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ABSTRACT.  In this paper, we establish maximal LP — L9 estimates for non-autonomous parabolic equations
of the type u’(t) + A(t)u(t) = f(t), u(0) = 0 under suitable conditions on the kernels of the semigroups
generated by the operators —A(t), t € [0, T). We apply this result on semilinear problems of the form
W' () + A@u(t) = f(t, u()), u0) =0.

1. Introduction

Maximal regularity results for linear initial value problems are very effective tools when dealing
with nonlinear, in particular quasilinear or fully nonlinear, problems. In fact, it is known that the
standard evolution operator approach is in particular not applicable to reaction-diffusion equations
where the “diffusion matrices” depend on Vu. However, involving maximal regularity results and
techniques based on the implicit function theorem, one is able to treat problems of the kind described
above. For an up-to-date overview of the results and techniques known in this context, we refer to
the monographs [2, 19, 16], and [5].

From the point of view of harmonic analysis, it is natural to replace the property of maximal
LP —regularity by the L”—boundedness of certain Banach space valued singular integrals. More
precisely, let 1 < p, g < 00, @ C RY open and —A be the generator of an analytic semigroup on
L9(£2). Then there is maximal L? — L9 —regularity for the problem

W)+ Au@®) = f@), tel0,T]
w0 = 0 .1y

if and only if the convolution operator R given by

(RA() = f " Ae=0D4 £(5) ds
0
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acts boundedly on LP(0, T; L9(R2)). Since Mihlin’s theorem for operator-valued symbols is ap-
plicable in this situation if and only if ¢ = 2, one is forced to use other techniques in order to
prove L? —boundedness of R. By using the transference principle, Lamberton [15] proved maximal
LP — L9—regularity for (1.1) provided the semigroup T generated by —A acts as a contraction
on L9(Q2) for all ¢ € [1,00]. Observe that his approach is necessarily restricted to second or-
der differential operators and in particular does not allow treatment of parabolic systems. On the
other hand, assuming suitable heat-kernel bounds on the semigroup generated by —A, maximal
LP — L9—regularity for the solution of (1.1) was proved recently by Hieber and Priiss in [14]. (For
generalizations see [7]). It seems that the idea of using heat-kernel bounds in this context was first
used in [21] by Strook and Varadhan. The problem of maximal L? — L9 —regularity for arbitrary
parabolic evolution equations of the form (1.1) with — A being the generator of an analytic semigroup
on some LP —space, as formulated by Brézis (see, e.g., [6]), seems to remain open, in general.

Considering quasilinear problems of the form /() + A(t, u(®))u(®) = f(@), u(0) = 0,
maximal regularity results for the non-autonomous linear equation

')+ A@u(r) f@), tel0,T]
40 = 0 (1.2)

are of great interest. If the domains of A(¢) are constant, i.e., if D(A(¢)) = D for all ¢ € [0, T], one
obtains maximal regularity results for (1.2) by the one for the autonomous case simply by writing

u'(t) + AQ)u(t) = (A(0) — AMu@) + f(t), u@0) =0

and by using perturbation arguments. Observe, however, that the domains D(A(#)) vary with ¢ for
example when A(t) is the L9 —realization of a second order differential operator subject to co-normal
Neumann boundary conditions.

In this paper we do not only prove maximal L” — L9 —regularity results for examples of
this kind, but treat the general case where {A(t),t € [0, T]} satisfies the Acquistapace-Terreni
commutator condition and the heat-kernels of the semigroups T; generated by — A (¢) satisfy suitable
bounds. The method we use is very much inspired by the ones used in [14] and [7]. Essentially it
is based on the technique developed in [11] and [10] allowing us to prove L! — L. —boundedness
of singular integrals with weaker conditions on the kernel than the classical Hormander almost
L' —condition.

In order to treat parabolic differential operators acting on Riemannian manifolds, we choose
spaces of homogeneous type as underlying setting.

This paper is organized as follows. In Section 2, we give the precise assumptions and state our
main theorem. The proof of the main result is given in Section 3. In Section 4, we apply our result
to semilinear problems of the form u’(¢t) + A(t)u(t) = f(t, u(t)), u(0) = 0, where the domains of
A(t) may vary with t.

