How To Play The Accordion

On the (Non-)Conservativity of the Reduction Induced by the Taylor Approximation of λ-Terms

Rémy Cerda, Aix-Marseille Université, I2M (jww. Lionel Vaux Auclair)
TLLA 2023, Rome, 2nd July 2023

Outline

The characters
Infinitary λ-calculi
The Taylor expansion

The story
The conservativity conjecture
In the finitary case, it works...
In the infinitary case, it doesn't!

THE CHARACTERS

Infinitary λ-calculi?

The well known $Y=\lambda f .(\lambda x .(f)(x) x) \lambda x .(f)(x) x$ does not normalise, but still computes "something":

Infinitary λ-calculi?

The well known $Y=\lambda f .(\lambda x .(f)(x) x) \lambda x .(f)(x) x$ does not normalise, but still computes "something". We would like:

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...

Infinitary $\boldsymbol{\lambda}$-calcul!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
〉 ... but infinitary $\boldsymbol{\lambda}$-calculi were formally introduced in the 1990s (Kennaway et al. 1997; Berarducci 1996) as an example of infinitary rewriting.

Infinitary $\boldsymbol{\lambda}$-CALCULI!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
〉 ... but infinitary $\boldsymbol{\lambda}$-calculi were formally introduced in the 1990s (Kennaway et al. 1997; Berarducci 1996) as an example of infinitary rewriting.
- Original definition: metric completion on the syntactic trees (infinitary terms) and strong notion of convergence (infinitary reductions).

Infinitary $\boldsymbol{\lambda}$-CALCULI!

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
> ... but infinitary λ-calculi were formally introduced in the 1990s (Kennaway et al. 1997; Berarducci 1996) as an example of infinitary rewriting.
- Original definition: metric completion on the syntactic trees (infinitary terms) and strong notion of convergence (infinitary reductions).
- Coinductive reformulation in the 2010s (Endrullis and Polonsky 2013).

OUR FAVORITE INFINITARY $\boldsymbol{\lambda}$-CALCULUS: Λ_{∞}^{001}

OUR FAVORITE INFINITARY $\boldsymbol{\lambda}$-CALCULUS: Λ_{∞}^{001}

OUR favorite infinitary $\boldsymbol{\lambda}$-Calculus: Λ_{∞}^{001}

... and Λ_{∞}^{001} is endowed with a reduction $\rightarrow_{\beta}^{\infty}$.

OUR favorite infinitary $\boldsymbol{\lambda}$-Calculus: Λ_{∞}^{001}

$M \longrightarrow{ }_{\beta}^{*} x$
$M \longrightarrow{ }_{\beta}^{\infty} x$$\frac{M \longrightarrow{ }_{\beta}^{*} \lambda x \cdot P \quad P \longrightarrow{ }_{\beta}^{\infty} P^{\prime}}{M \longrightarrow{ }_{\beta}^{\infty} \lambda x \cdot P^{\prime}}$

OUR favorite infinitary $\boldsymbol{\lambda}$-Calculus: Λ_{∞}^{001}

$$
\begin{gathered}
\frac{M \rightarrow{ }_{\beta}^{*} x}{M \rightarrow{ }_{\beta}^{\infty} x} \quad \frac{M \rightarrow_{\beta}^{*} \lambda x . P \quad P \rightarrow_{\beta}^{\infty} P^{\prime}}{M \rightarrow{ }_{\beta}^{\infty} \lambda x . P^{\prime}} \\
M \rightarrow_{\beta}^{*}(P) Q \quad P \rightarrow_{\beta}^{\infty} P^{\prime} \quad \triangleright Q \rightarrow_{\beta}^{\infty} Q^{\prime} \\
M \rightarrow{ }_{\beta}^{\infty}\left(P^{\prime}\right) Q^{\prime} \\
\\
\\
\hline M \longrightarrow_{\beta}^{\infty} M^{\prime}
\end{gathered}
$$

We get what we wanted

where $\Delta_{f}:=\lambda x .(f)(x) x$, so that $(Y) f \longrightarrow \beta\left(\Delta_{f}\right) \Delta_{f}$.

The Taylor approximation of the $\boldsymbol{\lambda}$-calculus

What is this thing called
β-reduction?

