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Domain Perturbation for the first Eigenvalue 
of the Dirichlet Schrodinger Operator 

W. Arendt, S. Monniaux 

Introduction. 

Let ft C Rn be an open connected set. We consider the Dirichlet-Schrodinger 
operator H — — A^ + V on L2{Q) (where A^ denotes the Laplacian with Dirichlet 
boundary conditions and V is a suitable potential). 

In a recent paper, F. Gesztesy and Z. Zhao [15] showed that the first eigen-
value A (H) of H is a strictly monotonic function with respect to the domain ft (up 
to capacity, see below for the precise statement). Their proof is given with help of 
probabilistic methods. 

The purpose of this article is to give an analytic proof of this result. In fact, 
we prove a generalization, allowing the potential to vary as well. 

Our proof is based on a domination argument for positive irreducible semi-
groups (Section 2). In the main theorem (Theorem 3.1), the difference of two open 
sets is measured by capacity. Some results concerning this notion are established 
in Section 1. In particular, we give a short proof of the fact that 

using the characterization of closed order ideals in H 1 ^ ) which has been given 
recently by Stollmann [24]. This seems to be of independent interest. 

Acknoledgement : The motivation for this work comes from a stimulating 
talk by Michael Demuth during the conference "Partial Differential Equations" 
held in Holzhau in July 1994. 

1. A characterization of HQ(Q) by capacity. 

Let FL C Rn be an open set. Let 

(see [9, Chapter IX]). We need some basic properties of capacity and refer to 
Bouleau & Hirsch [8], Fukushima [14] or Ma & Rockner [17] for details. 

= {ue H\RN) : u = 0 q.e. on 

H\n) = jti e L\n) : ^ G L2(ft), j = 1,... ,ivj 

the first Sobolev space, which is a Hilbert space under the norm 
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The capacity of a subset A of RN is defined by 

c a p ( A ) = i n f i I \V(p\2dx+ [ \(p\2dx : (p E f f 1 ^ ) , ip > 10 a.e., A C O \ . 
UR" Jrn J 

Here 1 o denotes the characteristic function of O, open subset of R N . 
One says a property is true quasi everywhere in RN (q.e.) if there exists a 

set A C R n of capacity 0 such that the property is true for all x E R.N \ A. 

A function u : RN —> R is called quasi-continuous if for every e > 0 there 
exists an open set Oe C R ^ such that cap(Oe) < e and u is continuous on RN\Oe. 

It is well known that every u G has a quasi-continuous repre-
sentative, i.e. there exists a quasi-continuous function U E H1(RN) such that 
u(x) = u(x) a.e. The function u is unique q.e. 

By Hq(Q) we denote the closure of the space of all test functions in 
(see [9, Chapitre IX]). It can now be characterized as follows. 

Theorem 1.1. One has 

fli(fi) = {ue ^ ( R ^ ) : u(x) = 0 q.e. on R ^ \ Q}. 

This characterization is well-known to potential analysts. A proof is given by 
Deny [13, Theorem 2, p. 143] (another is contained in [16, Theorem 3.1, p. 241], 
or [14, Example 3.3.2, p.81]). Here we give a short proof based on a recent result 
of Stollmann [24] characterizing closed ideals in f f ^ R ^ ) . Recall that i f ^ R ^ ) is 
stable under the operation of taking the absolute value, i.e. 

u E H 1 ^ ) implies \u\ E H\RN) and - s i g n ( ^ ) | ^ , j = 1 , . . . ,N (1.1) 
CJX j CJJu j 

(see [11, Chap.IV, §7, p.934] ; a proof by semigroup theory is given in [1, Section 
2]). 

A subspace J of H 1 ^ ) is called an ideal if for u E J , v E H^R^), 

< \u\ a.e. implies v E J. 

Theorem 1.2. (Stollmann [24]). A subspace J of if1(R i V) is a closed ideal of 
if1(R i V) if and only if there exists a Borel set Y in R ^ such that 

J = {u E H 1 ^ ) : u = 0 q.e. on Yc} 

Remark. The ideal property is important for the characterization of domination 
for semigroups defined by forms, see Stollmann and Voigt [25] for a special case 
and Ouhabaz [19], [20] for a general investigation. We refer to Schaefer [22] and 
Batty & Robinson [6] for basic properties of ordered Banach spaces. 
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In order to prove Theorem 1.1, we first show 

Lemma 1.3. is a closed ideal in H1(RN). 