Throughout this paper, we denote by £(X, Y) the space of all bounded linear operators from
X to Y, whenever X and Y are Banach spaces. If A is a linear operator in X, we denote its domain
by D(A), its resolvent set by p(A) and its spectrum by o (A). Moreover, for any 6 € (0, ), we set
g = {z € C\ {0}; | arg(z)| < 6}.

2. Assumptions and the Main Result

Let (2, m, d) be a space of homogeneous type. This means that € is a topological space,
m is a o —finite measure on 2, and d is a quasi-metric (i.e., d(x, z) < ya(d(x,y) + d(y, 2)) for
all x,y,z € , where y; > 1) on Q. We assume the doubling property: there exists a constant
Cp > 1 such that m(Bgq(x,2r)) < Cp m(Bgq(x,r)) holds for all x €  and all r > 0, where




Heat-Kernels and Maximal LP — L9 —Estimates: The Non-Autonomous Case 469

Bo(x,r) :={y € Q;d(x,y) < r}. We remark that this property implies the strong homogeneity
property (H) given as follows:

(H) there exist two constants Cy > 1 and £ > 0 such that
m (Ba(x,ar)) < Cp a‘m (Ba(x,1))
holds forallx € Q,a > 1,r > 0.

We consider now M, a measurable subset of 2, and we let T > 0. Let {A(¢), ¢ € [0, T]} be a family
of linear densely defined operators in L2(M, m). We assume that

(A) there exists ¢ € (0, %) such that o0 (A(t)) C Xy, and for all & € (g, ) there exists a
constant My > 0 such that

< M"
LLEMm) — 14 |A|

Jo- s

holds forallA € C\ Xy, € [0, T].
Condition (A) implies that the operators — A(t) generate uniformly bounded analytic Cp—semigroups

(e77A®), o0n L2(M, m). We assume thatforall¢ € [0, T]and forallo > 0, thereexists k; (o, -, -),
bounded and measurable on M x M such that

() 0= [ ko2 70xm») m—aa.xe M

for all f € L?(M, m). Moreover, we assume that the kernels satisfy a uniform estimate of the
following type:

(K) there exist a constant n > 0 and a bounded decreasing function g defined on (0, co)
satisfying lim r2¢*” g(r) = 0 for some y > 0 such that
r—o0

1 1 d ,
lks (o, x, ¥)| < min g( (x }’))

w(a (D) n(oa(re)) U
holds for allt € [0, T],0 > 0,and form —a.a. x,y € M.

It is well known that condition (K) is satisfied for a large class of differential operators. For
details in the context, we refer to [4, 9, 12, 3, 8]. Condition (K) implies that the semigroups
{(e“”‘('))(,zo, t € [0, T} act consistently also on LY(M, m) for 1 < g < oo. Moreover, they are
uniformly bounded and analytic on L(M, m) for 1 < g < oo (see [11, Proposition 2.3]). Denote
their generators by —A,(t). Moreover, we assume that the operators {A4(?), ¢ € [0, T} verify the
following commutator conditions on L7 (M, m), for all g € (1, 00).

(Cq) There exists wg € (¢, §), oq, By € [0, 1] with oy < B, and a constant ¢, > O such that

¢y |t — s|Pa
_ Cqlt—s]

”Aq(t) (A= A)" (Aq(’)_l - Aq(s)_l)“c(uw.m)) T (14 A

forallA € C\ X, ands,t € [0, T].

The condition (C;) and the assumption (A) imply in particular that
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c2(My, + 1) |t — 5|72

(e I =AD" = A = AT Nearmm) <~

forallA € C\ X4, and s, t € [0, T].

We also assume the following commutator condition on L!(M, m) and L%(M, m). For g = 1 and
q = oo, the following holds:

(cq) There exists w, € (¢, 5), ag, g € [0, 1] with oy < B, and a constant ¢; > 0 such that

cq It — s|Pa

-1
A=Ay = (A= A405) ‘ <4
”( e et ) caMmy (L4 ADI—a

foralla € C\ £y, and s, t € [0, T].

Definition 1. The family of operators {A(z), ¢t € [0, T]} belongs to the class MR(p, q), and we
say that there is maximal L” —regularity on L9 (M, m) if for all functions f in L? (0, T; LY(M, m)),
there exists a unique function

ueWhP(0,T; LYM,m)) with A,(u() € L? (0, T; LYM, m)) ,

verifying (1.2) in the L?(0, T'; LY(M, m))—sense.
We are now in the position to state the main result of this paper.

