
Semigroup Forum Vol. 60 (2000) 122{134
c
 2000 Springer-Verlag New York Inc.

RESEARCH ARTICLE

Semigroup Methods to Solve

Non-autonomous Evolution Equations

Sylvie Monniaux and Abdelaziz Rhandi�

Communicated by Rainer Nagel

Abstract

Under regularity conditions on the family of (unbounded, linear, closed) operators
(L(t))t2(0;T ] (T > 0) on a Banach space X , there exists an evolution family (V (t; s))T�t�s>0

on X such that U(t; s)x = L(t)�1V (t; s)L(s)x is the unique classical solution of the
non-autonomous evolution equation

(nCP )

�
u0(t) + L(t)u(t) = 0 ; t � s;

u(s) = x ;

for x 2 D(L(s)). Moreover, the evolution semigroup associated to the evolution family
(V (t; s))T�t�s>0 on C0((0; T ];X), the Banach space of continuous functions f from

[0; T ] into X satisfying f(0) = 0, is generated by the closure of �L(�)(
d

dt
+ L(�))L(�)�1 .

An application to parabolic partial di�erential equations is given.

1. Introduction

Consider the non-autonomous linear abstract Cauchy problem

(nCP )

(
u
0(t) + L(t)u(t) = 0 ; t � s;

u(s) = x

on a Banach space X and suppose that the operators f(L(t); D(L(t))); t 2 I :=

(0; T ]g are sectorial and invertible, and satisfy the following conditions.

(A1) There exists an angle ' 2 (0;
�

2
) such that for all # 2 ('; �) there exists a

constant M# with k(�+ L(t))�1kL(X) �
M#

1 + j�j
, for all � 2 ���# and for all

t 2 I .

(A2) There exists an angle � 2 (';
�

2
) and two powers �; � (0 � � < � � 1) such

that, for c =
� (� � �) (cos �)1+�(sin �)�

2 �(� + 1)T ���
,

kL(t)(�+ L(t))�1(L(t)�1 � L(s)�1)kL(X) �
c jt� sj�

1 + j�j1��

holds for all � 2 ���� , and for all t; s 2 I ,
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where �� := fz 2 C n f0g; j arg(z)j < �g for � 2 (0; �).

Condition (A2) was introduced (in a somewhat weaker form) by P. Acquistapace

and B. Terreni [2]. It is known that (nCP ) has a unique classical solution on the

spaces D(L(t)), see [1], Theorem 2.3 or [19], Theorem 3.2, (cf. [4], Theorem 2.3.2

and the references therein). In [2], the authors constructed an evolution operator

(U(t; s))t�s solving (nCP ) by means of suitable integral equations, and by using

techniques of fractional powers ; Yagi [19] generalized the results of [2]. They ob-

tained also that (U(t; s))t�s is of parabolic type, i:e:, U(t; s)X � D(L(t)) for t > s

and kL(t)U(t; s)k � C
t�s

for T � t > s � 0.

In this paper we propose to give a \simple" proof of the solvability of (nCP ).

More precisely, we prove that the closure of the operator �L(�)( d
dt
+L(�))L(�)�1 on a

suitable domain D generates an evolution semigroup (T (t))t�0 on the Banach space

C0(I;X) = ff 2 C([0; T ];X); f(0) = 0g, endowed with the sup-norm. By a simple

trick we deduce that L(�)�1
T (t�s)L(�) gives the classical solution of (nCP ). Finally

an application to parabolic partial di�erential equations in L
1(
) is given.

2. The abstract result

In this section, (X; k � kX) denotes a Banach space. We consider a family (L(t))t2I
(I = (0; T ] for T > 0) of sectorial and invertible operators on X veri�ying (A1) and

(A2). On the Banach space C0(I;X), we de�ne the multiplication operator A as

follows

D(A)=ff 2 C0(I;X); f(t) 2 D(L(t)) for all t 2 I & L(�)f(�) 2 C0(I;X)g;

(Af)(t)=L(t)f(t); for all t 2 I and f 2 D(A):

We consider also the derivative on C0(I;X), denoted by B , as follows

D(B) = ff 2 C1([0; T ];X) ; f; f 0 2 C0(I;X)g

Bf = f
0
; for all f 2 D(B):

Remark 1. The operator �A generates a bounded analytic C0�semigroup on

the space C0(I;X).