Proof, (a) By [9, Lemme IX.5, p.I l l ] , one has u G whenever 
u G if1(R i V) such that supp(-u) is compact and included in Q. 

(b) It is easy to see (and also follows from an abstract result by Borwein & 
Yost [7, Corollary 1]) that u i—• \u\ is a continuous mapping on HConse-
quently, for u G i^"1(MAr) also v ^ u Av, v u\J v are continuous mappings. 

(c) Let u G v € tf1^), 0 < < \u\. Let cpn G Cc°°(Q) such that 
(pn u in Hq ( f t ) . Then vn = (v V -\<pn\) A |y>n| G by (a) and — v by 
(b). Thus v G #o(f2). • 

We need the following well-known properties of capacity. 

cap (A U B)< cap (A) + cap (B) for all Borel sets A, B C RN ; (1.2) 

lim cap(An) = cap( I J An) 
nE N 

whenever is an increasing sequence of Borel sets. (1.3) 

If Y C RN is a Borel set, we let 
D0(Y) = {ue H\Rn) : u = 0 g.e. on Yc}. 

Proposition 1.4. If C D0(Y) then cap(ft \Y)=0. 

Proof. Assume that c a p ( f i \ y ) > 0. Let ( K n ) n ^ be an increasing set of compacts 
such that 

(J Kn = a 
n£N 

It follows from (1.3) that cap(ifn \ Y) > 0 for some n G N. 
Let 0 < lKn < (p G Cc°°(ft). Then <p £ D0(Y). • 

Proof of Theorem 1.1. By Theorem 1.2, there exists a Borel set Y such that 
f f j ( f i ) = D0(Y). It follows from Proposition 1.4 that cap(ft \ Y ) = 0. 

This implies that D0(Q) C D0(Y). In fact, let u G D0(Cl). 
Then N = {x G £lc : u(x) ^ 0} is of capacity 0. 
Since {x eYc : u(x) ± 0} C (SI \ Y) U N, one has 

cap{x G Yc : i2(x) ± 0} < cap(ft \ Y) + cap(AT) = 0. 

Thus u G D0(Y). 
Conversely, since C D0(Q) and D0(Sl) is closed in f f ^ R ^ ) , it follows 

that Dq(Y) = C D0(N). • 

Corollary 1.5. Let A , ( ] c RN be open sets. Then = H%(A) if and only if 
cap(ftAA) = 0. 



12 W. Arendt, S. Monniaux 

Proof. Assume that cap(ftAA) ^ 0. Then cap(ft \ A) ^ 0 or cap(A \ fi) ^ 0. 
If cap(fi \ A) ^ 0, then by Proposition 1.4 there exists ip G such that 

(P I D0(A) = HQ (A). In the other case, Cc°°(A) £ H^ty. 
The converse implication follows directly from Theorem 1.1. • 

2. Domination and eigenvalues for positive irreducible semigroups. 

Let (fi,^) be a cr-finite measure space, let A C Q be a measurable subset and let 
p G [l,oo). We identify Lp(A) = Lp(A,z/) with a subspace of LP(Q) = 
extending functions in Lp(A,z/) by 0 on ft \ A. 

The following theorem is a generalization of [2, Theorem 1.3] (where it is 
assumed that A = ft). The argument is similar, but for the sake of completeness 
we include the proof. 

Theorem 2.1. Let T be a bounded irreducible positive Co-semigroup on Lp(ft) with 
generator A, and let S be an irreducible Co-semigroup on Lp{A) with generator 
B. Assume that 

(a) 0 < S(t)f < T(t)f (0 < / G Lp( A), t > 0) 
(b) ker B ^ 0 

Then \ A) = 0 (so that LP(Q) = Lp(A)) and S(t)= T(t) (t > 0). 
We clarify some notations. If / : Q, —• R is measurable, we write 

/ > 0 if f(x) >0v- a.e. ; 
/ > 0 if / > 0 and v({x : f(x) ^ 0}) > 0 ; 
/ > 0 if f(x) > 0 v- a.e. 

