

Licence de mathématiques, 3e année, Structures Algébriques

Examen Partiel
mardi 8 mars 2016

☐ Aix-Montperrin
□ Luminy
\boxtimes Saint-Charles
\square Saint-Jérôme
☐ Château-Gombert

Deux heures, ni calculatrices, ni documents Enseignants: H. Short, K. Oeljeklaus, P. Mercat

Les exercices II,III sont indépendants : Il y a 25 points

I. (Cours, 2 + 2 + 2 = 6 points)

- a) Soit G un groupe et H un sous-groupe de G. Montrer que H est un sous-groupe distingué de G si et seulement si le quotient G/H porte de façon canonique une structure de groupe. Préciser la loi de composition interne de cette structure de groupe.
- b) Avec les mêmes hypothèses que dans a), montrer que H est un sous-groupe distingué si et seulement si les deux partitions de G données par les classes laterales droites et par les classes laterales gauches sont les mêmes.
- c) Donner la définition du sous-groupe alterné A_n du groupe symétrique S_n . Soit H un sous-groupe de S_n . Montrer que si $H \not\subset A_n$, alors $Card(H \cap A_n) = \frac{Card(H)}{2}$.

II. (2+1+1+1+1+2=8 points)

Soit A_4 le sous-groupe des permutations alternées dans le groupe symétrique S_4 .

1) Donner la structure de la décomposition en cycles disjoints de tous les éléments de S_4 , leur ordre et le nombre de tels éléments par ordre. Indiquer lesquels se trouvent dans A_4 .

Nous voulons démontrer que A_4 n'a pas de sous-groupe d'ordre 6. On veut procéder par contradiction; Supposons qu'il existe un tel sous-groupe K d'ordre 6 dans A_4 .

- 2) Montrer qu'un tel K serait distingué dans A_4 (regarder l'indice de K dans A_4).
- 3) Enoncer un théorème sur les nombres premiers et les ordres des groupes finis qui nous permet d'affirmer qu'un tel K contiendrait un élément d'ordre 3.
- 4) Calculer (12)(34)(123)(34)(12).
- 5) Montrer que tous les cycles de longueur 3 sont conjugués dans A_4 .
- 6) En déduire que K contiendrait alors toutes les permutations d'ordre 3 dans S_4 et obtenir une contradiction.

III. (1+1+1+2+2+2+2=11 points)

Soit G un groupe, H un sous-groupe, et soit $G/H = \{x * H \mid x \in G\}$ l'ensemble de classes laterales gauches de H dans G.

Soit $N_G(H) = \{x \in G \mid x * H * x^{-1} = H\}$ le normalisateur de H dans G.

- 0) Montrer que $N_G(H)$ est un sous-groupe de G.
- 1) Montrer que H est un sous groupe de $N_G(H)$, et de plus est distingué dans $N_G(H)$
- 2) Montrer qu'on a une action de G sur G/H : définie par $g \cdot (x * H) = (g * x) * H$.
- 3) Quel est le stabilisateur de la classe e * H = H? Et son orbite?
- 4) Enoncer un théorème reliant les cardinalités de l'orbite et du stabilisateur et en déduire le théorème de Lagrange sur les ordres des sous—groupes de G.
- 5) Montrer que le stabilisateur de la classe x * H est H si et seulement si $x \in N_G(H)$.
- 6) Soit $z \in G$, et z * H sa classe dans le groupe quotient $\widehat{G} = N_G(H)/H$. Soit $k \in \mathbb{N}^*$. Montrer que $(z * H)^k$ est égal à l'élément neutre dans \widehat{G} si et seulement si $z^k \in H$.
- 7) (HORS BARÈME) Supposons que H est d'ordre fini n, et que $z \in G \setminus H$, et $(z * H)^p$ égal à l'élément neutre dans \widehat{G} avec p premier. Montrer que G contient un sous-groupe d'ordre pn.