensional Meyer sets, β-numeration and automata

Paul MERCAT

28/11/2017
Zero Entropy System
Let’s take the following substitution over the alphabet \{a, b, c\}:

\[
\begin{align*}
 s & : \begin{cases}
 a & \mapsto ab \\
 b & \mapsto ca \\
 c & \mapsto a
 \end{cases}
\end{align*}
\]

Then by iterating the letter a we get an infinite fixed point:

\[
\begin{align*}
 s(a) & = \text{ab} \\
 s^2(a) & = \text{abca} \\
 s^3(a) & = \text{abcaab} \\
 \ldots \\
 s^\infty(a) & = \text{abcaabababcaabcaabcaabcaabcaabab
If we replace letters of this fixed point by intervals of convenient lengths, we get a self-similar tiling of \mathbb{R}_+.

![Diagram of self-similar tiling](image_url)
To get such a self-similar tiling of \mathbb{R}_+, the lengths of each intervalles must satisfy the equality

$$t_{M_s} \cdot \begin{pmatrix} l_a \\ l_b \\ l_c \end{pmatrix} = \beta \begin{pmatrix} l_a \\ l_b \\ l_c \end{pmatrix},$$

where $M_s = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ is the incidence matrix of the substitution and β is the Perron eigenvalue of M_s. Hence we can assume that the lengths $l_i, \ i \in \{a, b, c\}$ live in $\mathbb{Q}(\beta)$.
Quasicrystal of \mathbb{R}_+

If we take for example

$$l_a = 1, \quad l_b = \beta - 1, \quad l_c = \beta^2 - \beta - 1,$$

we get the following subset Q of $\mathbb{Q}(\beta)$.

$$Q = \{0, 1, \beta, \beta^2 - 1, \beta^2, \beta^2 + 1, \beta^2 + 2, \beta^2 + \beta + 1, \beta^2 + \beta + 2, \ldots\}$$

This set have very strong properties since we have:

Proposition

Q is a β-invariant Meyer set of \mathbb{R}_+.

But what is a Meyer set?
Meyer sets are a mathematical model for quasicrystals.

Definition

A *Meyer set* of \mathbb{R}_+ is a set $Q \subset \mathbb{R}_+$ such that
- Q is a Delone set of \mathbb{R}_+,
- $Q - Q$ is a Delone set of \mathbb{R}.

Definition

Q is a *Delone set* of E if
- Q is *uniformly discrete*
 $$\exists \epsilon > 0, \ \forall (x, y) \in Q^2, B(x, \epsilon) \cap B(y, \epsilon) = \emptyset,$$
- Q is *relatively dense in E*
 $$\exists R > 0, \ E \subseteq \bigcup_{x \in Q} B(x, R).$$
The quasicrystal Q is a part of $\mathbb{Q}(\beta)$, hence we can look at the action of the Galois group. Here, β has two complexes conjugated as conjugates, hence we have an embedding

$$\sigma : \mathbb{Q}(\beta) \hookrightarrow \mathbb{C},$$

by choosing one of the complex conjugates.

Proposition

The set $\sigma(Q) \subseteq \mathbb{C}$ is bounded.

We call the closure $\overline{\sigma(Q)}$ a **Rauzy fractal**.
The Rauzy fractal $\overline{\sigma(Q)} \subset \mathbb{C}$
Moreover, we can color in red the points of $\sigma(Q)$ that are left bound of an interval of length 1 (i.e. coming from letter a), in green the points that are left bound of an interval of length $\beta - 1$ (i.e. coming from letter b), and the other ones, for $\beta^2 - \beta - 1$, in blue.

We can also color in the same way by considering the right bound rather than the left one.