The TAYLOR APPROXIMATION OF THE $\boldsymbol{\lambda}$-CALCULUS

What is this thing called β-reduction?

Now, what is a multilinear approximation of β-reduction?

The TAylor approximation of the $\boldsymbol{\lambda}$-Calculus

What is this thing called β-reduction?

Now, what is a multilinear approximation of β-reduction?

The TAYLOR APPROXIMATION OF the $\boldsymbol{\lambda}$-CALCULUS

What is this thing called β-reduction?

Now, what is a multilinear approximation of β-reduction?

The TAylor expansion

$\mathcal{J}(-)$ maps a term to the sum of its approximants.

Terms	x	λx
Approximants	x	

AND FOR INFINITE TERMS?

Terms may look like this:

And FOR INFINITE TERMS?

Terms may look like this:

In which case they are approximated by terms like this:

And FOR INFINITE TERMS?

Terms may look like this: In which case they are approxi-
 mated by terms like this:

And FOR INFINITE TERMS?

Terms may look like this: In which case they are approxi-
 mated by terms like this:

An example

An example

An example

An example

An example

An example

THE STORY

THE CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:
Simulation theorem (V.A. 2017)
For all $M, N \in \Lambda$, if $M \longrightarrow{ }_{\beta}^{*} N$ then $\mathcal{T}(M) \not \rightsquigarrow_{r} \mathcal{T}(N)$.

THE CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:
Simulation theorem (C. and V.A. 2022)
For all $M, N \in \Lambda_{\infty}^{001}$, if $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{T}(M) \sim w_{r} \mathcal{T}(N)$.

The CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:
Simulation theorem (C. and V.A. 2022)
For all $M, N \in \Lambda_{\infty}^{001}$, if $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{T}(M) \longrightarrow \psi_{r} \mathcal{T}(N)$.
(It's not the point of this talk, but this has many nice consequences!)

The CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:
Simulation theorem (C. and V.A. 2022)
For all $M, N \in \Lambda_{\infty}^{001}$, if $M \longrightarrow{ }_{\beta}^{\infty} N$ then $\mathcal{T}(M) \not w_{r} \mathcal{T}(N)$.

What about the converse?

Conjecture (conservativity)

For all $M, N \in \Lambda_{\infty}^{001}$, if $\mathcal{T}(M) \rightarrow \rightsquigarrow_{r} \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^{\infty} N$.

What we call conservativity

Definition (conservative extension)

Let $\left(A, \rightarrow_{A}\right)$ and $\left(B, \rightarrow_{B}\right)$ be two abstract rewriting systems. The latter is an extension of the former if:

1. there is an injection $i: A \hookrightarrow B$,
2. $\forall a, a^{\prime} \in A$, if $a \rightarrow_{A} a^{\prime}$ then $i(a) \rightarrow_{B} i\left(a^{\prime}\right)$,
(inclusion)
(simulation)

Furthermore, this extension is conservative if:
3. $\forall a, a^{\prime} \in A$, if $i(a) \rightarrow_{B} i\left(a^{\prime}\right)$ then $a \rightarrow_{A} a^{\prime}$. (conservativity)

What we call conservativity

Definition (conservative extension)

Let $\left(A, \rightarrow_{A}\right)$ and $\left(B, \rightarrow_{B}\right)$ be two abstract rewriting systems. The latter is an extension of the former if:

1. there is an injection $i: A \hookrightarrow B$,
2. $\forall a, a^{\prime} \in A$, if $a \rightarrow_{A} a^{\prime}$ then $i(a) \rightarrow_{B} i\left(a^{\prime}\right)$,
(inclusion)
(simulation)

Furthermore, this extension is conservative if:
3. $\forall a, a^{\prime} \in A$, if $i(a) \rightarrow_{B} i\left(a^{\prime}\right)$ then $a \rightarrow_{A} a^{\prime}$. (conservativity)

Reformulated conjecture

$\left(\mathcal{P}\left(\Lambda_{r}\right), m_{r}\right)$ is a conservative extension of $\left(\Lambda_{\infty}^{001}, \longrightarrow{ }_{\beta}^{\infty}\right)$.