Theorem 1.

Assume that the family {(A(t),t € [0, T]} satisfies the assumptions (A), (K), (Cy) for all
q € (1,00), (c1) and (cxo). Let1 < p,q < oo. Then the family {A(t),t € [0, T]} belongs to the
class MR(p, q).

3. Proofs

The results in [1] and [18] imply the following facts. If u is a solution of (1.2), then u fulfills
the equation

t
AQu@) = /0A(t)ze_(’_s)A(')(A(t)_l—A(s)'l)A(s)u(s)ds
t
+ [ A@0)e AW f(s) ds
0

for a.a. t € (0,T). For the time being, let g € (1, 00) be fixed. If the constant ¢, in (Cy) is
sufficiently small, the operator Q@ € L(L?(0, T; LY(M, m))) defined by

t
(Qg)(t) = / A2 A0 An T — As)Dg(s)ds, e, T),
0

has norm less than % forall p € (1, 00). Observe, however, (see also [17, Remark before Corollary 2])
that the family {A(¢),t € [0, T]} belongs to the class M R(p, q) if and only if this holds true for
{A(t) + v,t € [0, T]}, where v is an arbitrary constant. Hence, there is no loss of generality in
choosing the constants ¢4 in (Cy) as small as we want, by choosing o, slightly larger. It follows that
the operator 1 — Q is then invertible in L(L? (0, T; L9(M, m))). We summarize our observations
in the following proposition.
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Proposition 1.
The family {A(t),t € [0, T1} belongs to the class MR(p, q) if and only if the operator S
defined by
t
SN = [ A MO 56 ds te0,7)
0
acts as a bounded operator on L(LP (0, T; LY(M, m))).

In [13, Theorem 3.2], we proved that assuming (A) and (C3), the family {A(¢),t € [0, T]}
belongs to M R(2, 2). Hence, the operator

S:L%(0,T) x M,A®m) — L2((0, T) x M, A ® m)
defined by

t
(Sf)(t,x) = ( f A@)e™ 1940 £(5. ) ds) (x) (3.1)
0

forA®m—a.a.(t, x) € (0, T) x M acts boundedly on L2((0, T) x M). Here A denotes the Lebesgue
measure on (0, T'). Moreover, we proved in [13, Theorem 3.1], that M R(p, q) is independent of
p € (1, 00). Hence, the Marcinkiewicz interpolation theorem implies the following result.

Proposition 2.

Let S be defined as in (3.1). Then the assertion of Theorem 1 holds true provided S, as well as
its adjoint, is of weak type (1, 1).

At this point some remarks on our strategy of how to prove that S is of weak type (1, 1) are
in order. For the time being consider the autonomous case, i.e., A(t) = A for ¢t € [0, T] and write
f € L1((0, T) x M) in its Calderdn-Zygmund decomposition as f = g + b with b = Y " b;. The
strategy used in [14] and [7] to show that R defined as in Section 1 is of weak type (1, 1) is to
decompose Rb; as

RVyb; + (R - RV,,-)b,’

with an appropriate “smoothing term” Vz;. Observe that in the non-autonomous situation the operator
S defined as in (3.1) seems not to be treatable directly with the semigroup methods developed for
the autonomous case. However, semigroup methods do work for S with

t
Sf@) = / A(s)e™ 94O £(5) ds .
0
In fact, we decompose Sb; in the following as
SU,b;i + (sn - SU,i) bi + (S — Sg;) bi

with S defined below associated to the kernel —3ks(t — s, x, ¥)o,r(s). In order to control the
above three terms we need assumptions (Cy), (¢1), and (ceo)-

The rest of this section is devoted to the proof of the fact that S is of weak type (1, 1). To this
end,let Q = (0,T) x M and u = A ® m. Let S be the bounded operator on L%(Q, p) defined as
above. Denote the kernel of S by p. Then p : Q x Q — R is of the form

pt,x;8,y) = =01kt —s5,x, )on(s) m—aa(,x)(sy) eQ

ok .
with the notation 9k, (0, x, y) = 3;'(0, x, ¥). This means that

t
Sf(tvx)=_A /Malkt(f—S»xv)’)f(sy}’)dé‘dm(}’)
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holds for each continuous function f with compact support in Q, for u — a.a. (t, x) ¢ supp(f).
Next, let p be given by

Ox Q>3 x;s,y)— pt,x;5,y) = -kt —s,x, V)0, (s)

for u —a.a. (¢, x), (s, y) € Q. Denote by S the operator in L%(Q, p) associated with p.
Lemma 1. 3
Under the conditions (A) and (c3), the operator S is bounded on L?(Q, ).