Proposition

Let $u = s^\infty(a)$. Then, the subshift $(\overline{S\mathbb{Z}u}, S)$ is measurably conjugated to a domain exchange on the Rauzy fractal $\sigma(Q)$, for the Haar measure.
Introduction

Paul MERCAT

Rauzy fractals, one dimensional Meyer sets, \(\beta \)-numeration and automata

28/11/2017 Zero Entropy System 10/37
Introduction

Paul MERCAT

Rauzy fractals, one dimensional Meyer sets,
β-numeration and automata

28/11/2017 Zero Entropy System 11/37
If s is any substitution over an alphabet A, everything generalizes:

- **fixed point**: Up to replace s by a power, s has a fixed point ω.

- **self-similar tiling**: We get a self-similar tiling of \mathbb{R}_+ or \mathbb{R} by replacing letters by intervals of lengths l_a, $a \in A$ given by a Perron left eigenvector of the incidence matrix.

- **quasicrystal**: We get a set $Q_\omega \subset \mathbb{R}$ by taking the bounds of intervals of this self-similar tiling, and up to rescaling we have $Q_\omega \subset \mathbb{Q}(\beta)$ where β is the Perron eigenvalue of the incidence matrix M_s. If β is a Pisot number, Q_ω is a Meyer set.

- **Rauzy fractal**: Q_ω is a subset of $\mathbb{Q}(\beta)$, therefore we can embed it into a natural contracting space E_β^c where it is a pre-compact subset.

- **Domain exchange**: If the substitution satisfies the strong coincidence condition, then we can color the Rauzy fractal $\sigma_c(Q_\omega)$ in order to define a domain exchange conjugated to the shift.
General definitions of contracting space and Rauzy fractal

There are natural contracting and expanding spaces for the multiplication by β on a number field $k = \mathbb{Q}(\beta)$. Call P the set of places of k (i.e. equivalence classes of absolute values), and let

\[P_e := \{ v \in P \mid |\beta|_v > 1 \} \quad \text{and} \quad P_c := \{ v \in P \mid |\beta|_v < 1 \}. \]

The **contracting space** is $E^c_\beta := \prod_{v \in P_c} k_v$ and the expanding one is $E^e_\beta := \prod_{v \in P_e} k_v$, where k_v denotes the completion of k for the absolute value v. We denote by $\sigma_c = \prod_{v \in P_c} \sigma_v : \mathbb{Q}(\beta) \hookrightarrow E^c_\beta$ where $\sigma_v : \mathbb{Q}(\beta) \hookrightarrow k_v$ is a choice of one natural embedding.

Definition

We call **Rauzy fractal** the adherence of $\sigma_c(\mathbb{Q}_\omega)$ in E^c_β.

For the previous example, where β is root of $x^3 - x^2 - x - 1$, we have $E^e_\beta = \mathbb{R}$ (there is one real place) and $E^c_\beta = \mathbb{C}$ (there is one complex place).
Main results

Rauzy fractals can approximate any shape

Theorem

For any Pisot number β and for any $P \subset E^c_\beta$, bounded and containing 0, there exists substitutions whose Rauzy fractals approximate arbitrarily P, for the Hausdorff distance, and whose Perron numbers are powers of β. Moreover, the proof is constructive.

The Hausdorff distance between two subsets $A \subseteq E$ and $B \subseteq E$ of a metric space E is

$$d(A, B) = \max \left(\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b) \right).$$
Main results

Rauzy fractals approximating various shapes

![Image of fractals approximating various shapes]
Main results
g-β-sets: a nice description of quasicrystals by automata

Definition (Main tool)

A set $Q \subseteq \mathbb{Q}(\beta)$ is a **g-β-set** if we have

$$Q = Q_{L,\beta} = \left\{ \sum_{k=0}^{n} a_k \beta^k \mid n \in \mathbb{N}, \ a_0...a_n \in L \right\},$$

where $\Sigma \subset \mathbb{Q}(\beta)$ is a finite alphabet and $L \subseteq \Sigma^*$ is a regular language.

Proposition

If ω is a fixed point of a substitution, then Q_ω is a g-β-set.