Theorem 1 (finitary conservativity)
For all $M, N \in \Lambda$, if $\mathcal{T}(M) \longrightarrow \varliminf_{r} \mathcal{T}(N)$ then $M \longrightarrow{ }_{\beta}^{*} N$.
Proof. Define a mashup relation \vdash (Kerinec and V.A. 2023) such that $M \vdash s$ means that s is an approximant of a reduct of M.

In THE FINITARY CASE, IT WORKS...

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{T}(M) m_{r} \mathcal{T}(N)$ then $M \longrightarrow{ }_{\beta}^{*} N$.
Proof. Define a mashup relation \vdash (Kerinec and V.A. 2023) such that $M \vdash s$ means that s is an approximant of a reduct of M.

1. $M \tilde{F} \mathcal{J}(M)$.
2. If $M \longrightarrow{ }_{\beta}^{*} N$ and $N \tilde{F} \mathcal{S}$, then $M \tilde{F} \mathcal{S}$.
3. If $M \vdash s$ and $N \vdash^{\prime} \bar{t}$, then $\forall s^{\prime} \in s\langle\bar{t} / x\rangle, M[N / x] \vdash s^{\prime}$.
4. If $M \tilde{F} \mathcal{S}$ and $\mathcal{S} \rightarrow \rightarrow_{r} \mathcal{T}$, then $M \tilde{F} \mathcal{J}$.
5. If $M \tilde{F} \mathcal{F}(N)$, then $M \longrightarrow{ }_{\beta}^{*} N$.

In THE FINITARY CASE, IT WORKS...

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{J}(M) w_{r} \mathcal{T}(N)$ then $M \longrightarrow{ }_{\beta}^{*} N$.
Proof. Define a mashup relation \vdash (Kerinec and V.A. 2023) such that $M \vdash s$ means that s is an approximant of a reduct of M.

1. $M \tilde{F} \mathcal{J}(M)$.
2. If $M \longrightarrow{ }_{\beta}^{*} N$ and $N \tilde{F} \mathcal{S}$, then $M \tilde{F} \mathcal{S}$.
3. If $M \vdash s$ and $N \vdash^{\prime} \bar{t}$, then $\forall s^{\prime} \in s\langle\bar{t} / x\rangle, M[N / x] \vdash s^{\prime}$.
4. If $M \tilde{F} \mathcal{S}$ and $\mathcal{S} \rightarrow \rightarrow_{r} \mathcal{T}$, then $M \tilde{F} \mathcal{J}$.
5. If $M \tilde{F} \mathcal{T}(N)$, then $M \longrightarrow{ }_{\beta}^{*} N$.

In THE FINITARY CASE, IT WORKS...

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{T}(M)$ m. $_{r} \mathcal{T}(N)$ then $M \longrightarrow{ }_{\beta}^{*} N$.
Proof. Define a mashup relation \vdash (Kerinec and V.A. 2023) such that $M \vdash s$ means that s is an approximant of a reduct of M.

1. $M \tilde{F} \mathcal{J}(M)$.
2. If $M \longrightarrow{ }_{\beta}^{*} N$ and $N \tilde{F} \mathcal{S}$, then $M \mathscr{F} \mathcal{S}$.
3. If $M \vdash s$ and $N \vdash^{\prime} \bar{t}$, then $\forall s^{\prime} \in s\langle\bar{t} / x\rangle, M[N / x] \vdash s^{\prime}$.
4. If $M \tilde{F} \mathcal{S}$ and $\mathcal{S} \rightarrow \rightarrow_{r} \mathcal{T}$, then $M \tilde{F} \mathcal{J}$.
5. If $M \tilde{F} \mathcal{T}(N)$, then $M \longrightarrow{ }_{\beta}^{*} N$.

In THE FINITARY CASE, IT WORKS...

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{J}(M) w_{r} \mathcal{T}(N)$ then $M \longrightarrow{ }_{\beta}^{*} N$.
Proof. Define a mashup relation \vdash (Kerinec and V.A. 2023) such that $M \vdash s$ means that s is an approximant of a reduct of M.