Proof. Indeed, the domain of A is dense in C0(I;X), since the set fx 2 X ; 9 f 2

D(A) : f(t) = xg contains D(L(t)) for all t 2 I , t > 0 (for x 2 D(L(t)),

consider the function f : I ! X de�ned by f(�) =  (�)L(�)�1
L(t)x for a function

 2 C0(I; IR), with  (t) = 1), and therefore is dense in X . We can use then Lemma

4.5 of [14] to conclude. Moreover, it follows from the assumption (A1) that, for all

# 2 ('; �), k(�+ A)�1kL(C0(I;X)) �
M#

1 + j�j
holds for all � 2 ���# . This implies that

�A generates a bounded analytic C0�semigroup on C0(I;X) ([15], Theorem 5.2).

We denote now by An (n � 1) and Bm (m � 1) the Yosida approximations

of A and B , i:e:, An = nA(n + A)�1 and Bm = mB(m + B)�1 . Those operators

An (n � 1) and Bm (m � 1) are bounded on C0(I;X) and the following assertions

hold
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(i) lim
n!1

kAnf � AfkC0(I;X) = 0 for all f 2 D(A) and

lim
m!1

kBmf �BfkC0(I;X) = 0 for all f 2 D(B).

(ii) lim
n!1

ke�tAnf � e
�tA

fkC0(I;X) = 0 and lim
m!1

ke�tBmf � e
�tB

fkC0(I;X) = 0

uniformly on every compact subset of [0;1) for all f 2 C0(I;X).

We de�ne (Sn;m(t))t�0 as the C0�semigroup generated by the bounded op-

erator �(An + Bm) on C0(I;X), for all n;m � 1. We have the following result

concerning the convergence of these semigroups.

(iii) For n � 1 �xed, the operator �(An + B) de�ned on D(B) generates a

C0�semigroup fSn(t) = e
�t(An+B)

; t � 0g (as a bounded perturbation of �B ).

Moreover, we have

lim
m!1

kSn;m(t)f � Sn(t)fkC0(I;X) = 0 uniformly on every compact subset of [0;1)

for all f 2 C0(I;X).

For all f 2 C0(I;X) and t � 0 we have

Sn;m(t)f = e
�tAn

e
�tBm

f +

Z t

0
A
�1
n Kn;m(t� �)AnSn;m(�)f d�;

where Kn;m(�) = A
2
ne

��An(e��BmA�1
n �A�1

n e
��Bm) for all � � 0 (for a �xed t � 0, we

di�erentiate the function [0; t] 3 � 7! e
�(t��)Ane

�(t��)BmSn;m(�)f , and then integrate

between 0 and t).

We let now m go to 1 and we obtain (using (ii) and (iii)), for all n � 1

and t � 0,

Sn(t)f = e
�tAn

e
�tB

f +

Z t

0
A
�1
n Kn(t� �)AnSn(�)f d�;

where Kn(�) = A
2
ne

��An(e��BA�1
n � A

�1
n e

��B) for all � � 0.

Multiplying this equality with An on the left and applying it to A
�1
n f , we

obtain for all t � 0

Tn(t)f = Ane
�tAn

e
�tB

A
�1
n f +

Z t

0
Kn(t� �)Tn(�)f d�; (1)

where Tn(t) = AnSn(t)A
�1
n , t � 0, n � 1.

Remark 2. For each n � 1, Kn(�) = 0 on C0(I;X) for all � > T .

We denote by Kn the convolution by Kn on C
b([0;1);Ls(C0(I;X))), the

space of all bounded continuous functions de�ned on [0;1), with values in the

space of bounded operators on C0(I;X) considered with the strong topology, with

its natural norm U 7! sup
t�0

kU(t)kL(C0(I;X)) . That is, we let

(KnU)(t)f =

Z t

0
Kn(t� �)U(�)f d� for all t � 0 and f 2 C0(I;X)

for U 2 Cb([0;1);Ls(C0(I;X))).
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Remark 3. It is easy to see that, for all � 2 �� and all n � 1,

1

jn� �j
�

1

sin �
min

(
1

n
;

2

1 + j�j

)
:

Here, �� denotes the path (1; 0] ei� [ e�i�[0;1), where � was de�ned in (A2).

