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The Taylor expansion, stemming from Linear Logic and its differential extensions and orig-

inally defined by Ehrhard and Regnier [ER08], provides an approximation framework for

the λ-calculus (and many of its variants). This approximation enjoys a crucial commutation
property: the normal form of the Taylor expansion of a term is exactly the Taylor expansion

of its Böhm tree. In the usual λ-calculus, it can be refined into a simulation property giving

account not only of the normalisation of the λ-terms, but also of their reduction: whenever

𝑀 ⟶∗𝛽 𝑁 , the Taylor expansion 𝒯(𝑀) reduces to 𝒯(𝑁) [Vau17].
In our previous work [CV22], we extended the Taylor approximation to the infinitary λ-

calculus Λ001∞ . The infinitary λ-calculi feature possibly infinite terms and reductions and

can be seen as metric completions [Ken+97] or as coinductive counterparts [EP13] of the
usual, finitary λ-calculus. In particular, Λ001∞ formalises the intuition that a λ-term infinitely

reduces to its Böhm tree, hence its tight link to the Taylor expansion.

In that previous work, we suggested that, in addition to our main theorem:

Theorem [CV22, Th. 4.21]. For all 𝑀,𝑁 ∈ Λ001∞ , if 𝑀 ⟶∞𝛽 𝑁 then 𝒯(𝑀) ⟶̃∗𝑟 𝒯(𝑁).

it may be possible to prove a conservativity property, i.e. its converse:

Conjecture [CV22, p. 39]. For all 𝑀,𝑁 ∈ Λ001∞ , if 𝒯(𝑀) ⟶̃∗𝑟 𝒯(𝑁) then 𝑀 ⟶∞𝛽 𝑁 .

As we now show, this is false in the general case (Theorem 2.3). However, the conservativity

holds for the finitary λ-calculus (Theorem 1.4).
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Setting and notations

The setting of this abstract is exactly the same as in our previous work [CV22], so we refer

to it (or to the long version of this paper) for a thorough presentation. Let us only recall a

few notations.

The set of the usual, finite λ-terms is denoted byΛ. The setΛ001∞ of the 001-infinitary λ-terms

is defined by the following inductive-coinductive system of rules:

𝑥 ∈ Λ001∞

𝑀 ∈ Λ001∞
𝜆𝑥.𝑀 ∈ Λ001∞

𝑀 ∈ Λ001∞ ▷𝑁
(𝑀)𝑁 ∈ Λ001∞

𝑀 ∈ Λ001∞
▷𝑀

This means that infinite branches must cross infinitely many times the right side of an

application. We denote by ⟶𝛽 , ⟶∗𝛽 and ⟶∞𝛽 the β-reduction, its reflexive-transitive

closure and its 001-infinitary closure. Informally, 𝑀 ⟶∞𝛽 𝑁 whenever there is an infinite

sequence of β-reductions from 𝑀 to 𝑁 such that the applicative depth of the fired redexes

tends to the inifinity.

The set of the resource λ-terms is denoted by Λ𝑟 , and if 𝑋 is a set then 𝑋 ! denotes the finite
multisets of elements of𝑋 . The (unweighted, finite) sums of resource terms are the elements

of 2⟨Λ𝑟 ⟩. The resource reduction, acting on 2⟨Λ𝑟 ⟩, is denoted by⟶𝑟 . The Taylor expansion
is the mapping Λ → 𝒫 (Λ𝑟 ) defined by induction by:

𝒯(𝑥) ≔ 𝑥 𝒯(𝜆𝑥.𝑀) ≔ ∑
𝑠∈𝒯(𝑀)

𝜆𝑥.𝑠 𝒯((𝑀)𝑁 ) ≔ ∑
𝑠∈𝒯(𝑀)
𝑡∈𝒯(𝑁 )!

⟨𝑠⟩ 𝑡

and the definition on Λ001∞ can be considered as being exactly the same (even though for-

mulated differently, because structural induction is not possible any more). Finally, given

𝒮 ,𝒯 ∈ 𝒫 (Λ𝑟 ), we write 𝒮 ⟶̃∗𝑟 𝒯 whenever 𝒯 = ∑𝑠∈𝒮 𝑇𝑠 and ∀𝑠 ∈ 𝒮 , 𝑠 ⟶∗𝑟 𝑇𝑠 .