The aim of the following will be to give a reciprocal to this proposition.
g-β-set coming from a substitution

For the example

\[s : \begin{cases}
 a &\mapsto ab \\
 b &\mapsto ca \\
 c &\mapsto a
\end{cases} \]

the mirror of the language \(L \), recognized by the following automaton, define a g-β-set which is a quasicrystal coming from the substitution \(s \), for \(β \) the Tribonacci number.
Paul MERCAT
Rauzy fractals, one dimensional Meyer sets, β-numeration and automata

Main results

$\times \beta$

$+0 \quad +1$

$\times \beta$

$+0 \quad +1 \quad +0 \quad +\beta^2 - \beta - 1$

$\times \beta$

$+0 \quad +1 \quad +0 \quad +\beta^2 - \beta - 1 \quad +0 \quad +0 \quad +1$

$\times \beta$

$+0 \quad +1 \quad +0 \quad +\beta^2 - \beta - 1 \quad +0 \quad +0 \quad +1$
Stability of the set of $g\beta$-sets

Properties (Properties of $g\beta$-sets)

If β is an algebraic number without conjugate of modulus one, and if Q_1 and Q_2 are two $g\beta$-sets, then

- $Q_1 \cup Q_2$, $Q_1 \cap Q_2$ and $Q_1 \setminus Q_2$ are $g\beta$-sets,
- $Q_1 + Q_2$ is a $g\beta$-set,
- $\forall t \in \mathbb{Q}(\beta)$, $Q_1 + t$ is a $g\beta$-set,
- $\forall c \in \mathbb{Q}(\beta)$, cQ_1 is a $g\beta$-set,
- $\forall k \geq 1, n \geq 1$, a $g\beta^k$-set is a $g\beta^n$-set.

Moreover, everything is computable, and emptyness and inclusion are decidable.

Hence, it is easy to approximate any shape by $g\beta$-sets.
Main result:
Characterization of Meyer sets coming from substitutions

It is easy to prove that Rauzy fractals can approximate any shape with the previous properties of g-β-sets and with the following theorem.

Theorem

Let β be a Pisot number, and let $Q \subseteq \mathbb{Q}(\beta)$ a β-invariant Meyer set. Then, the Meyer set Q comes from a substitution if and only if it is a g-β-set that contains 0.

We have already seen that these conditions are necessary. Let us show that these are sufficient, and how to construct such substitution.
\(\beta \)-expansion algorithm in a \(\beta \)-invariant Meyer set

Let \(Q \) be a Meyer set and \(\beta \) be a Pisot number with \(\beta Q \subset Q \) and \(0 \in Q \). Then we can define the following algorithm that gives an unique finite \(\beta \)-expansion of any element of \(Q \).

Data: \(x \in Q \)

Result: coefficients \(t_0 \) of a \(\beta \)-expansion of \(x \)

while \(x \neq 0 \) **do**

\[
\begin{align*}
 x &\leftarrow x - t_0 \text{ for } t_0 = \inf\{t \geq 0 \ | \ x - t \in \beta Q\}; \\
 x &\leftarrow x/\beta; \\
 \text{print } t_0; \\
\end{align*}
\]

end

The expansion of \(x \) is given by the successive elements \(t_0 \).
Proof

With the previous algorithm, we define the language

\[L_Q := \{ a_0...a_n \in \Sigma_Q^* \mid a_0...a_n \text{ expansion of } x \text{ given by the algorithm } \} 0^* \]

over the finite alphabet

\[\Sigma_Q := \{ \inf \{ t \geq 0 \mid x - t \in \beta Q \} \mid x \in Q \} . \]

In others word, \(L_Q \) is the unique subset of \(\Sigma_Q^* \) containing the empty word \(\epsilon \), such that \(Q = Q_{L_Q} \) and such that

\[a_0...a_n \in L_Q \iff \left\{ \begin{array}{l}
 a_0 = \min \{ t \in \Sigma_Q \mid \sum_{k=0}^n a_k \beta^k \in \beta Q + t \} \\
 a_1...a_n \in L_Q
\end{array} \right. \]

Proposition

The following two sentences are equivalent.