Lemma 4. For n � 1 and U 2 C
b([0;1);Ls(C0(I;X))), for all f 2 C0(I;X),

we have

sup
t�0

k(KnU)(t)fkC0(I;X) �
1

2
sup
t�0

kU(t)fkC0(I;X)

Proof. For f 2 C0(I;X), we have for all n � 1 and t 2 I

(Kn(s)f)(t) =
1

2i�

Z
��

�e
�s�

Ln(t)(�� Ln(t))
�1 �

(Ln(t� s)�1 � Ln(t)
�1)f(t� s)�I(t� s) d�;

where Ln(�) = nL(�)(n+ L(�))�1 for � 2 I and n � 1. This gives then

(Kn(s)f)(t) =
1

2i�

Z
��

�e
�s�

1� �
n

L(t)

 
�

1� �
n

� L(t)

!�1

�

(L(t� s)�1 � L(t)�1)f(t� s)�I(t� s) d�:

Taking the condition (A2) and Remark 3 into account, we obtain for all s > 0

sup
t2I

k(Kn(s))f(t)kX �
1

2�

0
BBB@
Z
��

j�e�s�j

j1� �
n
j

c s
�

1 +

���� �

1��

n

����1��
jd�j

1
CCCA kfkC0(I;X)

�
1

�

 Z
1

0

c s
�
re

�rs cos �

(sin �)�(r1�� + (sin �)1��)
dr

!
sup
t2I

kfkC0(I;X):

Therefore, we have for all s > 0, using the expression for c in (A2),

kKn(s)fkC0(I;X) �
� � �

2 T ���
s
����1 kfkC0(I;X): (2)

This gives the following estimate for n � 1, U 2 C
b([0;1);Ls(C0(I;X))), f 2

C0(I;X) and t � 0

k(KnU)(t)fkC0(I;X) �
Z t

0
kKn(t� �)kL(C0(I;X))kU(�)fkC0(I;X)d�

�

 Z T

0
kKn(�)kL(C0(I;X))d�

!
sup
��0

kU(�)fkC0(I;X)

�

 Z T

0

� � �

2 T ���
�
����1

d�

!
sup
��0

kU(�)fkC0(I;X)

=
1

2
sup
��0

kU(�)fkC0(I;X);

where we have used Remark 2. This completes the proof.
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The operators Kn de�ned on C
b([0;1);Ls(C0(I;X))) are uniformly bounded (with

respect to n � 1) with norm less than or equal to
1

2
. Then, for all n � 1,

(1�Kn)
�1 =

1X
p=0

Kp
n is a bounded operator with norm less than or equal to 2. More-

over, if we denote by K the following family of bounded operators on C0(I;X) :

K(0) = 0, and K(�) = A
2
e
��A(e��BA�1 � A

�1
e
��B) for � > 0, and by K the

convolution by K on C
b([0;1);Ls(C0(I;X))), we obtain as in Lemma 4

kK(s)fkC0(I;X) �
� � �

2T ���
s
����1kfkC0(I;X) (3)

for f 2 C0(I;X) and

sup
t�0

k(KU)(t)kL(C0(I;X)) �
1

2
sup
t�0

kU(t)kL(C0(I;X))

for U 2 Cb([0;1);Ls(C0(I;X))). We have

((Kn(�)�K(�))f)(t) =

1

2i�

Z
��

�
2
e
���

�
(�� Ln(t))

�1 � (�� L(t))�1
�
(L(t� �)�1 � L(t)�1) �

�I(t� �)f(t� �) d�

=
�1

2i�

Z
��

�
2
e
���

n� �
L(t)

 
�

1� �
n

� L(t)

!�1

�

L(t)(�� L(t))�1(L(t� �)�1 � L(t)�1) �I(t� �)f(t� �) d�:

By a similar computation as in the proof of Lemma 4 one can see that

lim
n!1

kKn(�)�K(�)kL(C0(I;X)) = 0 for every � � 0:

So by (2), (3), Remark 2 and the Lebesgue dominated convergence theorem we

obtain, for f 2 C0(I;X) and U 2 Cb([0;1);Ls(C0(I;X))),

lim
n!1

sup
t�0

k(KnU)(t)f � (KU)(t)fkC0(I;X) = 0:

This implies

lim
n!1

sup
t�0

k((I �Kn)
�1
U)(t)f � ((I � K)�1

U)(t)fkC0(I;X) = 0 (4)

for U 2 Cb([0;1);Ls(C0(I;X))) and f 2 C0(I;X).

Consider now fUn(t) = Ane
�tAne

�tB
A
�1
n ; t � 0g for n � 1. For each n � 1,

we have Un 2 C
b([0;1);Ls(C0(I;X)).

