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OUTLINE

The characters

Infinitary λ-calculi

The Taylor expansion

The story

The conservativity conjecture

In the finitary case, it works...

In the infinitary case, it doesn’t!
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THE CHARACTERS



INFINITARY λ-CALCULI?

The well known 𝑌 = 𝜆𝑓 .(𝜆𝑥.(𝑓)(𝑥)𝑥)𝜆𝑥.(𝑓)(𝑥)𝑥 does not
normalise, but still computes “something”:
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INFINITARY λ-CALCULI!

▶ Well, Böhm trees have existed for a long time (Barendregt
1977, following Böhm 1968)...

▶ ... but infinitary λ-calculi were formally introduced in the
1990s (Kennaway et al. 1997; Berarducci 1996) as an
example of infinitary rewriting.

▶ Original definition: metric completion on the syntactic
trees (infinitary terms) and strong notion of convergence
(infinitary reductions).

▶ Coinductive reformulation in the 2010s (Endrullis and
Polonsky 2013).
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OUR FAVORITE INFINITARY λ-CALCULUS: Λ001∞

... and Λ001∞ is endowed with a reduction⟶∞
𝛽 .
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WE GET WHAT WE WANTED

(Δ𝑓 )Δ𝑓 ⟶∗
𝛽 (𝑓)(Δ𝑓 )Δ𝑓

𝑓 ⟶∗
𝛽 𝑓

𝑓 ⟶∞
𝛽 𝑓

(Δ𝑓 )Δ𝑓 ⟶∞
𝛽 𝑓∞

▷ (Δ𝑓 )Δ𝑓 ⟶∞
𝛽 𝑓∞

(Δ𝑓 )Δ𝑓 ⟶∞
𝛽 𝑓∞ = (𝑓)𝑓∞

where Δ𝑓 ∶= 𝜆𝑥.(𝑓)(𝑥)𝑥, so that (𝑌)𝑓 ⟶𝛽 (Δ𝑓 )Δ𝑓 .
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THE TAYLOR APPROXIMATION OF THE λ-CALCULUS

What is this thing called
β-reduction?

Now, what is a multilinear approximation of β-reduction?
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THE TAYLOR EXPANSION

𝒯(−) maps a term to the sum of its approximants.

Terms

Approximants
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AND FOR INFINITE TERMS?

Terms may look like this:

In which case they are approxi-
mated by terms like this:

10/23



AND FOR INFINITE TERMS?

Terms may look like this: In which case they are approxi-
mated by terms like this:

10/23



AND FOR INFINITE TERMS?

Terms may look like this: In which case they are approxi-
mated by terms like this:

10/23



AND FOR INFINITE TERMS?

Terms may look like this: In which case they are approxi-
mated by terms like this:

10/23



AN EXAMPLE
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THE STORY



THE CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:

Simulation theorem (V.A. 2017)
For all 𝑀,𝑁 ∈ Λ, if 𝑀 ⟶∗

𝛽 𝑁 then 𝒯(𝑀) ⟿𝑟 𝒯(𝑁).

(It’s not the point of this talk, but this has many nice
consequences!)

What about the converse?

Conjecture (conservativity)
For all 𝑀,𝑁 ∈ Λ001∞ , if 𝒯(𝑀) ⟿𝑟 𝒯(𝑁) then 𝑀 ⟶∞

𝛽 𝑁.
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WHAT WE CALL CONSERVATIVITY

Definition (conservative extension)
Let (𝐴,→𝐴) and (𝐵,→𝐵) be two abstract rewriting systems. The
latter is an extension of the former if:

1. there is an injection 𝑖 ∶ 𝐴 ↪ 𝐵, (inclusion)
2. ∀𝑎,𝑎′ ∈ 𝐴, if 𝑎 →𝐴 𝑎′ then 𝑖(𝑎) →𝐵 𝑖(𝑎′), (simulation)

Furthermore, this extension is conservative if:

3. ∀𝑎,𝑎′ ∈ 𝐴, if 𝑖(𝑎) →𝐵 𝑖(𝑎′) then 𝑎 →𝐴 𝑎′. (conservativity)

Reformulated conjecture
(𝒫(Λ𝑟) ,⟿𝑟) is a conservative extension of (Λ001∞ ,⟶∞

𝛽 ).
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IN THE FINITARY CASE, IT WORKS...