Proof. Since S is bounded on L%(Q, w) (Proposition 1 and [13, Theorem 3.2]), it suffices to
prove that § — S is bounded on L2(Q, u1). By assumption (A), we have

t
(S - s) £t /0 (A(s)e_('_’)’“’) - A(:)e-('—”"(‘)) f(s,-)ds

t
./(.) (2117r f)‘e_(t_sn (()‘ VY0 R O A(t))_l) f(s, ) dA) ds

where w; is defined as in (C2) and ', = (00, 0)e!“2 Ue~i@2(0, 00). Therefore, taking into account
the estimates (A) and (c3) it holds for all f € L2(Q, 1)

|6 =97 pr

1 [ * —(t—s)rcoswy (t—s)ﬂz
(en + a1 ([ re oyt ) 1 Mz o

t
C (My,, coswy, c3, a2, B2) /0 (t — )Pl £ s, Me2m,myds

IA

IA

where C(M,,,, cos wy, ¢3, @2, B2) is a constant depending only on the listed quantities. Applying
Young’s inequality, we have

|(5-5)s

Consider next for T > 0, the operator U; € L(L?(Q, 1)) associated to the kernel u, given by

< C(M,,,coswy, ¢z, ) . u
Low = (Mo, 2, ¢2,02, 82, T) I fll 1200y

Ox Q>3 x;5,y)— ult,x;s,y) =g r)+r)(S) k,(r x,y).

Moreover, define S; € L£(L2(Q, n)) to be the operator associated to the kernel p, given by
1 S+T
pr:QXQa(t,x;s,y)H—; kit —o+1,x,y) o< do .

s

Let D := (0, T) x Q2 and define the quasi-metric § on D by
8((t,x); (s, y)) ==t —=s|+dx, " (t,x),(,y) €D,

where n was defined in (K). Then (D, u, 8) is a space of homogeneous type. Define H, €
L(L*(D, p)) associated to the kernel &, given by

—5 1 1 d ,
hz(t,)c;S.y)=—§e"'Tl min g( (x Y))
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for (¢, x), (s, y) € D x D. Finally, set Bp(&, p) = {n € D; §(n, §) < p}, the ball in D with center
& and radius p.

Lemma 2.
Under the conditions (A), (K), (c2), and (cy), the following assertions hold

@) |uc(E,n)| <h (& n)forn—ae§,neQandforalr >0
(b) (Harnack inequality) there exist a constant ¢ > 1 such that

sup h(E,n) <c inf ko (£, 1)
neBp(¢,t) neBp(¢,1)

holds forall ¢, & € D and all T > 0;
(c) there exists a constant C > 0 such that for all T > 0,

1
<C sup ———— [v(m)] du(n)

h:(n, d
/D (n, &)v(n) du(n) p>0 W(BD(&, p)) JBpt.p)

holds for all& € D and all v € L*(D, ),
(d) forallt > 0, the operator S — S; € L(L%(Q, n)) associated to the kernel p — pr verifies

Vg i= Sup f lp€,n) — pc, MIdu) < oo
§(,n=et

neQ,1>0

forallp > 0;
(e) forall T > O, the operator S; — SU, € L(L*(Q, n)) extends to a bounded operator on
LY(Q. n). Moreover, ||Sx — SU¢ || £(11(g, ) is independent of T > 0.

