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Abstract. We give a new proof of a perturbation result due to J. Prüss and H. Sohr
[11]: if an operator A has bounded imaginary powers, then so does A � w (w ^ 0).
Instead of Mellin transform on which the proof in [11] is based, we use the functional
calculus for sectorial operators developed in particular by A. McIntosh ([8], [3] and [1]).
It turns out that our method gives a more general result than the one used in [11].

1. Introduction. Less than ten years ago, G. Dore and A. Venni [5] proved their famous
result on maximal regularity on UMD-spaces. J. Prüss and H. Sohr extended this theorem to
the case where the considered operators are not necessarily invertible. For that purpose,
they proved that if a linear operator A admits bounded imaginary powers, then so does
"� A for each " > 0 ([11], Theorem 3). They restricted themselves to operators A for which
the type wA of the C0-group �Ais

�s2R is less than p, using a functional calculus closely related
to the inverse Mellin transform.

The purpose of this paper is to give a different proof of this result based on the functional
calculus for sectorial operators (see A. McIntosh [8] and M. Cowling, I. Doust, A. McIntosh,
A. Yagi [3]). This approach seems quite easy and elementary. In addition, it gives a more
general result. The restrictive assumption on the type made by J. Prüss and H. Sohr is no
longer necessary.

Combining these results with an operator-valued functional calculus introduced recently
by D. Albrecht and A. McIntosh [1], we obtain a more general perturbation result : given an
operator A with bounded imaginary powers and a bounded, invertible, sectorial operator B
commuting with the resolvents of A, such that the sum of the two spectral angles of A and B
is less than p, the operator A � B admits bounded imaginary powers. A result of this kind
was obtained by J. Prüss and H. Sohr for relatively bounded perturbations B which need not
commute with the resolvents of A ([12], Proposition 3.1). In the same time as this work was
accomplished, another proof of the Prüss-Sohr result has been given by M. Uiterdijk [13].

The paper is organized as follows. In Section 2, we present our main results. We recall the
important facts on the functional calculus which we need in Section 3. Finally, the proofs of
our main theorems are given in Section 4.

The idea of this paper comes from interesting discussions during January 1996 in Ulm
(Germany) with Pr Alan McIntosh from Macquarie University, Australia. The author wishes
to thank him here, as well as the referee for having pointed out the papers [12] and [13].
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2. The main theorems. From now on, A will denote a linear operator on a Banach space X ;
D�A�, N�A�, R�A�, ��A�, s�A� denote its domain, its kernel, its range, its resolvent set, its
spectrum, respectively.

De f i n i t i on 2 . 1 . The operator A is called sectorial on X if it is closed, densely defined,
N�A� � f0g, R�A� � X , and if it verifies �ÿ1 ; 0� � ��A� and sup

t>0
kt�t � A�ÿ1

k < 1 .
In that case, one has

fA :� inf f 2 �0;p�; s�A� � Sf and Mf :� sup
z2j Sf

kz�z ÿ A�ÿ1
k<1

( )

2 �0;p�;

where Sf � fz 2 C n f0g ; jarg �z�j < fg.
The angle fA is called the spectral angle of A.

Suppose now that A is sectorial. For all z 2 C such that j<�z�j < 1, we define the complex
powers of A by

Azx �
sin pz

p

x
z
ÿ

1
1 � z

Aÿ1x�
�1

0
tz�1

�t�A�ÿ1Aÿ1x dt�
�1

1
tzÿ1

�t � A�ÿ1Ax dt

 !

for all x 2 D�A� \ R�A� (see for instance [6], [7], and [10] pages 212 – 214, [2] page 157).
It is known that the map z 7!Azx is holomorphic on fz 2 C; j<�z�j < 1g with values in X

for all x 2 D�A� \ R�A�; see [10] page 213, [2] page 154. It can be easily seen that
D�A� \ R�A� is dense in X , and the operator Az defined on D�A� \ R�A� is closable. We are
now in the position to describe the class BIP�X�.