If Q G £(Lp(n)), we write Q > 0 if Qf > 0 whenever 0 < / G LP(Q). 
The semigroup T is irreducible if R(fi,A) := (// — A)~x » 0 for all (equiva-

lently one) /i > 0 (see [18, p.306]). 

By A' we denote the adjoint of A on Lp>(fi), - + = 1. 
P P 

Lemma 2.2. Let 0 < u G Lp(Sl) such that \R(\A)u > u for all A > 0. Then 
u £ ker A, 0 and there exists ip G ker(A'), cp 0. 

Proof. Let 0 < (p0 G Lp' (Q) such that < u,ipo » 0. Since T is bounded, one has 
sup{||AJ?(A, A > 0} < oo. Thus Ai?(A,,4)Vo has a a;*-limit point <p G LP(Q, v)' 
as A \ 0. 

Clearly, (p > 0 and <u,(p >>< u,(p0 » 0. Thus cp > 0. 
Since for 0 < /x < 1, 0 < A < 1, 

A)'\R(\, A)'(po = - « ( M ) V o ) , 
/I — A 

it follows that ip G ker (A'). 
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If 0 < / G Lp(ft), then < /,<p > = < pR(p,A)f,(p » 0 since (p > 0 and 
liR(n,A)f > 0. Hence (p > 0. 

Finally, \R(\,A)u - u > 0 and < \R(\,A)u - u,(p > = 0. Since (p > 0, it 
follows that \R(\,A)u - u = 0, (A > 0) ; i.e. u G ker(A). • 

Proof of Theorem 2.1. Let 0 ^ v e ker(B) C Lp(A), u = \v\. 
Then u = |Ai?(A,S)v| < \R(\,B)u < \R(\,A)u, (A > 0). It follows from 

Lemma 2.2 that u G ker(£?) n ker(A) and u > 0 on ft. Since u G Lp(A) so that 
u{x) = 0 a.e. on ft \ A, it follows that u(ft \ A) = 0 and so = Lp(A) =: 

Let Then 

(AR(A,A)' - \R(\,B)')iP > 0 and < u,(Afl(A,A)' - \R(\B)')iP >= 0 

since u G ker(A) D ker(B). Thus (Ai?(A,A)' - XR(\B)')^ = 0 since u > 0. Since 
s p a n ^ = it follows that R(\,A)f = iJ(A,J3)' (A > 0) and so A = B. • 

If B generates a bounded Co-semigroup and ker(B) ^ 0, it is easy to see that 
also ker(i?') 0. The converse is true if 1 < p < oo, but not for p = 1. So it is 
natural to ask whether in Theorem 2.1 it suffices to assume that ker(B r) ^ 0. The 
following example shows that this is not the case. 

Example 2.3. Let N > 3, 0 < m G Cc(RN). Denote by A the Laplacian on 
L1(RJV) = E. Then there exists p2 > 0 such that 

(see [23, B5.2 ]). Let 0 < /ii < /i2, S(t) = T(t) = Then 
0 < etA < S(t) < T(t). In particular, both semigroups are irreducible. By [5, 
Remark 3.9], there exists 0 <C (p G ker(B'), B = A + /^m. However, S ± T. It 
follows from Theorem 2.1 that ker(£) = 0. • 

3. Strict monotonicity of the bottom of the spectrum. 

Let ft C be an open set and denote by A^ the Dirichlet Laplacian on L2(ft), 
i.e. — Aq is associated with the Dirichlet form 

We consider a potential V G L/
1

oc(RiV) such that V~ is relatively bounded with 
respect to the form a with form bound less than 1 ; i.e. we assume that there exists 
0 < a < 1, 0 > O such that 

s u p { | | e ^ A + ^ ) | | £ ( L 1 ) , t> 0 } < o o 

a(u,v) = / VuVv dx, D(a) = Hl(ft). 

(3.1) 

for all u G H^(ft). 
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Then we can define the self-adjoint operator H = — A^ + V as usual to be 
the operator associated with the closed symmetric lower bounded form b on L2 (ft) 
given by 

D{b) = {ueH^(Q): [ V~u2dx < oo}, 
A2 

b(u,v) = / VuVv dx + Vuv dx. 
JN JN 

By A (H) = inf(cr(iJ)}, we denote the bottom of the spectrum of H. 
Now let A C R ^ be another open set and U G Z / j ^ R ^ ) another potential 

satisfying (3.1). Let H = - A ^ + U. Assume that 

A C ft and V < U. (3.2) 

Then it is not difficult to see that 

A (H) > A (H), (3.3) 

(see the remark following Proposition 3.3 below). 
Our aim is to prove the following result on strict monotonicity in (3.3). 