1. $M \tilde{F} \mathcal{J}(M)$.
2. If $M \longrightarrow{ }_{\beta}^{*} N$ and $N \tilde{F} \mathcal{S}$, then $M \tilde{F} \mathcal{S}$.
3. If $M \vdash s$ and $N \vdash^{\prime} \bar{t}$, then $\forall s^{\prime} \in s\langle\bar{t} / x\rangle, M[N / x] \vdash s^{\prime}$.
4. If $M \tilde{F} \mathcal{S}$ and $\mathcal{S} \rightarrow \rightarrow_{r} \mathcal{T}$, then $M \tilde{F} \mathcal{J}$.
5. If $M \tilde{F} \mathcal{T}(N)$, then $M \longrightarrow{ }_{\beta}^{*} N$.
6. If $M \tilde{F} \mathcal{F}(N)$, then $M \longrightarrow{ }_{\beta}^{*} N$.

In THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

5. If $M \tilde{F} \mathcal{T}(N)$, then $M \longrightarrow{ }_{\beta}^{*} N$.

Proof (finitary).

There is some $[N\rfloor \in \mathcal{T}(N)$ mimicking N.
By assumption, $M \vdash\lfloor N\rfloor$.
Proceed by induction on N, for instance:

$$
\frac{M \rightarrow{ }_{\beta}^{*} \lambda x . P \quad P \vdash\left\lfloor P^{\prime}\right\rfloor}{M \vdash\lfloor N\rfloor=\left\lfloor\lambda x \cdot P^{\prime}\right\rfloor}
$$

In THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

5. If $M \tilde{F} \mathcal{T}(N)$, then $M \longrightarrow{ }_{\beta}^{\infty} N$.

Proof attempt (infinitary).

There is some $[N]_{d} \in \mathcal{T}(N)^{\mathbb{N}}$ mimicking N.
By assumption, $M \vdash[N]_{d}$.
Proceed by induction on N, for instance:

$$
\forall d \in \mathbb{N}, \frac{M \longrightarrow{ }_{\beta}^{*} \lambda x \cdot P_{d} \quad P_{d} \vdash\left\lfloor P^{\prime}\right\rfloor_{d}}{M \vdash[N]_{d}=\left[\lambda x \cdot P^{\prime}\right\rfloor_{d}}
$$

Theorem 2 (non-conservativity)

There are terms $\mathbf{A}, \overline{\mathbf{A}} \in \Lambda_{\infty}^{001}$ such that:

- $\mathcal{T}(\mathbf{A})$ m $_{r} \mathcal{J}(\overline{\mathbf{A}})$,
- there is no reduction $\mathbf{A} \longrightarrow_{\beta}^{\infty} \overline{\mathbf{A}}$.

LET'S PLAY THE ACCORDION

Let's play the Accordion

A

Let's play the Accordion

A

@

β
@
$/ \backslash$
$\langle\mathbf{t}\rangle$
Q_{0}

Let's play the Accordion

A

Let＇s play the Accordion

A

＠

〈t〉＠
$\langle f\rangle \quad Q_{1}$
＠
$p^{\prime \prime}$ \} ${ }_{\beta}{ }^{\downarrow}$＊
＠
$\langle\mathbf{t}\rangle$＠
〈f \rangle
＠
$\langle f\rangle Q_{n}$

Let's play the Accordion

A

@

〈f \rangle

$\langle f\rangle Q_{n}$

Let＇s play the Accordion

A

Theorem 2 (non-conservativity)

There are terms $\mathbf{A}, \overline{\mathbf{A}} \in \Lambda_{\infty}^{001}$ such that:
> $\mathcal{I}(\mathbf{A})$ mı $_{r} \mathcal{J}(\overline{\mathbf{A}})$,
> there is no reduction $\mathbf{A} \longrightarrow_{\beta}^{\infty} \overline{\mathbf{A}}$.