De f i n i t i on 2 . 2 . A sectorial operator A is said to admit bounded imaginary powers
(briefly : A 2 BIP�X�) if the closure of �Ais

;D�A� \ R�A�� is a bounded operator on X for
each s 2 R and if sup

s2�ÿ1;1�
kAis

k < 1 .

R e ma rk 2 .3. It is known that if A 2 BIP�X� then �Ais
�s2R forms a strongly continuous

group on X ([2], Theorem 4.7.1, page 162).
Denote by wA the type of this group; i.e. wA :� inffw 2 R; 9 M: kAis

k % Mewjsj
; s 2 Rg.

Then it was shown in [11] Th. 2, [10] page 214, [2] page 177 or [9] Cor. 4.4, that wA ^ fA,
where fA is the spectral angle of A.

The following theorem is the generalization of a perturbation result for operators in the
class BIP�X� with wA < p. It was proved by J. Prüss and H. Sohr [11] in the case where the
scalar perturbation w is a positive real number. Our proof is completely different than the
one given in [11].

Theorem 2.4. Let A be a sectorial operator on X with spectral angle fA. Assume that A
admits bounded imaginary powers, and denote by wA the type of the C0ÿgroup �Ais

�s2R.
Consider a complex number w 2 C n �ÿ1 ; 0� such that jarg wj � fA < p. Then the operator
w � A defined on D�A� admits bounded imaginary powers in X, and the type of
��w � A�is

�s2R is at most maxfwA; jarg wjg.

This theorem may be extended to a more general case.
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Corollary 2.5. Let A be as in the previous theorem. Assume that B is a bounded invertible
sectorial operator with spectral angle fB, commuting with the resolvents of A. If fA � fB < p,
then the operator A � B, defined on D�A�, admits bounded imaginary powers in X and the
type of the group ��A � B�is

�s2R is at most max fwA;fBg.

This result appears as a corollary of Theorem 2.4 by using the operator-valued functional
calculus discussed in [1]. We recall the facts necessary for the proof in the following section.

Under stronger assumptions on the Banach space X , namely if X has the UMD-property
(see [9], Section 1.2 for instance), J. Prüss and H. Sohr [11] obtained the same result
for more general operators B, using the theorem of Dore-Venni. More precisely, if
A and B are in the class BIP�X� with wA � wB < p and if their resolvents commute,
then the operator A � B defined on D�A� \ D�B� admits bounded imaginary powers, and
wA�B % max fwA;wBg.

3. Functional calculi for sectorial operators. We present in this section some of the results
proved in [8], [3] and [1]. We begin with the so-called classical functional calculus for
sectorial operators introduced by A. McIntosh [8] in the case of Hilbert spaces and extended
to more general Banach spaces by M. Cowling, I. Doust, A. McIntosh and A. Yagi in [3].
This will also give a new definition for the class BIP�X�.

Let m 2 �0;p�. Leth1
�Sm� denote the space of all bounded holomorphic functions on Sm

(this sector was defined in Definition 2.1). Consider also the following subspace ofh1
�Sm�,

h
1

0 �Sm� :� ff 2h1
�Sm�; 9 a > 0 : z7!�za

� zÿa
�f �z� 2h1

�Sm�g.
Let A be a sectorial operator on the Banach space X with spectral angle fA. Let

m 2 �fA;p� be fixed. For each f 2h1

0 �Sm�, one defines the bounded operator

f �A� �
1

2ip

�

G#

f �z��z ÿ A�ÿ1 dz;

where # 2 �fA;m� and G# � ÿei#
�ÿ1 ; 0� [ eÿi#

�0; 1�.
This definition is independent of # 2 �fA; m�.
Let now f 2h1

�Sm�. Then the function g : z 7!
zf �z�

�1 � z�2 belongs to h1

0 �Sm�. Define

then f �A�x for x 2 D�A� \ R�A� by f �A�x � g�A��Aÿ1x � 2x � Ax�. The operator f �A� is
closable; we denote the closure of �f �A�;D�A� \ R�A�� also by f �A�.

