

Licence de mathématiques, 3^e année, Structures Algébriques

Examen Partiel mardi 7 mars 2017

	Aix-Montperrin
	Luminy
\boxtimes	Saint-Charles
	Saint-Jérôme
	Château-Gombert

Deux heures, ni calculatrices, ni documents Enseignants: H. Short, P. Mercat, K. Oeljeklaus

I. (Cours, 3 points) (1 + 2 = 3 points)

a) Soit $Gl_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{C}, ad - bc \neq 0 \right\}$. Monter que $\phi : Gl_2(\mathbb{C}) \to \mathbb{R}_+^*$ défini par $\phi(A) = |\det(A)|$ est un homomorphisme de groupes, où \mathbb{R}_+^* dénote le groupe de réels positifs muni de l'opération de multiplication.

b) Énoncer soigneusement un théorème du cours qui permet de déduire que le quotient $\frac{Gl_2(\mathbb{C})}{Sl_2(\mathbb{C})}$ est un groupe infini abelien, où $Sl_2(\mathbb{C})$ est le sous-groupe des matrices de determinant 1.

II. (13 points) (2+1+1+2+2+1+2+2=13 points)

- 1) Soit (G,*) un groupe. Monter que le groupe G agit sur lui-même par l'opération de conjugaison : à chaque $g \in G$ on associe l'application $\phi: G \to G$ tel que $\forall x \in G, \, \phi_g(x) = g*x*g^{-1}$. Les orbites associées s'appellent les classes de conjugaison : quand deux éléments de G sont dans la même orbite on dit qu'ils sont conjugués dans G.
- 2) Soit H un sous-groupe distingué de G. Montrer que H est une réunion de classes de conjugaison de G.
- 3) Montrer que deux éléments conjugués dans le groupe symétrique S_4 ont même ordre.
- 4) Montrer que $\operatorname{supp}(aba^{-1}) = a * \operatorname{supp}(b)$, où $\operatorname{supp}(g)$ est le support de g pour l'action usuelle de S_4 sur l'ensemble $E_4 = \{1, 2, 3, 4\}$.
- 5) Dans S_4 , donner pour chaque classe de conjugaison, un élément représentant cette classe.
- 6) Donner la liste de tous les éléments du groupe alterné A_4 .
- 7) Montrer que A_4 possède un sous-groupe L d'indice 3.
- 8) Le sous–groupe L est–il distingué dans S_4 ? Et L est–il distingué dans A_4 ?

III. (10,5 points) (1,5+0.5+0.5+1+2+2+1+2=10,5 points)

Soit (G, *) un groupe, et B un sous-groupe d'indice n. Soit $Q = \{a_1 * B, a_2 * B, \dots, a_n * B\}$ la famille des classes laterales gauches.

Pour chaque $a \in G$, soit $\rho_a : Q \to Q$ l'application $a_i * B \to (a * a_i) * B$.

- 1) Montrer qu'on a ainsi défini une action de G sur Q.
- 2) Montrer que si $a \in \text{Ker } \Phi \text{ alors } a \in a_i * B * a_i^{-1} \text{ pour tout } i = 1, \dots, n.$
- 3) Montrer que $\operatorname{Ker} \Phi = \bigcap_{i=1,\dots,n} a_i * B * a_i^{-1}$.
- 4) Déduire qu'il existe alors un homomorphisme $G \to S_n$ dont le noyau est contenu dans B.
- 5) Soit G un groupe infini qui contient un sous-groupe d'indice fini strictement supérieur à 1. Montrer que G contient un sous-groupe **distingué** propre non-réduit au groupe trivial.

On rappel : un group G est dit simple s'il ne possède pas de sous-groupe propre : c'est à dire, H est un sous-groupe de G implique $H = \{e\}$ ou H = G.

- 6) Montrer qu'un groupe simple qui contient un sous-groupe propre d'indice n est isomorphe à un sous-groupe de S_n .
- 7) Utiliser la question 7 de l'exercice II ci-dessus pour montrer que A_4 n'est pas simple.
- 8) Soit G un groupe fini et soit p le plus petit nombre premier qui divise l'ordre de G. Supposons que G contient un sous-groupe H d'indice p. En considérant les possibilités pour les ordres des sous-groupes de S_p (ou autrement), déduire que H est distingué dans G.