1 Conservativity holds in the finitary case

Among the different possible definitions of the notion of conservativity of an ARS extending

another ARS, we stick to the following one, which distinguishes between the conservativity

of a reduction and the conservativity of the corresponding conversion.

Definition 1.1 (conservative extension). Let (𝐴,→𝐴) and (𝐵,→𝐵) be two abstract rewriting

systems. The latter is an extension of the former if:

1. there is an injection 𝑖 ∶ 𝐴 ↪ 𝐵, (inclusion)

2. ∀𝑎, 𝑎′ ∈ 𝐴, if 𝑎 →𝐴 𝑎′ then 𝑖(𝑎) →𝐵 𝑖(𝑎′), (simulation)

Furthermore, this extension is conservative if:

3. ∀𝑎, 𝑎′ ∈ 𝐴, if 𝑖(𝑎) →𝐵 𝑖(𝑎′) then 𝑎 →𝐴 𝑎′. (conservativity)

In this setting, we consider (𝒫 (Λ𝑟 ) , ⟶̃∗𝑟 ) as an extension of (Λ,⟶∗𝛽) through the injection
𝒯(−). The conservativity property is exactly what we want to prove. To do so, we use the
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𝑀 ⟶∗
𝛽 𝑥

𝑀 ⊢ 𝑥
𝑀 ⟶∗

𝛽 𝜆𝑥.𝑃 𝑃 ⊢ 𝑠
𝑀 ⊢ 𝜆𝑥.𝑠

𝑀 ⟶∗
𝛽 (𝑃)𝑄 𝑃 ⊢ 𝑠 𝑄 ⊢! 𝑡

𝑀 ⊢ ⟨𝑠⟩ 𝑡
(𝑀 ⊢ 𝑡𝑖)𝑛𝑖=1

𝑀 ⊢! [𝑡1, … , 𝑡𝑛]
(𝑀 ⊢ 𝑠)𝑠∈𝒮
𝑀 ⊢̃ 𝒮

Figure 1. — Rules for ⊢ and ⊢̃

“mashup” technique designed by Kerinec and the second author to establish the converva-

tivity of the algebraic λ-calculus wrt. the usual λ-calculus [KV23]. This technique relies on
a relation ⊢ relating λ-terms to the approximants of their reducts.

Definition 1.2 (mashup relation). The mashup relation ⊢ ⊂ Λ × Λ𝑟 is defined inductively by

the first four rules of fig. 1. It is extended to ⊢̃ ∈ Λ × 𝒫 (Λ𝑟 ) by the last rule of fig. 1.

The proof is divided into five steps, from which the conservativity theorem follows imme-

diately.

Lemma 1.3. For all𝑀,𝑁 ∈ Λ, 𝑥 ∈ 𝒱 , 𝑠 ∈ Λ𝑟 , 𝑡 ∈ Λ!𝑟 and 𝒮 ,𝒯 ∈ 𝒫 (Λ𝑟 ), the following lemmas

hold:

1. 𝑀 ⊢̃ 𝒯(𝑀).
2. If 𝑀 ⟶∗𝛽 𝑁 and 𝑁 ⊢̃ 𝒮 , then 𝑀 ⊢̃ 𝒮 .

3. If 𝑀 ⊢ 𝑠 and 𝑁 ⊢! 𝑡 , then ∀𝑠′ ∈ 𝑠⟨𝑡/𝑥⟩ , 𝑀[𝑁/𝑥] ⊢ 𝑠′.
4. If 𝑀 ⊢̃ 𝒮 and 𝒮 ⟶̃∗𝑟 𝒯 , then 𝑀 ⊢̃ 𝒯 .

5. If 𝑀 ⊢̃ 𝒯(𝑁 ), then 𝑀 ⟶∗𝛽 𝑁 .

Proof. (1)–(4) are by easy inductions. (5) relies on the canonical injection ⌊−⌋ ∶ Λ → Λ𝑟 defined
by ⌊𝑥⌋ ≔ 𝑥 , ⌊𝜆𝑥.𝑃⌋ ≔ 𝜆𝑥. ⌊𝑃⌋ and ⌊(𝑃)𝑄⌋ ≔ ⟨⌊𝑃⌋⟩ [⌊𝑄⌋], such that for all 𝑁 ∈ Λ, ⌊𝑁 ⌋ ∈ 𝒯(𝑁 ).
Then from 𝑀 ⊢ ⌊𝑁⌋, we prove 𝑀 ⟶∗

𝛽 𝑁 by induction on 𝑁 . ⋄

Theorem 1.4 (conservativity). For all 𝑀,𝑁 ∈ Λ, if 𝒯(𝑀) ⟶̃∗𝑟 𝒯(𝑁) then 𝑀 ⟶∗𝛽 𝑁 .