R e ma rk 3 . 1 . This procedure is just one way of defining a functional calculus for
functions in h1

�Sm�; it was shown in [3] and in [8] that any other functional calculus for
these functions, subject to the following requirements 1 and 2 agrees with this one.

1. If f �z� � zk, then f �A� � Ak
�k 2 N�.

2. Convergence lemma: if �fa�a is a uniformly bounded net of functions inh1

0 �Sm� which
converges to a function f inh1

�Sm� uniformly on compact subsets of Sm, such that the
operators fa�A� are uniformly bounded on X , then �fa�A�x�a converges to f �A�x for all
x 2 X , and consequently f �A� is a bounded operator on X which verifies
kf �A�k % sup

a
kfa�A�k.

Therefore, in the case of bounded invertible operators A, this functional calculus agrees in
particular with the Dunford functional calculus (see [14] VIII.7 for this notion).
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For each " 2 �0; 1�, we consider now the operator A" :� �"� A��1 � "A�

ÿ1. It is bounded,
invertible and sectorial of spectral angle at most fA. Moreover, for all # 2 �fA;p�, l 2 Spÿ#,

one has l 2 ��ÿA"� and �l � A"�

ÿ1
�

"

1 � "l
�

1 ÿ "
2

�1 � "l�2

l � "

1 � l"
� A

� �
ÿ1

: Therefore, one

obtains lim
"!0�

z�z ÿ A"�

ÿ1
� z�z ÿ A�

ÿ1 in the norm of operators, uniformly in z2j S#. For

x 2 D�A� \ R�A�, we also have lim
"!0�

A"x � Ax and lim
"!0�

Aÿ1
"

x � Aÿ1x in X . It is also known

(see [10] Proposition 8.1) that lim
"!0�

Az
"
x � Azx for x 2 D�A� \ R�A� and z 2 C, j<�z�j < 1.

The following lemma holds.

Lemma 3.2. (i) For all f 2h1

0 �Sm�, lim
"!0�

f �A"� � f �A� in the norm of operators;

(ii) for all f 2h1

�Sm�, for all x 2 D�A� \ R�A�, lim
"!0�

f �A"�x � f �A�x in X.

Now there is another way to describe the class BIP�X�. For each s 2 R, let fs be the
function fs�z� � zis defined on C n �ÿ1 ; 0�. Denote by gs the function defined on

C n �ÿ1 ; 0� by gs�z� �
z

�1 � z�2 zis ; it belongs to h1

0 �Sm�. For all x 2 D�A� \ R�A�, we

then have fs�A�x � gs�A��Aÿ1x � 2x � Ax�.

On the other hand, one obtains fs�A"�x � Ais
"

x � gs�A"��Aÿ1
"

x � 2x � A"x� for all " > 0 by
the Dunford functional calculus. Therefore, for all x 2 D�A� \ R�A�, one has
fs�A"�x � Ais

"
xÿ!Aisx and fs�A"�x � gs�A"��Aÿ1

"
x � 2x � A"x� ! gs�A��Aÿ1x � 2x � Ax�

� fs�A� as " ! 0�.
The operators Ais and fs�A� coincide on D�A� \ R�A�. This proves the following

proposition.

Proposition 3.3. A sectorial operator A admits bounded imaginary powers if and only if the
closure of �fs�A�;D�A� \ R�A�� is a bounded operator on X for each s 2 R and

sup
s2�ÿ1;1�

kfs�A�k < 1 .

The functional calculus just described has been extended to a more general case
by D. Albrecht and A. McIntosh [1]. To see how it works, we need the following defini-
tions.