Proof. (a) Taking into account assumption (K), the assertion follows by the choice of u, and

he.
(b), (c) Assertions (b) and (c) were shown in [14, Lemma 4.2, and Lemma 4.3].
(d) The proof of assertion (d) follows the lines of (7, Section 3.4]. By definition, we have
pt,x;5,y) = =01k (t — 5, x, ¥)0.0)(5)
and

1 s+t
pe(t, x;5,y) = —Z / okt —o+1,x, MV do .
A
Therefore, it holds
p(t,x;s,y) — p(t, x5, y)
1 s+t
== / (ke (t = 5, x, Yo, (8) — Ikt = + 7, %, Mo <) do .
5
We next remark that
1
(3¢, = 07} € {Ir — 51 2 07} x M U [0,00) x {d(x, ) = (@©)7 | -

Using this decomposition of the domain of integration, we have to estimate now the quantities
A=/ f Ip@t, x;s,¥) — pe(t,x; 5, y)| dt dm(x)
M J|t—s|>ot

and o
B= [ / P, x5 s, y) — pe(t, x; 5, )| dm(x) dt
0 Jdx.y)z(en)"
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uniformly in n = (s, y) € @ and t > 0. This comes from the following heat kernel estimate (see
for instance [7, Proposition 2.1]):

fori = 1 or 2, there exist constants C, « > 0 such that
f o
d(x.y)zeh ol (1+ %)
holds forallo > 0, > Oand a.a. y € M. Indeed, to estimate A, we use (3.2) fori =2andt = 0.

To estimate B, we use (3.2) fori = 1.
(e) Forall T > O and forall f € L2(Q, u) N L1(Q, u), we have

(se = 3u) fa )

T 1 s+
= / - ( f Ay()e” oD _ Al(o)e-('-"“)f‘l(“)) dcr) f(s, ") ds
0 s

oiki(0, %, )| dm(x) < (3.2)

T 1 s+t 1 -+ DA -1 —1
=f ds = | Ir< do —/ AN (G — 41 0) ™ A= A1) fGs, ) dA )
0 TJs Ty,

2im
Taking into account the estimate (c;), the argument given in the proof of Lemma 1 implies

" (Al(t)e—(f-a+t)A1(t) - A;(a)e_('_"'HM‘(”)) £(s, Mg< "

LY(M,m)
1 [ @t —o)P
— —(t—o+t)rcosw -
< ¢ - fo re 1_____(1 svET Io<t drlif (s, Mo aom)
(t— a)ﬂ'

< C(coswy,cy, ay, B1) ot omH Lo<e N F (s Lt mm) -
Therefore, we obtain

|5 = 50e) £669] 1
s+t (t — o*)ﬂl

LS|
<C » €1, O], -
< C(coswy, ¢y, ap ﬂl)fo t), (t =0 +7)ntl

]I(yst dU Ilf(s, .)”LI(M,M) ds
t
< C (COS(UI, Cc1, oy, ﬁl) /(; (t - s)ﬁl-a.—l "f(sv )“Ll(M,m) ds .
Then, applying Young’s inequality, we have
(50 =802) 7], 5.0y = € (M cos@r, cr, 00, 81, T) 1 Msco o

which implies the assertion. U

Proposition 3.
Under the conditions (A), (K), (c3), and (c}), the operator S is of weak type (1, 1) on Q.

Proof. First, remark that the operator S is of weak type (1, 1) on Q if and only if the operator R
defined by Rf := 1o S(Ig f) is of weak type (1, 1) on D = (0, T) x Q2. To prove this last assertion,
we define the following bounded operators on L2(D, u):

Rf :=1gS(lgf), Ref :=1gS: (Igf), Vi f :=IgU: (Igf) . (3.3)

Consider the Calderén-Zygmund decomposition of a function f € LY(D, p) (see [20, 14, Theo-
rem 2]). Then there exist N € N and ¢« > 0, depending only on (D, u, §), such that for each
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function f € LY(D, n) and for all r > J‘L‘(Lz“)l) if w(D) < oo and for all » > O otherwise, there

exist functions g, b; (i € N) in L1(D, u) such that we can write faf=g+ Zb,- and with the
ieN
following properties: le
(i) |g,x)| <«krforu—a.e.(t,x)eD;
(ii) foralli € N, there exist (f;,x;) € D and ; > O such that supp(b;) C B; := {(t,x) €
D; 8((¢, x); (ti, xi)) < ti} and
lbill} < krp(B;) ;
K
Gil) Y w(B) <= Iflh;
“ r
ieN
(iv) each point of D is contained in at most N balls B;.