Proof. By Lemma 1.3(1) we have 𝑀 ⊢̃ 𝒯(𝑀), and by assumption 𝒯(𝑀) ⟶̃∗𝑟 𝒯(𝑁) so by

Lemma 1.3(4) 𝑀 ⊢̃ 𝒯(𝑁 ). We can conlude with Lemma 1.3(5). ⋄

2 Conservativity fails in the 001-infinitary case

The previous theorem was arguably expected, since the Taylor approximation of the λ-

calculus has excellent properties: in particular, a single well-chosen term ⌊𝑀⌋ ∈ 𝒯(𝑀) is
enough to characterise 𝑀 , and a single sequence of resource reducts of some 𝑠 ∈ 𝒯(𝑀)
suffices to characterise any sequence 𝑀 ⟶∗𝛽 𝑁 . These properties are not true any more

when considering more complicated settings, like infinitary λ-calculi: 𝑀 ∈ Λ001∞ is only

characterised by a sequence of approximants [see CV22, Lem. 5.29]. This is enough not only

tomake the “mashup” proof technique fail (and in particular Lemma 1.3(5)), but even tomake
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the extension of Theorem 1.4 toΛ001∞ false— aswewill show by exhibiting a counterexample,

the “Accordion” λ-term.

Notation 2.1. We denote the usual representation of booleans as 𝐭 and 𝐟 , an “applicator” con-

struction as ⟨𝑀⟩ ≔ 𝜆𝑏.(𝑏)𝑀 , and the Church encodings of integers and of the successor

function as 𝑛 and succ.

Definition 2.2 (the Accordion). The Accordion term is defined as 𝐀 ≔ (𝑃)0, where:

𝑃 ≔ (𝐘) 𝜆𝜙.𝜆𝑛. (⟨𝐭⟩) ((𝑛) ⟨𝐟⟩) 𝑄𝜙,𝑛 𝑄𝜙,𝑛 ≔ (𝐘) 𝜆𝜓 .𝜆𝑏. ((𝑏)(𝜙)(succ)𝑛) 𝜓

We also define �̄� ≔ (⟨𝐭⟩) (⟨𝐟⟩)∞.

Let us show describe this term behaves (and why we named it the Accordion). There exist

terms 𝑃″ and 𝑄𝑛 (for all 𝑛 ∈ ℕ) such that the following reductions hold:

𝐀 ⟶∗
𝛽 @
𝑃″ 0

⟶∗
𝛽 @
⟨𝐭⟩ 𝑄0

⟶∗
𝛽 @
𝑃″ 1

⟶∗
𝛽 @
⟨𝐭⟩ @

⟨𝐟⟩ 𝑄1

⟶∗
𝛽 @
𝑃″ 𝑛

⟶∗
𝛽 @
⟨𝐭⟩ @

⟨𝐟⟩ @
⟨𝐟⟩

@
⟨𝐟⟩ 𝑄𝑛

This means that:

1. for any 𝑑 ∈ ℕ, 𝐀 reduces to terms 𝐀𝑑 that are similar to �̄� up to depth 𝑑 (and, as a

consequence, any finite approximant of �̄� if a reduct of approximants of 𝐀);
2. but this is not a valid infinitary reduction because we need to reduce a redex at depth 0

to obtain 𝐀𝑑 ⟶∗𝛽 𝐀𝑑+1 (so the depth of the reduced redexes does not tend to the

infinity, which is required in the definition of⟶∞𝛽 ).

This dynamics (the term𝐀 is “stretched” and “compressed” over and over) justifies the name

“Accordion”.