Let A be as before. Denote by a the second commutant (or bicommutant) of the
bounded operator �l ÿ A�

ÿ1 (for one l 2 ��A�), i.e. the set of all operators which commute
with all the bounded operators which commute with �l ÿ A�

ÿ1 :a is an unital commutative
Banach subalgebra of the algebra of bounded operators on X and is independent of the
choice of l 2 ��A�.

We denote by h1

�Sm;a� the space of all bounded holomorphic functions on Sm

with values in a and by h1

0 �Sm;a� the subspace ff 2h1

�Sm;a�; 9 a > 0 :

z 7! �za
� zÿa

�f �z� 2h1

�Sm;a�g.

R e ma rk 3 . 4 . It is obvious that h1

�Sm� (resp. h1

0 �Sm�) can be considered as a
subspace of h1

�Sm;a� (resp. h1

0 �Sm;a�) by setting f ���I for functions f in h1

�Sm�

(resp.h1

0 �Sm�), where I is the identity on X (and belongs to a).
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If f 2h1

0 �Sm;a�, then we define f �A� �
1

2ip

�

G#

f �z��z ÿ A�ÿ1 dz, where # 2 �fA;m� and

G# � ÿei#
�ÿ1 ; 0� [ eÿi#

�0; 1� (see [1], Section 1). This definition is independent of
# 2 �fA;m�.

For f 2h1

0 �Sm;a�, let g : z 7!
zf �z�

�1 � z�2. The function g belongs to h1

0 �Sm;a�. Now

define the operator f �A� by f �A�x � g�A��Aÿ1x � 2x� Ax� for x 2 D�A� \ R�A�. The
operator f �A� is closable ; its closure in X is also denoted by f �A�.

This a-valued functional calculus can be considered as a generalization of the complex-
valued functional calculus discussed at the beginning of this section. Moreover, it has a con-
vergence lemma and a uniqueness theorem similar to those for the classical functional calculus.

Ex a mpl e 3 . 5 . In addition to the assumptions formulated above, let A;B be bounded,
invertible and their resolvents commute. Let gA be a bounded positively oriented contour in
Sm which surrounds s�A� and gB a bounded positively oriented contour which surrounds
s�B�. Assume that F is a bounded holomorphic function in two variables in Sm � ��B�. Then
we define F�A;B� with help of the Dunford functional calculus by

F�A;B� �
1

�2ip�2

�

gA

�

gB

F�z;w��z ÿ A�ÿ1
�wÿ B�ÿ1 dw dz:

By setting f �z� �
1

2ip

�

gB

F�z;w��wÿ B�ÿ1 dw, we may consider the previous formula as an

application of the a-valued functional calculus, since f 2h1
�Sm�. One has

F�A;B� �
1

2ip

�

gA

f �z��z ÿ A�ÿ1 dz �
1

2ip

�

G#

f �z��z ÿ A�ÿ1 dz:

We now have the whole material needed to prove Theorem 2.4 and Corollary 2.5.

4. Proof of the perturbation results. Let A be a sectorial operator in X with spectral angle
fA. Assume that A admits bounded imaginary powers and denote by wA the type of the
strongly continuous group �Ais

�s2R. Let w 2 C n �ÿ1 ; 0� be fixed (the case w � 0 in
Theorem 2.4 is clear), and denote by f the modulus of the argument of w. We also assume
that fA � f < p. It is clear that the operator A � w is sectorial. The only thing to show is
that this operator admits bounded imaginary powers.