- \(Q \) comes from a substitution.
- \(L_Q \) is a regular language.
Hence, to prove the main theorem, it is enough to prove the following lemma:

Lemma

We have the equivalence between:

- L_Q is a regular language.
- Q is a $g-\beta$-set.

The direct part is obvious. To prove the converse, we have to construct the language L_Q from any regular language L such that $Q = Q_L$.

Proof
Step 1/3 : get a regular language over the alphabet Σ_Q

Let L be a regular language over an alphabet $\Sigma \subset \mathbb{Q}(\beta)$ such that $Q = Q_L$.

Lemma (Change of the alphabet)

The following language is regular

$$L_{Q,\Sigma_Q} := \{a_0...a_n \in \Sigma_Q^* \mid n \in \mathbb{N}, \sum_{k=0}^{n} a_k \beta^k \in Q\},$$

and we have $Q_{L_{Q,\Sigma_Q}} = Q$.

Proof.

$$L_{Q,\Sigma_Q} = Z(p_1(L_{rel} \cap \Sigma_Q^* \times L0^*))$$

where $Z : L \mapsto \bigcup_{n \in \mathbb{N}} L0^{-n}$,

$$L_{rel} = \{(u, v) \in (\Sigma_Q \times \Sigma)^* \mid \sum_{k=0}^{n} (u_k - v_k) \beta^k = 0\}.$$

This last language is regular thanks to the main result of my paper « Semi-groupes fortement automatiques ».
Lemma (Stabilization by suffix)

The greatest language \(L' \subset L_{Q, \Sigma_Q} \) *such that*

\[
u \in L' \implies \text{every suffix of } u \text{ is in } L'
\]

is a regular language, and we have \(Q = Q_{L'} \).

Proof.

Take a deterministic automaton recognizing the mirror of \(L_{Q, \Sigma_Q} \). Remove every non final state. Then this new automaton recognize the mirror of \(L' \). And we have \(L_Q \subset L' \subset L_{Q, \Sigma_Q} \), hence \(Q = Q_{L'} \).
Lemma (Minimal words in lexicographic order describing Q)

We have the equality

$$L_Q = L' \setminus p_1(L' \times L' \cap L^{\text{rel}} \cap L^>)$$,

where

$$L^{\text{rel}} := \{(u, v) \in (\Sigma_Q \times \Sigma_Q)^* \mid \sum_{k=0}^{n} (u_k - v_k) \beta^k = 0\}$$

and

$$L^> := \{(u, v) \in (\Sigma_Q \times \Sigma_Q)^* \mid u > v \text{ for the lexicographic order}\}$$,

where we choose the natural order on Σ_Q, given by the embedding into the expanding space $E^e_\beta = \mathbb{R}$.

Hence L_Q is regular, and this proves the theorem.
Proof of last lemma.

- $L' \times L' \cap L^{rel} \cap L^>$ is the couple of words of same length, giving the same element of Q, and with the left one strictly less than the right one for the lexicographic order.

- Hence $L' \setminus p_1(L' \times L' \cap L^{rel} \cap L^>)$ is the set of elements of L' which are minimal in lexicographic order among the words of L' of same length describing the same point of Q.

- We deduce the equality with L_Q: the language is still stable by suffix and the first letter is the minimal one, as in the definition of L_Q.

- The language $L^>$ is easily seen to be regular: we can recognize it with an automaton having two states.

- The language L^{rel} is regular, thanks to my article « Semi-groupes fortement automatiques ».