Theorem 2.3. 𝒯(𝐀) ⟶̃∗𝑟 𝒯(�̄�) and ¬ (𝐀 ⟶∞𝛽 �̄�).
Proof sketch. The first part consists in observing that for all 𝑑 ∈ ℕ, 𝐀 ⟶∗

𝛽 �̄�𝑑 ≔ (⟨𝐭⟩)(⟨𝐟⟩)𝑑𝑄𝑑 ,
hence 𝒯(𝐀) ⟶̃∗𝑟 𝒯(�̄�𝑑). Then, using the fact that 𝒯(�̄�) = ∑𝑑∈ℕ𝒯<𝑑(�̄�) = ∑𝑑∈ℕ𝒯<𝑑(�̄�𝑑), we
can deduce 𝒯(𝐀) ⟶̃∗𝑟 𝒯(�̄�).
The second part is quite technical. It heavily relies on the following well-known decomposition

of the β-reduction: for all 𝑀,𝑁 ∈ Λ, if 𝑀 ⟶∗
𝛽 𝑁 then there exists an 𝑀 ′ ∈ Λ such that

𝑀 ⟶∗
ℎ 𝑀 ′ ⟶∗𝑖 𝑁 , where⟶ℎ and ⟶𝑖 denote head and internal β-reductions.

Suppose there is a reduction 𝐀 ⟶∞
𝛽 �̄�. Thanks to [CV22, Lem. 4.11], for all 𝑑 ∈ ℕ, there exist

𝐀1, … , 𝐀𝑑 ∈ Λ such that 𝐀 ⟶∗
𝛽⩾0 𝐀0 ⟶∗

𝛽⩾1 𝐀1 ⟶∗
𝛽⩾2 … ⟶∗

𝛽⩾𝑑 𝐀𝑑 ⟶∞
𝛽>𝑑 �̄� (∗). In addition,

the head-internal decomposition ensures the existence of 𝐀′0 ∈ Λ such that 𝐀 ⟶∗
ℎ 𝐀′0 ⟶∗𝑖 𝐀0.

Since there are only internal reductions from 𝐀′0 to �̄�, the former must have the same “head
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structure” than the latter, i.e. have the shape (𝜆𝑏.𝑀)𝑁 for some 𝑀,𝑁 ∈ Λ. An exhaustive head

reduction of 𝐀 shows that there are only four possible options for such a reduct 𝐀′0 of 𝐀.
From (∗), it follows that 𝐀′0 ⟶∗𝑖 𝐀𝑛+3. One can show that this is impossible by exploring the

four possible cases for 𝐀′0, by abundantly using the head-internal decomposition again. ⋄

Thus, the extension (𝒫 (Λ𝑟 ) , ⟶̃∗𝑟 ) of the reduction system (Λ001∞ ,⟶∞𝛽 ) is not conservative.
However, let us underline as a consolation that a weaker result is available. Indeed, consider

the λ⊥-calculus Λ001∞⊥ — i.e. Λ001∞ with a constant ⊥ such that 𝒯(⊥) ≔ 0 — endowed with

the usual β⊥-reduction — i.e. the reduction generated by contextually reducing all unsolv-

ables to ⊥, as well as all the terms 𝜆𝑥.⊥ and (⊥)𝑀 . Then, as a corollary of the infinitary

Commutation theorem [CV22, Thm. 5.20], the following are equivalent:

▶ 𝑀 =∞𝛽⊥ 𝑁 , where =∞𝛽⊥ is the conversion generated by⟶∞𝛽⊥ — which is also the same

as the equivalence =ℬ generated by 𝑀 =ℬ 𝑁 iff BT(𝑀) = BT(𝑁 ),
▶ 𝒯(𝑀) =̃𝑟 𝒯(𝑁), where =̃𝑟 is the conversion generated by ⟶̃∗𝑟 .

This can be reformulated as follows: (𝒫 (Λ𝑟 ) , =̃𝑟 ) is a conservative extension of (Λ001∞⊥, =∞𝛽⊥).
As a future investigation, a similar convervativity property could be looked for in other

settings where the Taylor expansion enjoys fruitful simulation properties. In particular, a

simulation theorem has been prooved by the second author for the algebraic calculus [Vau19,
Cor. 7.7]; as far aswe know, the questionwhether this yields a conversative extension is open

and involves a major difficulty resulting from the non-uniformity of the algebraic setting.
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