For all " 2 �0; 1�, we denote by A" the bounded invertible operator �"� A��1 � "A�ÿ1.
In order to prove Theorem 2.4, choose m 2 �fA;p ÿ f� and fix s 2 R. The function ys

defined on Spÿf by ys�z� � �w� z�is belongs to h1
�Sm�. By Lemma 3.2 (ii), one has

lim
"!0�

ys�A"�x � ys�A�x for all x 2 D�A� \ R�A�. By the uniqueness of the limit, we know

then that ys�A�x � �w� A�isx for all x 2 D�A� \ R�A�.
On the other hand, one has for all z 2 Spÿf,

ys�z� �
z

w� z
��w� z�is

ÿ zis
� �

z
w� z

zis
�

w
w� z

�w� z�is
:

Denote by y1
s , y2

s , y3
s the functions defined on Spÿf by z 7!

z
w� z

��w� z�is
ÿ zis

�,

z7!
z

w� z
zis, z 7!

w
w� z

�w� z�is respectively. We will show in the following that they are
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in h1
�Sm�, that y1

s �A�, y2
s �A� and y3

s �A� are bounded operators and finally, that
ys�A� � y1

s �A� � y2
s �A� � y3

s �A�.

Lemma 4.1. The function y1
s defined on Spÿf by y1

s �z� �
z

w � z
��w � z�is

ÿ zis
� belongs

to h1

0 �Sm�.

Proof . (o) For z � rei#
2 C (r > 0, # 2 �ÿp;p�) and for t 2 �0; 1�, we have the

estimate : jt � zj2 ^
1 � cos#

2

� �
�t � r�2. This can be proved directly as follows.

jt � zj2 � t2
� 2 tr cos#� r2

�

1 � cos#
2

� �
�t � r�2

� 1 ÿ
1 � cos#

2

� �
�t2

� r2
�

� cos#ÿ

1 � cos#
2

� �
�2 tr�

�

1 � cos#
2

� �
�t � r�2

�

1 ÿ cos#
2

� �
�t2

� r2
� ÿ

1 ÿ cos#
2

� �
�2 tr�

�

1 � cos#
2

� �
�t � r�2

�

1 ÿ cos#
2

� �
�t ÿ r�2

^
1 � cos#

2

� �
�t � r�2

; since
1 ÿ cos#

2
^ 0:

In the following, we denote by c
#

the constant
2

1 � cos#

� �1
2

for all # 2 �ÿp;p�.

(i) Note that
1

jwj � jzj
%

1
jw � zj

%
c�m;f�

jwj � jzj
holds for all z 2 Sm, where c�m;f� �

maxfcm�f; cmÿfg. Note also that jtw � zj ^ sin�m � f� jzj for all z 2 Sm, for all t ^ 0.

(ii) Fix z 2 Sm n f0g. Apply the mean value theorem on the intervall
i � ftw � z ; t 2 �0; 1�g. The intervall i stays in Smaxfm;fg, and we have

j�w � z�is
ÿ zis

j % sup
t2�0;1�

jis w �tw � z�isÿ1
j

% jsjjwj emaxfm;fgjsj sup
t2�0;1�

1
jtw � zj

� �

% jsjjwj emaxfm;fgjsj 1
sin �m � f�

1
jzj

:

So, one obtains the following estimate for all z 2 Sm n f0g:

jy1
s �z�j %

jwj c�m;f�

sin �m � f�
jsj emaxfm;fgjsj 1

jwj � jzj
:

(iii) On the other hand, one also has

j�w � z�is
ÿ zis

j % emaxfm;fgjsj
� emjsj

% 2 emaxfm;fgjsj
:
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Finally, one obtains for all z 2 Sm,

jy1
s �z�j %

c�m;f�

jwj � jzj
emaxfm;fgjsj min 2jzj;

jsjjwj
sin �m� f�

� �

:

This proves that y1
s 2h

1

0 �Sm� and for all d > 0, there exists a constant k1 such that

jy1
s �z�j % k1 �1 � jwj� e�maxfm;fg�d�jsj min fjzj; 1g

jwj � jzj

(k1 is independent of w 2 Sm n f0g, and of s 2 R). h

Corollary 4.2. The operator y1
s �A� is bounded ; moreover, for all d > 0, for all # 2 �fA; m�,

there exists a constant K1 such that ky1
s �A�k % K1 e�maxfm;fg�d�jsj.

