
NOMINAL ALGEBRAIC-COALGEBRAIC DATA TYPES,
WITH APPLICATIONS TO INFINITARY 𝜆-CALCULI
A FANFICTION ON [KUR+13]*

Rémy Cerda, Aix-Marseille Université, I2M
FICS 2024, Napoli, Feb. 19th 2024

(*) Alexander Kurz, Daniela Petrişan, Paula Severi, and Fer-Jan de Vries. “Nominal Coalgebraic Data Types with
Applications to Lambda Calculus.” In: Logical Methods in Computer Science 9.4 (2013). DOI: 10.2168/lmcs- 9(4:
20)2013 1/21

https://doi.org/10.2168/lmcs-9(4:20)2013
https://doi.org/10.2168/lmcs-9(4:20)2013


WHY I AM HERE

▶ I am not really a FICS really person
(but I hope I’ll be soon...)

▶ I wrote this “fanfiction” because I needed it
▶ Now I want to understand it better
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A GLIMPSE OF NOMINAL SETS



THE CATEGORY 𝐍𝐨𝐦 OF NOMINAL SETS

𝒱 is a fixed set of variables.

A set 𝐴 equipped with a 𝔖(𝒱)-action ⋅ is a nominal set if all
𝑎 ∈ 𝐴 if finitely supported: there is a finite set supp(𝑎) s.t.

∀𝜎 ∈ 𝔖(𝒱), (∀𝑥 ∈ supp(𝑎), 𝜎(𝑥) = 𝑥) ⇒ 𝜎 ⋅ 𝑎 = 𝑎.

𝐍𝐨𝐦 is the category of nominal sets and 𝔖(𝒱)-equivariant
maps.

It has all colimits (created by 𝑈 ∶ 𝐍𝐨𝐦 → 𝐒𝐞𝐭) and limits.
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ABSTRACTION

Key construction: the abstraction functor [𝒱]− ∶ 𝐍𝐨𝐦 → 𝐍𝐨𝐦.
Fix a nominal set (𝐴, ⋅). 𝒱 × 𝐴 is equipped with an equivalence
relation ∼ defined by (𝑥,𝑎) ∼ (𝑥′,𝑎′) whenever

∃𝑦 ∉ supp(𝑎) ∪ supp(𝑎′) ∪ {𝑥, 𝑥′}, (𝑥 𝑦) ⋅ 𝑎 = (𝑥′ 𝑦) ⋅ 𝑎′.

⟨𝑥⟩𝑎 denotes the class of (𝑥,𝑎).

[𝒱]𝐴 ≔ (𝒱 × 𝐴)/ ∼ [𝒱]𝑓 ∶ ⟨𝑥⟩𝑎 ↦ ⟨𝑥⟩𝑓(𝑎)
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CONCRETION

Reverse construction: concretion, the partial map

[𝒱]𝐴 × 𝒱 → 𝐴
(⟨𝑥⟩𝑎, 𝑦) ↦ ⟨𝑥⟩𝑎@𝑦 ≔ (𝑥 𝑦) ⋅ 𝑎 for 𝑦 ∉ supp(⟨𝑥⟩𝑎)

In particular:
⟨𝑦⟩ (⟨𝑥⟩𝑎@𝑦) = ⟨𝑥⟩𝑎
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NOMINAL ALGEBRAIC TYPES

Consider the nominal set of (finite) λ-terms Λ, together with

𝜎 ⋅ 𝑥 ≔ 𝜎(𝑥)
𝜎 ⋅ 𝜆𝑥.𝑡 ≔ 𝜆(𝜎(𝑥)).𝜎 ⋅ 𝑡
𝜎 ⋅ 𝑡𝑢 ≔ (𝜎 ⋅ 𝑡)(𝜎 ⋅ 𝑢)

α-equivalence is compatible with ⋅, hence (Λ/=𝛼, ⋅) is a
nominal set too.

Theorem [GP02]
(Λ, ⋅) = µ𝑋 .𝒱 + 𝒱 × 𝑋 + 𝑋 × 𝑋

(Λ/=𝛼, ⋅) = µ𝑋 .𝒱 + [𝒱]𝑋 + 𝑋 × 𝑋
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MIXED INDUCTIVE-COINDUCTIVE
HIGHER-ORDER TERMS



INFINITARY λ-CALCULI
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MIXED BINDING SIGNATURES

Binding signatures [Plo90; FPT99] are extended to
mixed binding signatures:

▶ a set Σ of constructors,
▶ for each cons ∈ Σ, an arity ar(cons) = ((𝑛1,𝑏1), … , (𝑛𝑘,𝑏𝑘))
𝑘 = number of inputs,
𝑛𝑖 ∈ N = number of variables bound by input 𝑖,
𝑏𝑖 ∈ B = (co)inductive behaviour of input 𝑖.

e.g. Σ𝜆 ≔ {𝜆,@} ar(𝜆) = ((1,𝑎)) ar(@) ≔ ((0,𝑏), (0, 𝑐)).
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FINITE TERMS ON A MBS

Given a MBS (Σ, ar), its term functor is

ℱΣ(𝑋 , 𝑌) ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=((𝑛1,𝑏1),…,(𝑛𝑘 ,𝑏𝑘))

𝑘
∏
𝑖=1

𝒱𝑛𝑖 × 𝜋𝑏𝑖(𝑋 , 𝑌)

and its quotient term functor is

𝒬Σ(𝑋 , 𝑌) ≔ 𝒱 + ∐
cons∈Σ

ar(cons)=((𝑛1,𝑏1),…,(𝑛𝑘 ,𝑏𝑘))

𝑘
∏
𝑖=1

[𝒱]𝑛𝑖𝜋𝑏𝑖(𝑋 , 𝑌).

Definition. The algebra of (raw) finite terms is
𝒯Σ ≔ µ𝑍.ℱΣ(𝑍, 𝑍).
Fact [GP02]. α-equivalence classes of finite terms form the
algebra 𝒯Σ/=𝛼 = µ𝑍.𝒬Σ(𝑍, 𝑍).
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MIXED TERMS ON A MBS

Definition. The coalgebra of (raw) mixed terms is
𝒯∞Σ ≔ ν𝑌 .µ𝑋 .ℱΣ(𝑋 , 𝑌).
Explicitely:

𝑥 ∈ 𝒱
𝑥 ∈ 𝒯∞Σ

𝑡 ∈ 𝒯∞Σ
▶0 𝑡 ∈ 𝒯∞Σ

𝑡 ∈ 𝒯∞Σ
▶1 𝑡 ∈ 𝒯∞Σ

𝑥1 ∈ 𝒱𝑛1 ⋯ 𝑥𝑘 ∈ 𝒱𝑛𝑘 ▶𝑏1 𝑡1 ∈ 𝒯∞Σ ⋯ ▶𝑏𝑘 𝑡𝑘 ∈ 𝒯∞Σ
cons (𝑥1.𝑡1, … , 𝑥𝑘.𝑡𝑘) ∈ 𝒯∞Σ

Fact [Bar93]. The set 𝒯∞Σ is the metric completion of 𝒯Σ
wrt. (a variant of) the Arnold-Nivat metric [AN80].
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MIXED TERMS VIA METRIC COMPLETION

Fact [Bar93]. The set 𝒯∞Σ is the metric completion of 𝒯Σ
wrt. (a variant of) the Arnold-Nivat metric [AN80].

First define the (mixed) truncation...

⌊𝑡⌋0 ≔ ∗
⌊𝑥⌋𝑛+1 ≔ 𝑥

⌊cons (𝑥1.𝑡1, … , 𝑥𝑘.𝑡𝑘)⌋𝑛+1 ≔ cons (𝑥1. ⌊𝑡1⌋𝑛+1−𝑏1 , … , 𝑥𝑘. ⌊𝑡𝑘⌋𝑛+1−𝑏𝑘)

... and then the Arnold-Nivat metric:

𝕕(𝑡,𝑢) ≔ inf {2−𝑛 |𝑛 ∈ N, ⌊𝑡⌋𝑛 = ⌊𝑢⌋𝑛 } .
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THE TROUBLE WITH INFINITARY TERMS

𝑈(µ𝑍.ℱΣ(𝑍, 𝑍))
µ𝑍.ℱΣ(𝑍, 𝑍)
𝒯Σ

ν𝑌 .µ𝑋 .ℱΣ(𝑋 , 𝑌)
𝒯∞Σ

𝒯∞Σ /=𝛼

𝒯Σ/=𝛼
𝑈(µ𝑍.𝒬Σ(𝑍, 𝑍))

(𝒯Σ/=𝛼)∞

compl.

?
compl.