In order to prove Proposition 3, we have to show that there exists a constant C > 0 such that
for all functions f € L2(Q, u) N L1(Q, ), and for all r > 0,

r u({(t,x) € D; |Rf(t, x)| >r}) <C|fll1 .
To this end, let f € L2(D, u) N LY(D, ) be fixed. For 0 < r < )-Ll(f,')'—') we have
r u({(t,x) € D; |Rf(t, x)| > r}) <ru(D) < | flh .

Letr > 2( g‘) be fixed. The Calder6n-Zygmund decomposition for (f, r) gives then f = g + Z b;
ieN
where g, b; (i € N)satisfy (i)—(iv). Remark that Condition (i) of the decomposition implies that g €
L®°(D, u) and ||glloo < «r. Moreover, Conditions (ii) and (iii) imply that Z Wbille < &2 F s
ieN
and then [Iglly < (1 4+ «?)|I f 1.
The idea of the following proof is to decompose Rb; as

Rb; = RVyb; + (R,,. - ﬁV,i) bi + (R — Ry) by
with operators R, R;, and V; defined as in (3.3) and 7; chosen suitably.
We subdivide the proof in four steps.
° Step 1
The function g defined as above belongs to L' (D, u) N L*®°(D, u) and

gl < ghiligloo <7 i (14+K2) 111

Since the operator R is bounded on L2(D, n) we have by Chebychev’s inequality

r

16 , 16 5
(e eDiiRee 01> 7)) = F IR < 5 IRN:gap ) I813

IA

1 2 2
=161 (14 K2) IR 2 1F1 -

o Step 2
The function Z Vi, bi belongs to L%(D, u), where ; is the radius of the ball B; and the operators

ieN
V. were defined in (3.3). This follows from the estimates (a), (b), and (c) of Lemma 2 (see also [14,
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Section 5, Step II], or [7, proof of Theorem 2.6]). Moreover, there exists a constant cst (depending

only on N, k, the constant C appearing in the assertion (c) of Lemma 2 and the norm of the maximal
2

> Vibi| <estriflh.

ieN

. 2
Therefore, using the fact that the operator R is bounded on L2(D, u) (Lemma 1) and Chebychev’s

inequality we have, as in the first step,
T
4

Hardy-Littlewood operator on L2(D, w)) such that

u([(t,x) € D;

R (Z V,,b,-) (t, x)

ieN

2
16 | -~
r ieN 2
16 | ~(2 2
<2 R“ V. b;
= r2 “ L(L2(D,w)) Z w
ieN 2
! 16 R 2
< 16cst || -
- 16cs LD I £l

o Step 3
By Lemma 2 (e), there exists a constant K > 0 such that foralli e N

|(Re - &ve) | < KBy
Therefore, by Chebychev’s inequality, it holds

" ([(t,x) eD; |y (R,,. - RV,,.) bi(t, x)

ieN

K lIbilly

ieN

-5})

=<

N

<4k (14427l

o Step 4

We now have to estimate the quantity

ru(l(t,x)eD; >%]> .

For that purpose, set B;“ := Bp((#;, xi), Sy57Ti), where y5 > 1is the constant appearing in the triangle
inequality for the quasi-metric 8. Choose y5 = (2y4)" if the constant y, corresponds to the quasi-
metric d. Using the strong homogeneity property (H), we then have u(B}) < Cy 5ys)u(Bi).
Therefore, using Lemma 2 (d) with ¢ = 4 and the properties of the Calderén-Zygmund decompo-

sition, it holds
3 (R - Ry) b, 0)| > %])

7 ({(t,X) € D;
ieN

< Z#(B?)+u([(t,x) € D\ (UienB});

ieN

> (R=Ry)bit,x)

ieN

> (R —Ry) bi(t, x)

ieN

-5})
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< Cuv)' Y _uBH+Y_ - f |(R = Ry) bit, x)| dt dx
ieN zeN
4
< CrGy = Iflhi +- ( sup / Ip(s,n)—pr,.(s,n)|du(s)) > libilly
r " \ieNneQ JéEm24n ieN

IA

1
= (Cu Gyt i+ 4va?) I £l .
p

We have proved the existence of a constant C > 0 such that for all f € LY(D, u) N L%(D, ),
IRfll1,w < Cll fll1, which means that R is of weak type (1, 1) on D. Hence, S is of weak type (1, 1)
on Q. O

By interpolation, we know that the operator S acts as a bounded operator on LI(Q, u) =
L9(0, T; LY(M, m)), for all g € (1, 2]. In order to prove that this is also the case for g € [2, 00),
we will show that S, the adjoint of S, is also of weak type (1, 1).