Proof . The functional calculus developed in Section 3 gives for any # 2 �fA;m�,

y1
s �A� �

1
2ip

�

G#

y1
s �z��z ÿ A�ÿ1 dz:

The previous lemma combined with this formula gives for all d > 0,

ky1
s �A�k %

1
2p

k1 �1 � jwj� e�maxfm;fg�d�jsj
�

G#

min fjzj; 1g
jwj � jzj

M#

jzj
jdzj;

where M# was defined in Definition 2.1. h

Lemma 4.3. The function y2
s , defined on Spÿf by y2

s �z� �
z

w � z
zis, belongs toh1

�Sm�,

and the operator y2
s �A� is bounded ; it is given by y2

s �A� � A�w � A�ÿ1Ais.

Proof . For all z 2 Sm, one has jy2
s �z�j % jzj

c�m;f�

jwj � jzj
emjsj % c�m;f� emjsj; i.e.

y2
s 2h

1

�Sm�.
For each " > 0, the operator y2

s �A"� is given by the Dunford integral, which gives
y2

s �A"� � A"�w � A"�

ÿ1Ais
"

. By Lemma 3.2 (ii), one has for all x 2 D�A� \ R�A�,
y2

s �A"�xÿ!y2
s �A�x as " ! 0� in X .

On the other hand, A"�w� A"�

ÿ1
ÿ!A�w � A�ÿ1 as " ! 0�, in the norm of operators and

Ais
"

xÿ!Aisx as " ! 0� in X for all x 2 D�A� \R�A�.
Therefore, by uniqueness of the limit, one obtains y2

s �A�x � A�w � A�ÿ1Aisx for all
x 2 D�A� \ R�A�. The operator A�w� A�ÿ1Ais is bounded by assumption, and D�A� \ R�A�
is dense in X . Therefore, the closure of �y2

s �A�;D�A� \ R�A�� is a bounded operator equal
to A�w � A�ÿ1Ais and then, for all d > 0, there exists a constant K2 such that
ky2

s �A�k % K2 e�wA�d�jsj. h

Obviously, the function y3
s defined on Spÿf by y3

s �z� �
w

w � z
�w � z�is belongs to the

spaceh1

�Sm�.

Lemma 4.4. The operator y3
s �A� is bounded and for all # 2 �fA;m�, there exists a constant

K3 such that ky3
s �A�k % K3 emaxfm;fgjsj.
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Proof . Let " 2 �0; 1� be fixed and choose R > kA
"

k � j<�w�j. Denote by GR
#

the contour
ÿei#

�ÿR; 0� [ eÿi#
�0;R� [ Rei�ÿ#;#�. By the Dunford functional calculus, one has

y3
s �A"

� �

1
2ip

�

GR
#

y3
s �z��z ÿ A

"

�
ÿ1 dz

�

1
2ip

�

GR
#

ÿ
j<�w�j

2

w
w � z

�w � z�is
�z ÿ A

"

�
ÿ1 dz; by holomorphy.

Moreover, one has

lim
R!1







�#

ÿ#

w

w � Reis
ÿ

j<�w�j
2

w � Reis
ÿ

j<�w�j
2

� �is

� Reis
ÿ

j<�w�j
2

ÿ A
"

� �
ÿ1

iReis ds






� 0:

By holomorphy, one then obtains

y3
s �A"

� �

1
2ip

�

G
#

ÿ
j<�w�j

2

w
w � z

�w � z�is
�z ÿ A

"

�
ÿ1 dz:

It is now clear, by absolutely convergence, that one has for all x 2 X

y3
s �A"

�ÿ!