Theorem. When the signature is non-trivial,
(𝒯∞Σ /=𝛼) ≅ (𝒯Σ/=𝛼)∞ iff 𝒱 is uncountable.
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THE TROUBLE WITH INFINITARY TERMS

The idea of the counter-example:

if 𝒱 = {𝑥0, 𝑥1, … }, consider the sequence

([𝜆𝑥𝑛.𝑥0𝑥1… 𝑥𝑛]𝛼)𝑛∈N

▶ it is Cauchy,
▶ it has no limit in 𝒯∞Σ /=𝛼.
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NOMINAL MIXED TYPES



LET’S FIX THE PROBLEM

𝑈(µ𝑍.ℱΣ(𝑍, 𝑍))
µ𝑍.ℱΣ(𝑍, 𝑍)
𝒯Σ

𝑈(ν𝑌 .µ𝑋 .ℱΣ(𝑋 , 𝑌))
(𝒯∞Σ )fs (𝒯∞Σ )ffv

ν𝑌 .µ𝑋 .ℱΣ(𝑋 , 𝑌)
𝒯∞Σ

𝒯Σ/=𝛼
𝑈(µ𝑍.𝒬Σ(𝑍, 𝑍))

(𝒯Σ/=𝛼)∞fs
𝑈(ν𝑌 .µ𝑋 .𝒬Σ(𝑋 , 𝑌))

(𝒯∞Σ )ffv/=𝛼 (𝒯Σ/=𝛼)∞

nom.
compl.

compl.

nom.
compl.

compl.

⌟

𝐴fs is the (nominal) set of the finitely supported elements of 𝐴.
(𝒯∞Σ )ffv is the set of terms 𝑡 ∈ 𝒯∞Σ such tht fv(𝑡) is finite.
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NOMINAL MIXED TYPES

Theorem. (𝒯∞Σ )ffv/=𝛼 carries the nominal set ν𝑌 .µ𝑋 .𝒬Σ(𝑋 , 𝑌).

Proof:
▶ We show that µ𝑋 .ℱΣ(𝑋 , −) and µ𝑋 .𝒬Σ(𝑋 , −) satisfy some
requirements (being “polynomial”).

▶ This allows to rebuild [Kur+13]’s work with these functors.

Conclusion:
▶ It makes sense that everything works as in [Kur+13].
▶ We recover canonicity at the price of a reasonable
restriction.
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CAPTURE-AVOIDING SUBSTITUTION: IT WORKS!

The definition we want...
subst(𝑥, 𝑥,𝑁) ≔ 𝑁
subst(𝑦, 𝑥,𝑁) ≔ 𝑦 for 𝑦 ≠ 𝑥

subst(𝜆(𝑦.𝑀), 𝑥,𝑁) ≔ 𝜆(𝑦.subst(𝑀, 𝑥,𝑁)) for 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑁)
subst(@(𝑀0,𝑀1), 𝑥,𝑁) ≔@(subst(𝑀0, 𝑥,𝑁), subst(𝑀1, 𝑥,𝑁)).
... can be turned into a precise morphism acting directly on
α-equivalence classes.
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CAPTURE-AVOIDING SUBSTITUTION: IT WORKS!

Definition: subst is defined by

𝒯∞𝛼 × 𝒱 × 𝒯∞𝛼 𝒯∞𝛼

µ𝑋 .𝒬Σ(𝑋 ,𝒯∞𝛼 ) × 𝒱 × 𝒯∞𝛼

µ𝑋 .𝒬Σ(𝑋 ,𝒯∞𝛼 + 𝒯∞𝛼 × 𝒱 × 𝒯∞𝛼 ) µ𝑋 .𝒬Σ(𝑋 ,𝒯∞𝛼 )

subst

unfold×𝒱×𝒯∞𝛼

unfold

ℎ
µ𝑋 .𝒬Σ(𝑋 ,id+subst)

where ℎ is recursively defined by:
(invar(𝑥), 𝑥,𝑢) ↦ µ𝑋 .𝒬Σ(𝑋 , inl)(unfold(𝑢))
(invar(𝑦), 𝑥,𝑢) ↦ invar(𝑦) for 𝑦 ≠ 𝑥

(incons (⟨𝑦0,1⟩… ⟨𝑦0,𝑛0⟩𝑡0,
⟨𝑦1,1⟩… ⟨𝑦1,𝑛1⟩𝑡1

) , 𝑥,𝑢) ↦ µ𝑋 .𝒬Σ(𝑋 , inr) (incons (
⟨𝑦0,1⟩… ⟨𝑦0,𝑛0⟩ℎ(𝑡0, 𝑥,𝑢),
𝜏𝑛1(⟨𝑦1,1⟩… ⟨𝑦1,𝑛1⟩𝑡1, 𝑥,𝑢)

))

under the condition that (...).
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SUGGESTIONS FOR A FUTURE COFFEE BREAK

▶ “This may be a particular case of [very abstract work]”:
please tell me!

▶ Once a year I want to formalise things about Λ001 and
people tell me, “Don’t, it’s difficult”: really? :'-(
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Thanks for your attention!
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