In the infinitary case, the Accordion is a counterexample

Theorem 2 (non-conservativity)

There are terms $\mathbf{A}, \overline{\mathbf{A}} \in \Lambda_{\infty}^{001}$ such that:
> $\mathcal{I}(\mathbf{A})$ mı $_{r} \mathcal{T}(\overline{\mathbf{A}})$,
> there is no reduction $\mathbf{A} \longrightarrow_{\beta}^{\infty} \overline{\mathbf{A}}$.
From the topological point of view:

- $\Omega=(\Delta) \Delta$ generates a sequence of reductions with an accumulation point (and limit) $\Omega \in \Lambda$, but no strong limit,
> $\Omega_{3}=\left(\Delta_{3}\right) \Delta_{3}$ generates a sequence of reductions with an accumulation point $\left(\Delta_{3}^{\infty}\right)^{(\infty)} \notin \Lambda_{\infty}^{001}$, but no limit.
- A generates a sequence of reductions with an accumulation point $\overline{\mathbf{A}} \in \Lambda_{\infty}^{001} \backslash \Lambda$, but no limit.

Theorem 2 (non-conservativity, reformulated)

$\left(\mathcal{P}\left(\Lambda_{r}\right), m_{\mathrm{H}} \mapsto_{r}\right)$ is not a conservative extension of $\left(\Lambda_{\infty}^{001}, \longrightarrow_{\beta}^{\infty}\right)$.

In THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

Theorem 2 (non-conservativity, reformulated)

$\left(\mathcal{P}\left(\Lambda_{r}\right), m \psi_{r}\right)$ is not a conservative extension of $\left(\Lambda_{\infty}^{001}, \longrightarrow_{\beta}^{\infty}\right)$.
However, recall this:

Consolation 3

$\left(\mathcal{P}\left(\Lambda_{r}\right), \cong_{r}\right)$ is a conservative extension of $\left(\Lambda_{\infty \perp}^{001},=_{\beta \perp}^{\infty}\right)$.
Proof. Immediate consequence of the infinitary Commutation theorem (C. and V.A. 2022).

FURTHER QUESTIONS

> Can we fix this by restricting $\left(\mathcal{P}\left(\Lambda_{r}\right), m_{r}\right)$? For instance, consider a stratified resource reduction...

FURTHER QUESTIONS

> Can we fix this by restricting $\left(\mathcal{P}\left(\Lambda_{r}\right), m_{r}\right)$? For instance, consider a stratified resource reduction...
> There is a simulation theorem in some other settings (e.g. algebraic λ-calculus): Are these extensions conservative?

References I

Barendregt, Henk P. (1977). "The Type Free Lambda Calculus." In: Handbook of Mathematical Logic. Ed. by Jon Barwise. Studies in Logic and the Foundations of Mathematics 90. Elsevier, pp. 1091-1132. DoI: 10.1016/s0049-237x (08)71129-7.

Berarducci, Alessandro (1996). "Infinite λ-calculus and non-sensible models." In: Logic and Algebra. Routledge, pp. 339-377. DOI: 10.1201/9780203748671-17.
Böhm, Corrado (1968). "Alcune proprietà delle forme $\beta-\eta$-normali nel λ - K-calcolo." In: Pubblicazioni dell'Instituto per le Applicazioni del Calcolo 696. URL: http://www.enslyon.fr/LIP/REWRITING/TYPES_AND_L_CALCULUS/bohm696.pdf.
Cerda, Rémy and Lionel Vaux Auclair (2022). Taylor Expansion Finitely Simulates Infinitary β-Reduction. arXiv: 2211.05608 [cs.LO]. Submitted to Logical Methods in Computer Science.
Endrullis, Jörg and Andrew Polonsky (2013). "Infinitary Rewriting Coinductively." In: TYPES 2011, pp. 16-27. DOI: 10.4230/LIPIcs.TYPES.2011.16.

References il

Kennaway, Richard et al. (1997). "Infinitary lambda calculus." In: Theoretical Computer Science 175.1, pp. 93-125. DOI: 10.1016/S0304-3975(96)00171-5.
Kerinec, Axel and Lionel Vaux Auclair (2023). The algebraic λ-calculus is a conservative extension of the ordinary λ-calculus. arXiv: 2305.01067 [cs.LO].
Vaux, Lionel (2017). "Taylor Expansion, β-Reduction and Normalization." In: 26th EACSL Annual Conference on Computer Science Logic (CSL 2017), 39:1-39:16. DOI: 10.4230/LIPICS.CSL.2017.39.

Thanks for your attention!