1
2ip

�

G
#

ÿ
j<�w�j

2

w
w � z

�w � z�is
�z ÿ A�ÿ1 dz as " ! 0�:

On the other hand, since y3
s 2h

1
�Sm�, by Lemma 3.2 (ii), one has y3

s �A"

�xÿ!y3
s �A�x as

" ! 0� for all x 2 D�A� \ R�A�. Since D�A� \ R�A� is dense in X , by uniqueness of the

limit, one obtains for all x 2 X y3
s �A�x �

1
2ip

�

G
#

ÿ
j<�w�j

2

w
w � z

�w � z�is
�z ÿ A�

ÿ1x dz: The

operator y3
s �A� is bounded and its norm verifies

ky3
s �A�k %

1
2p

�

G
#

ÿ
j<�w�j

2

c�m;f� jwj
jwj � jzj

emaxf#;fgjsj M
#

jzj
jdzj

% K3 emaxfm;fgjsj
; since # % m: h

We are now in position to prove Theorem 2.4. For all m 2 �fA;p ÿ f�, for all # 2 �fA;m�, for
all d > 0, we have shown that there exist three constants K1, K2, K3 independent of s 2 R
such that

ky1
s �A� � y2

s �A� � y3
s �A�k % K1 e�maxfm;fg�d�jsj

� K2 e�wA�d�jsj
� K3 emaxfm;fgjsj

:
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For each " 2 �0; 1�, one also has y1
s �A"� � y2

s �A"� � y3
s �A"� � ys�A"� by the Dunford

calculus. Since y1
s , y2

s , y3
s are inh1

�Sm�, one obtains from this that

lim
"!0�

ys�A"�x � y1
s �A�x � y2

s �A�x � y3
s �A�x for all 2 D�A� \ R�A�

� �w � A�isx; by uniqueness of the limit:

Therefore, the operator �w � A�is is bounded for all s 2 R and the type of the C0-group
��w � A�is

�s2R is less than maxfmax fm;fg � d; wA � dg for all m 2 �fA;p ÿ f�, for all
d > 0; i.e. ww�A % maxfwA;fg (since fA % wA). h

This proof will be used to show Corollary 2.5. Let B be a bounded invertible sectorial
operator with spectral angle fB, such that fA � fB < p. Assume that the resolvents of B
commute with the resolvents of A. Known results ([4], 3. Sommes commutatives) already
imply that the operator A � B defined on D�A� is sectorial. Only the boundedness of the
imaginary powers of A � B remains to be shown. Choose m 2 �fA;p ÿ fB�, fix s 2 R and let
g be a closed positively oriented contour which surrounds s�B� and such that g � Spÿm. We
will consider the following aÿvalued functions (a is the second commutant of �l ÿ A�ÿ1

for one l 2 ��A�) ; for all z 2 Sm

ys�z� �
1

2ip

�

g

�w � z�is
�w ÿ B�ÿ1 dw � �z � B�is

;

y1
s �z� �

1
2ip

�

g

z
w � z

��w � z�is
ÿ zis

��w ÿ B�ÿ1 dw � z�z � B�ÿ1
��z � B�is

ÿ zis
�;

y2
s �z� �

1
2ip

�

g

z
w � z

zis
�w ÿ B�ÿ1 dw � z1�is

�z � B�ÿ1
;

y3
s �z� �

1
2ip

�

g

w
w � z

�w � z�is
�w ÿ B�ÿ1 dw � B�z � B�ÿ1

�z � B�is
:

These functions verify ys�z� � y1
s �z� � y2

s �z� � y3
s �z� for all z 2 Sm. In the following, we will

prove that ys, y1
s , y2

s and y3
s belong to h1

�Sm;a� and that y1
s �A�, y2

s �A�, y3
s �A� are

bounded operators.
Using Lemma 4.1, one can see that for all d > 0, there is a constant k1 such that

jy1
s �z�j %

1
2p

jgj k1 �1 � Rg� c�B� e�maxfm;pÿmg�d�jsj minfjzj; 1g
rg � jzj

;

where jgj �
�

g
jdzj, rg � inf fj<�w�j ; w 2 gg, Rg � sup fjwj; w 2 gg and c�B� �

sup fk�w ÿ B�ÿ1
k; w 2 gg. This proves that y1

s 2h
1

0 �Sm;a�. Therefore, the operator
y1

s �A� is bounded and for all d > 0, there is a constant K1 such that
ky1

s �A�k % K1 e�maxfm;fg�d�jsj. The constant K1 is independent of s 2 R.
As in Lemma 4.3, it is easy to see that y2

s 2h
1

�Sm;a� and that y2
s �A� � A�A � B�ÿ1Ais.