Proposition 4.
Under the conditions (A), (K), (c2), and (c), the operator S', the adjoint of S, is of weak
type (1, 1).

Proof. For f € L*(Q, ), we have 1 — a.e.
T
S'f@,) = f A(s)ye™CTAW £ (s, ) ds
t

where the operators A(s)’ (s € [0, T)), acting on LZ(M, m), are the adjoints of A(s) (s € [0, T]).
We now set G(s) := A(T — s)’ (s € [0,T]) and let ¢ be given as in (A). Then the family
{G(s), s € [0, T} satisfies the following estimates:

(G) 0o(G(s)) C Zy and for all & € (¢, ), there exists a constant My > O such that
M
I — G(s))“1||£(L2(M‘m)) < T+_T)-| holds forallA € C\ 3, s € [0, T];

c2(My, + 1) |t — s|P2
(1 + A

) IA=GEN™" = A =GN ewimmy <
forallA € C\ X, ands,t € [0, T].

The semigroups generated by G(s) (s € [0, T']) are associated to kernels k; (o, x, y) = ks (0, y, x)
m — a.e. satisfying estimate (K). The operators G(s) = Ax(T — 5)' (s € [0, T]) acting on
L' (M, m) verify an assumption analog to the assumption (c;):

, _ Coo |t — 5|Po0
) I =G = =Gi(s)™ "L(L‘(M m) < W

forallA e C\ X, ands,t € [0, T].

With the previous notations, we may express S’ f, for f € L%(Q, ), as
t
(597 0.9 = [ G699 fr(s, s
0
fora.a.t € (0, T), where for ¢ € L2(0, T; L2(M, m)) the function ¢r is defined by ¢r(s) =

¢(T —s) fora.a. s € (0, T). Using the same argument as in the proof of Lemma 1, and (c}) and
(c}), it follows that the operator S’ defined by

t
(84), = fo GO)e 17990 fr(s, ) ds
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is bounded on L2(Q, w). Hence, the operator §’ —§'isboundedon L!(Q, w). Itremains to show that
the operator S’ is of weak type (1, 1). Since S’ has the same form as S, we may apply Proposition 3
and the estimates (c5) and (c}) to conclude that S’ is of weak type (1, 1). O

Combining Proposition 2 with Propositions 3 and 4, the proof of Theorem 1 is complete.

4. Applications to Semilinear Problems

Let @ C RY be a bounded domain with smooth boundary and T > 0. We consider the
following parabolic initial value problem:

9
P LAt x, D = f@,u,Vu)  in(0,T)xQ
ot 41
B(t,x,Du = 0 on (0,T) x 3R (4.1)
u@,x) = 0 in Q
where
fech - ([o, T] x R x RN) . 42)

The operators A(t, x, D) and B(¢, x, D) are given by

n
A(t,x,D)u = _.-;1 5%’- (a,-,,-(t,x) %’-‘;) +al(t, x)u
B D = S ar oy 2
(t,x,Dyu = MZ__;I a;,j(t, x)v;(x) E .
Here (vi(x), ..., vn(x)) denotes the outer normal vector at a point x € 32. Moreover, we assume

that

(i) aij€C(0,T];C' (R),aeC(U0,T;CE)),1<i,j<N
@) aij=aji,1<i,j<N
(iii) there exists a constant § > 0 such that

N
> aij(t, 0k > 8lE1*  forall § e RV .
i,j=1

In order to apply our maximal L? — L9 — regularity result to the semilinear equation (4.1), we
can rewrite (4.1) as an equation in L7(€2) for 1 < g < oo. To this end, define

D(4) = [ue W) B, x, Du(x) =0,x € 92
Ag(Du(x) = A(,x,Du(x), forae xe€Q.

Then, for each ¢ € [0, T], the operator A,(¢) generates an analytic semigroup {7;(c), o > 0} on
L4(2), which is bounded provided a is sufficiently large. Assume in addition to (i) that

(iv) ajeCH(0,T];L®(Q) (1 <i,j < N)anda € C#([0, T]; LN (%)) for one u > 1.