Paul MERCAT

Rauzy fractals, one dimensional Meyer sets,
Let’s take the g-β-set defined by

$$\beta^3 = \beta^2 + \beta + 1.$$

The regular language L described by this automaton is

$$L = 0^*1^* \cup 0^*1^+0100\{0, 1\}^*.$$

This g-β-set satisfy every hypothesis of the theorem, hence we can compute a substitution from it.
Corresponding substitution whose Perron number is β:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mapsto 28, 12, 13</td>
<td>\mapsto 29, 1, 5</td>
<td>\mapsto 29, 1, 8, 13</td>
<td>\mapsto 4, 13</td>
<td>\mapsto 29, 3, 9</td>
<td>\mapsto 32, 11, 9</td>
<td>\mapsto 49</td>
<td>\mapsto 29, 3, 10, 13</td>
<td>\mapsto 29, 2</td>
<td>\mapsto 29, 3, 13</td>
<td>\mapsto 30, 26</td>
<td>\mapsto 32, 11, 10, 13</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>\mapsto 29, 14</td>
<td>\mapsto 29, 1, 27</td>
<td>\mapsto 32, 11, 27</td>
<td>\mapsto 29, 19</td>
<td>\mapsto 4, 27</td>
<td>\mapsto 7</td>
<td>\mapsto 28, 6</td>
<td>\mapsto 33, 35</td>
<td>\mapsto 29, 34</td>
<td>\mapsto 17</td>
<td>\mapsto 18</td>
<td>\mapsto 19</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Rauzy fractal
Construction of a domain exchange

\[-\beta^2 + 2\beta, \; \beta^2 - \beta - 1, \; \beta - 1, \; 1, \; -\beta^2 + 2\beta + 1, \; \beta^2 - \beta, \; \beta\]

Domain exchange on the model set defined by the unit disk window, and the integer ring \(\mathcal{O}_\beta\) where \(\beta\) is the Tribonnacci number.
Another application of g-β-sets

Let s and h be the substitutions

$s : \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 12 \end{cases}
\quad h : \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 3 \\ 3 \mapsto 4 \\ 4 \mapsto 5 \\ 5 \mapsto 1 \end{cases}$

and let $R_s \subseteq \mathbb{C}$ and $R_h \subseteq \mathbb{C}$ be their Rauzy fractals.

Proposition

R_s is a countable union of homothetic transformations of R_h, union a set of dimension less than two.
Proof

Projecting a substitution on another with same β

We define the \textit{projection} of a language on another by

$$\text{Proj}(L, L') = \left\{ u \in L' \mid \sum_{i=0}^{\lfloor |u|^{-1} \rfloor} u_i \beta^i \in Q_L \right\} = Z(p_1(L' \times L^0 \cap L^{rel}))$$

\textbf{Proposition}

There exists regular languages A and B such that

$$\text{Proj}(0^3 L_s, L_h) = AL_h \cup B$$

with spectral radius of B less than β.

\textbf{Figure – Minimal automata of L_s and L_h respectively}
Computation of the dimension

The box dimension of the part of dimension less than two is

$$\dim_{MB}(\sigma_{-}(Q_{LM})) = 2 \frac{\log(\gamma)}{\log(\beta)} \approx 1.94643460326525\ldots$$

where $\gamma \approx 1.31477860592584\ldots$ is the greatest root of $x^{13} - x^{12} - x^{10} + x^{9} - 2x^{4} + x^{3} - 1$ and β is the smallest Pisot number.

Theorem

Let $\overline{\beta}$ be a complex conjugate of the smallest Pisot number β, and let $L \subseteq \Sigma^{*}$ be a language over the alphabet $\Sigma = \{0, 1\}$ such that the elements of $\sigma_{-}(Q_{L}) = \left\{ \sum_{i=0}^{\lfloor |u|/2 \rfloor} u_{i} \overline{\beta}^{i} \mid u \in L \right\} \subseteq \mathbb{C}$ are uniquely represented for a given length (i.e.

$$\forall u, v \in L, \left(|u| = |v| \text{ and } \sum_{i=0}^{\lfloor |u|/2 \rfloor} u_{i} \overline{\beta}^{i} = \sum_{i=0}^{\lfloor |v|/2 \rfloor} v_{i} \overline{\beta}^{i} \right) \implies u = v.$$

Then we have $\dim_{MB}(\sigma_{-}(Q_{L})) = \frac{\log(\gamma)}{\log(1/|\beta|)} = 2 \frac{\log(\gamma)}{\log(\beta)}$, where γ is the spectral radius of the minimal automaton of L.
Zoom in the Rauzy fractal of s