For all d > 0, the operator y2
s �A� is then bounded by ky2

s �A�k % K2e�wA�d�jsj, where K2 is a
constant independent of s 2 R.

The function y3
s belongs obviously toh1

�Sm;a�. Let now " 2 �0; 1�be fixed and choose
R > kA"k � rg. Denote by GR

#
the contour ÿei#

�ÿR; 0� [ eÿi#
�0;R� [ Rei�ÿ#;#�, for # 2 �fA; m�.
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By the Dunford functional calculus, one has

y3
s �A"

� �

1
2ip

�

GR
#

y3
s �z��z ÿ A

"

�
ÿ1 dz

�

1
2ip

�

GR
#

ÿ
rg
2

y3
s �z��z ÿ A

"

�
ÿ1 dz; by holomorphy.

Since

lim
R!1

�#

ÿ#

�

g

w

w � Reis
ÿ

rg

2

�
�
�
�
�
�
�

�
�
�
�
�
�
�

w � Reis
ÿ

rg

2

� �is
�
�
�
�

�
�
�
�
k�w ÿ B�ÿ1

k jdwj

0

B
@

1

C
A

0

B
@

� Reis
ÿ

jrgj

2
ÿ A

"

� �
ÿ1













R ds

!

� 0;

one obtains by holomorphy

y3
s �A"

� �

1
2ip

�

G
#

ÿ
rg
2

y3
s �z��z ÿ A

"

�
ÿ1 dz

�

1
2ip

�

G
#

ÿ
rg
2

1
2ip

�

g

w
w � z

�w � z�is
�w ÿ B�ÿ1 dw

 !

�z ÿ A
"

�
ÿ1 dz:

By absolute convergence of this integral, one can easily see that for all x 2 X ,

y3
s �A"

�xÿ!
1

2ip

�

G
#

ÿ
rg
2

y3
s �z��z ÿ A�ÿ1x dz as " ! 0�:

Since y3
s 2h

1
�Sm;a�, one has by Lemma 3.2 (ii) extended to the case of a-valued

functions, y3
s �A"

�x ! y3
s �A�x as " ! 0� for all x 2 D�A� \ R�A�. Therefore, the operator

y3
s �A� is bounded and is equal to

1
2ip

�

G
#

ÿ
rg
2

y3
s �z��z ÿ A�ÿ1x dz ; its norm verifies

ky3
s �A�k %

1
2p

�

G
#

ÿ
rg
2

1
2p

�

g

c�m; fB� jwj
jwj � jzj

emaxf#;fBgjsjc�B� jdwj

0

B
@

1

C
A

M
#

jzj
jdzj

% K3 emaxfm;fBgjsj
; for a constant K3 independent of s 2 R:

This shows Corollary 2.5. h
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opérationnelles. J. Math. Pures Appl. 54, 305 – 387 (1975).

[5] G. DORE and A. VENNI, On the closedness of the sum of two closed operators. Math. Z. 196, 189 –
201 (1987).

[6] H. KOMATSU, Fractional powers of operators. Pacific J. Math. 9, 285 – 346 (1966).
[7] S. G. KREIN, Linear differential equations in Banach spaces. Transl. Math. Monographs 29, Amer.

Math. Soc. 1972.
[8] A. MCINTOSH, Operators which have an h1 functional calculus. Miniconference on operator

theory and partial differential equations. Proc. Centre Math. Anal. Austral. Nat. Univ. 14, 210 – 231
(1986).
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