Theorem 3.1. Assume in addition to (3.2) that 
(a) A, ft are connected; 
(b) A (H) is an eigenvalue of H. 
Then A (H) = A (H) if and only if cap(ft \ A) = 0 and U = V a.e. on ft. 

This theorem has been proved by Gesztesy and Zhao [15] by probabilistic 
methods in the case where U = V. We give an analytic proof based on domination 
(see Section 2). 

Before giving the proof we mention that in Theorem 3.1, one cannot replace 
condition (b) by the condition that A (H) is an eigenvalue of H. This can be seen 
by the following example. 

Example 3.2. Let A = ft = RN, N > 5. Let 0 < m G Cc(RN). Then /x0 = 
sup{/x > 0 : A(—A — /jim) — 0} G (0,oo) (see e.g. [5, Remark 2.11 or Section 4]). 
Thus A(—A — Horn) = 0. Moreover, by [10, Proposition 4.1], 0 is an eigenvalue of 
—A — Horn. Letting 

U = —Horn, V = — ^ m , and A = B = A, 

one sees that the conclusion of Theorem 3.1 is false in this situation. Moreover, 
Theorem 3.1 implies that 0 is not an eigenalue of —A — \im for any 0 < fi < ^o-

For the proof of Theorem 3.1 we identify again L2(A) with a subspace of 
A2 {ft) extending functions by 0, and A2(Q) with a subspace of ^42(Riv). Note that 
H generates a Co-semigroup e~tH on yl2(ft). By the spectral theorem one has 
| | e - t H | | =e~ tA<flr) ( t > 0 ) . (3.4) 
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Proposition 3.3. One has 

0<e~tAf <e~tHf ( 0 < / G L 2 ( A ) , t > 0 ) . (3.5) 

Note that e~tH f and e~tH f are both functions defined on RN by our conven-
tion and the inequality (3.5) holds a.e. As a consequence one has \\e~tH|| < \\e~tH|| 
(t > 0) and so (3.3) follows with help of (3.4). 

As in [3] and [4] we denote by Aq the pseudo-Dirichlet Laplacian on ^42(ft); 
i.e., — Aq is associated with the form a^ given by 

D(an) = {uln : u G H1(RN);u(x) = 0 a.e. on ftc}, 

a^u^v) = / VuVv dx. 
JQ 

Then by [3, Section 7] or [4], 

etAnf = lim (t > 0) (3.6) 
n—• oo 

for all / G L2(ft), where A denotes the Laplacian on ^ ( R ^ ) . The Dirichlet 
Laplacian is obtained by a second approximation. Let ftn C ft be open such that 
ftn is compact, ftn C ftn+i (n £ IN) and ft = U n eN ^n- Then 

etA^f = lim etA^f ( / g L2(ft), t > 0). (3.7) 
n—>• oo 

Remark. One has e tA« = e t A" if ft is of class C1 (see [9, Chapitre IX]). 

Proof of Proposition 3.3. 

First step : Domination for the Dirichlet Laplacian . 

It follows from the Trotter product formula that 

et(A-nlAc)yr < et(A-nlnc)yr (Q < / G L2(RN) t < 0). 

Thus it follows from (3.6) (and the same formula with ft replaced by A) that 

etAAf < etAnf (0 < / G L2(A), t > 0). (3.8) 

Let An be open sets such that An is compact, An C A n + i C A (n G IN) 
and UneN ^n = A. Choose ftn open such that An C ftn C ftn C ftn+i C ft and 
UnGN^n = ft- Then it follows from (3.7) and (3.8) that 

e*AA/ = lim etAAn f < lim etA^ f = e
tA"f (0 < / G L2(A), t > 0). (3.9) 

n—>oo n—>• oo 
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Second step : Perturbation by V and U 

Let V~ = inf{V~,n} , U~ = inf{17",n}. Since V < U one has U~ < V~ and 
U~ < V~ (n e IN). It follows from the Trotter product formula and (3.9) that 

for all 0 < / E L2(k), t > 0. If we show that 

et(A*+U-) f = H m et(AUu~) f ( 3 > n ) 
n—>oo 

for all / E L2(A), and hence the analogous formula for A^ + V~ as well, we can 
conclude from (3.10) that 

et(Ai+u-)f<e«Ai>+v-)f (3.12) 

2 
for 0 < / E L2(A), t > 0. 