Then it was proved by Yagi [22, Theorem 4.1], that (C,) is satisfied, for all g € (1, oc) provided
properties (i) — (iv) hold. For the convenience of the reader, we give a brief sketch of his proof.
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We first prove that for all v € (0, %), g€ (l,00)ands,t € [0, T]

[0 (4507 = 43)1)]  o < @0l = 51

from which (C,) follows immediately. Let f € LI(Q), g € D(Ay,()*Y) and u = (Aq(t)'l -
Ag()™H f, v = A,(t)*¥Dg. Using Green’s formula, it holds

/ A, x,D)u-vdx — f u-A(,x, Dyvdx
Q Q
= —/ B(t,x,D)u-vdx+f u-B(t, x,D)vdx .
0Q Q2

Then

(4s07" = 4,07") £, 4,)"g)

= f (A(s, x, D) — A(t, x, D)) Ag(s)~" f - Ag(1)* Vg dx
Q

+ (B(s,x, D) — B(t, x, D))Aq(s)'lf . Aq(t)*(”‘l)g dx
aQ

N

a a

=/ §:(a,-,j(s,x)—a,;,-(r,n)——a Ag)7 f - —A,)* " Vg ax
@ j=1 x 9xj

+ f (a(s,x) —a(t,x)Aqg(s)~" f- A1)V Vg dx .
Q

Using now the embedding theorem of Sobolev space, the integrals above are estimated by c(g, v)|t —
sI* Il fllqllgllg» which gives the desired estimate.

Using the same techniques, it can be shown that (c;) and (cx) hold (see, e.g., [22, Theo-
rem 4.2)).

Moreover, it is known (see, e.g., [9, 3, 8]) that the heat-kernel k; (o, x, y) of T; (o) fulfills

M [x—yl2
ko, x, DI < —-e P %, x,yeQ,0>0,1e[0,T]
o7

for suitable constants M, b > 0.

Summing up, it follows that {A,(t), t € [0, T]} fulfills the assumptions of Theorem 1. Hence,
it follows from this theorem that the family {A(t),t € [0, T']} belongs to MR(p,q). Now we
rewrite (4.1) as

W' (t) + A@®)u(t) F(t,u(®)), te,T)
u@© = 0

with F € C17:17 ([0, T] x C1(R); LI(K)) given by
F@t,u)(x) == f(t,u(x),Vu(x)) x€, tel0,T].
Let t € (0,T] and define Z; := whkr(, t; L4(R)) N D;(Apq) for 1 < p,g < oo, where

Di(Apg) = {u € LP(0,7; LY(Q)); u(t) € D(A4(t)) fora.e. t € (0,7)and A;()u(-) € L?P
(0, t; L9(£2))}. The space Z, is a Banach space with the norm

luliz, == Nullwre,c:Lae) + “Aq(')u(')"LP(O,t;L'I(Q))
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for u € Z,. By choosing p and q large enough, we find s € (_113 1- % - %) such that
ze = W (0,7 WX 99(@) < ¢ ([0, 7]; C! @) - 4.3)

Now let u € Z; and consider the mapping ® : u — v, where v is the solution of the linear problem

V(@) + A()v() F(t,u@®), te(,71)
v(0) = 0.

Since {A(t),t € [0, T1} € MR(p, q), there exists a constant M > 0 (independent of t) such that
IP) —P@)lz, < MIFC,u)) = F ¢, u()Lro,r:Le2)
forall u,u € Z; and all T € (0, T]. The assumption (4.2) implies that

IFC,u()) = F G u(DlLeo,cea@) < Lllu—ullpeo @) -

Hence we have .
H(D(u) -o (ﬁ)”Z, = MLzt? "u - E"C([O,r];cl(ﬁ))
for u,u € Z,. It follows from (4.3) that

1 _
Pw) — P @z, < MLt? lu—1ulz, .

By choosing 7 small enough, the Banach fixed point theorem implies the following result.

Theorem 2.

Assume that a; j (1 < i,j < N), a and f satisfy the assumptions above. Then there exist
P1,q1 € (1,00), Ty € (0, T] such that for all p € [p;,00) and all q € [q;, 00) there exists
a unique u € wlr(, Ty; L1(Q)) with u(t) € D(A4(t)) forae. t € (0,T1) and Ag(u(-) €
LP(0, Ty; L9(2)), satisfying (4.1) on (0, T}) x S2.
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