Theorem 1 (finitary conservativity)
For all 𝑀,𝑁 ∈ Λ, if 𝒯(𝑀) ⟿𝑟 𝒯(𝑁) then 𝑀 ⟶∗

𝛽 𝑁.

Proof. Define a mashup relation ⊢ (Kerinec and V.A. 2023) such
that 𝑀 ⊢ 𝑠 means that 𝑠 is an approximant of a reduct of 𝑀.

1. 𝑀 ⊢̃ 𝒯(𝑀).
2. If 𝑀 ⟶∗

𝛽 𝑁 and 𝑁 ⊢̃ 𝒮, then 𝑀 ⊢̃ 𝒮.
3. If 𝑀 ⊢ 𝑠 and 𝑁 ⊢! 𝑡, then ∀𝑠′ ∈ 𝑠⟨𝑡/𝑥⟩ , 𝑀[𝑁/𝑥] ⊢ 𝑠′.
4. If 𝑀 ⊢̃ 𝒮 and 𝒮 ⟿𝑟 𝒯, then 𝑀 ⊢̃ 𝒯.
5. If 𝑀 ⊢̃ 𝒯(𝑁), then 𝑀 ⟶∗

𝛽 𝑁.
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IN THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

5. If 𝑀 ⊢̃ 𝒯(𝑁), then 𝑀 ⟶∗
𝛽 𝑁.

Proof (finitary).

There is some ⌊𝑁⌋

𝑑

∈ 𝒯(𝑁)

ℕ

mimicking 𝑁.
By assumption, 𝑀 ⊢ ⌊𝑁⌋

𝑑

.
Proceed by induction on 𝑁, for instance:

∀𝑑 ∈ ℕ,

𝑀 ⟶∗
𝛽 𝜆𝑥.𝑃

𝑑

𝑃

𝑑

⊢ ⌊𝑃′⌋

𝑑

𝑀 ⊢ ⌊𝑁⌋

𝑑

= ⌊𝜆𝑥.𝑃′⌋

𝑑
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IN THE INFINITARY CASE, THERE’S A COUNTEREXAMPLE

Theorem 2 (non-conservativity)
There are terms 𝐀, �̄� ∈ Λ001∞ such that:

▶ 𝒯(𝐀) ⟿𝑟 𝒯(�̄�),
▶ there is no reduction 𝐀⟶∞

𝛽 �̄�.
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LET’S PLAY THE ACCORDION

𝐀 ⟶∗
𝛽 @
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⟶
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IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

Theorem 2 (non-conservativity)
There are terms 𝐀, �̄� ∈ Λ001∞ such that:

▶ 𝒯(𝐀) ⟿𝑟 𝒯(�̄�),
▶ there is no reduction 𝐀⟶∞

𝛽 �̄�.

From the topological point of view:

▶ Ω = (Δ)Δ generates a sequence of reductions with an
accumulation point (and limit) Ω ∈ Λ, but no strong limit,

▶ Ω3 = (Δ3)Δ3 generates a sequence of reductions with an
accumulation point (Δ∞3 )(∞) ∉ Λ001∞ , but no limit.

▶ 𝐀 generates a sequence of reductions with an
accumulation point �̄� ∈ Λ001∞ ⧵ Λ, but no limit.
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IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

Theorem 2 (non-conservativity, reformulated)
(𝒫(Λ𝑟) ,⟿𝑟) is not a conservative extension of (Λ001∞ ,⟶∞

𝛽 ).

However, recall this:

Consolation 3
(𝒫(Λ𝑟) , =̃𝑟) is a conservative extension of (Λ001∞⊥ , =∞𝛽⊥).
Proof. Immediate consequence of the infinitary Commutation
theorem (C. and V.A. 2022).
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FURTHER QUESTIONS

▶ Can we fix this by restricting (𝒫(Λ𝑟) ,⟿𝑟)?
For instance, consider a stratified resource reduction...

▶ There is a simulation theorem in some other settings
(e.g. algebraic λ-calculus):
Are these extensions conservative?
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Thanks for your attention!
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