In order to show (3.11), recall that J U~u2 < f U~u2 <aj\Vu\2 + fi f \u 
for u E Hi (A), where 0 < a < 1. Let c = (3 + 1. 

Then 
/ |Vu|2 - f U-u2 + cf M 2 > (1 - a) f |Vu|2 + / M 2 > (1 - a ) |M| H i ( A ) . 

Denote by bn the form associated with —A — U~ + cl and by b the form 
associated with —A — U~ + cl. Then bn > 6 n + i and lim bn(u,u) = b(u,u) for 

n—>oo 
ueD(b)=D(bn)=HZ( A). 

Now it follows from [21, Theorem S16, p.373] 

e t ( A i + U ~ - c ) f = Jim et(Ai+U~-c)fj f&L2(a) 
n—>00 

This implies (3.11) and the proof of (3.12) is finished. 

Third step : Perturbation by and U+. 

Let U+ = inf{U+,n}, V+ = inf{V+,n}. 
Then V+ < (7+ and thus it follows from (3.12) that 

et(Ai+u~-u+) f < et(Ag+v--v+) f (3.13) 

for 0 < / E L2(A), t > 0, n E IN. It follows from [21, Theorem S14] that 

lim et(±i+u--u+)f = e-tHf (/gL
2(A)), 

n-^oo 

and 
lim = e ~tH f ( / e L 2 ( 0 ) ) n—>oo 

Hence passing to the limit in (3.13) yields the claim (3.5). • 
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Proposition 3.4. Assume that A is connected. Then (e tH)t>o is an irreducible 
semigroup on L2(A). 

Proof. It follows from [12, Theorem 3.3.5] that etA*f » 0 whenever t > 0, 0 < 
/ G L 2 ( A ) . 

Now we argue as in [5, Proposition 1.3] : we can assume that U~ = 0 (since 
et(Ai-u+) < et(A'i-u)y I t follows from p i , Theorem S16, p.373] that 

e t A A/ = lim et(±i-u++u+)f ( / e £ 2 ( a ) ) (314) n—oo 

Let 0 < / G I/2(A). Let t > 0. We show that e K * i - u + ) f 0. 
If not, there exists M C A with positive Lebesgue measure and e ^ A A f ( x ) = 

0 a.e. on M. 
Since < etnet(Ad

A-u+)f (n G it foUowg frQm that 

(e tAA/)(#) = 0 a.e. on M, a contradiction. • 
Proof of Theorem 3.1. Since ft and A are connected, both semigroups e~tH and 
e-tH a r e irre^cible. Assume that A (H) = A (H) . Replacing U by U — A (H) and 
V by V — A ( I f ) we can assume that A ( I f ) = A (H) = 0. It follows from Theorem 
2.1 that ( f t \ A) has zero Lebesgue measure and H = H. Denote by b the forms 
associated with H and H, respectively. Then b = b. In particular : 

J V+\u\2dx<oo^ = D(b) 

= D(b) = ^ueH^(A): J U~*~\u\2dx < oo j>. 

Assume that cap ( f t \ A) > 0. Then it follows from Proposition 1.4 that 
there exists ip £ C™(ft) \ H^(A). Thus ip G D(b) \ D(b), a contradiction. Thus 
cap (ft \ A) = 0. It follows from Corollary 1.5 that H^(ft) = H^(A). 

Since b = b one has 

J \ V u \ 2 d x + J Vu2dx = J \ V u \ 2 d x + J Uu2dx for all u G Cc°°(A) 

and so 

[ (V - U)u2dx = 0 for all u G Cc°°(A). 
J A 

Since V — U > 0 a.e., this implies that V — U — 0 a.e. This completes the 
proof of the direct implication in Theorem 3.1. The other is obvious. • 
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