Lemma 5. There exists a constant M � 0 such that sup
t�0

kUn(t)kL(C0(I;X)) �M

for all n � 1. Moreover, denote by U the following family of bounded operators

on C0(I;X) : U(0) = 1 and U(t) = Ae
�tA

e
�tB

A
�1 for t > 0. Then we have

U 2 Cb([0;1);Ls(C0(I;X)) and

lim
n!1

sup
t�0

kUn(t)f � U(t)fkC0(I;X) = 0 for all f 2 C0(I;X):
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Proof. Using the same methods as in Lemma 4, we have for all n � 1 and

f 2 C0(I;X),

kUn(t)f � e
�tAn

e
�tB

fkC0(I;X) = kA�1
n Kn(t)fkC0(I;X)

�
1

2�

0
BBB@
Z
��

je�t�j

j1� �
n
j

c t
�

1 +

���� �

1��

n

����1��
jd�j

1
CCCA kfkC0(I;X)

�
1

2
(� � �)

�(�)

�(� + 1)
kfkC0(I;X) for all t 2 [0; T ]

and Un(t) = 0, e�tAne�tB = 0 on C0(I;X) for all t > T . Therefore, we obtain

sup
t�0

kUn(t)� e
�tAn

e
�tBkL(C0(I;X)) �

1

2
(� � �)

�(�)

�(� + 1)
:

Since supfke�tAne�tBkL(C0(I;X)); t � 0; n � 1g <1, we have

supfkUn(t)kL(C0(I;X)); t � 0; n � 1g <1:

On the other hand, since

�
A
�1
K(t)f

�
(�) =

1

2i�

Z
��
e
�t�
L(�)(�� L(�))�1(L(� � t)�1 � L(�)�1) �

�I(� � t) f(� � t) d�

for t � 0 and s 2 I , it follows from (A1) and (A2) that the function A
�1
K(�)f is

continuous on [0;1) for every f 2 C0(I;X) and, as above, we have

supfkA�1
K(t)k; t � 0g <1:

This implies that [0;1) 3 t 7! U(t) = A
�1
K(t) + e

�tA
e
�tB is a strongly continuous

and bounded function. Since we have, for all f 2 C0(I;X), Un(t)f � U(t)f =

(A�1
n Kn(t)f � A

�1
K(t)f) + (e�tAne�tBf � e

�tA
e
�tB

f) for t 2 [0; T ] and Un(t)f �

U(t)f = 0 for t > T , it suÆces to prove that

lim
n!1

sup
t2[0;T ]

kA�1
n Kn(t)� A

�1
K(t)kL(C0(I;X)) = 0:

For this purpose, let f 2 C0(I;X) and t; � 2 I . Then we have

((A�1
n Kn(t)� A

�1
K(t))f)(�) =

1

2i�

Z
��

�e
�t�

�
(�� Ln(�))

�1 � (�� L(�))�1
�
(L(� � t)�1 � L(�)�1) �

�I(� � t)f(� � t) d�

=
1

2i�

Z
��

�e
�t�
Ln(�)(�� Ln(�))

�1(L(�)�1 � Ln(�)
�1) �

L(�)(�� L(�))�1(L(� � t)�1 � L(�)�1) �I(� � t)f(� � t) d�

=
�1

2i�

Z
��

�e
�t�

n� �
L(�)

 
�

1� �
n

� L(�)

!�1

�

L(�)(�� L(�))�1(L(� � t)�1 � L(�)�1) �I(� � t)f(� � t) d�:
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So using (A1), (A2) and Remark 3, we obtain

k(A�1
n Kn(t)� A

�1
K(t))f)(�)kX �

1

2�

 Z
��

j�e�t�j

jn� �j
(M� + 1)

c t
�

1 + j�j1��
jd�j

!
kfkC0(I;X)

�
c (M� + 1)

� sin �
t
�

 Z
1

0

re
�tr cos �

1 + r1��
min

�
1

n
;

2

1 + r

�
dr

!
kfkC0(I;X)

�
c (M� + 1)

� sin �
t
�

�Z
1

0
r
�
e
�tr cos � min

�
1

n
;

2

1 + r

�
dr

�
kfkC0(I;X)

�

8<
:

2 c (M�+1)

� sin �(cos �)�
t
��� (

R
1

0 r
��1

e
�r
dr) kfkC0(I;X) if t � 1

n
c (M�+1)

� sin �(cos �)1+�
t����1

n
(
R
1

0 r
�
e
�r
dr) kfkC0(I;X) if 1

n
< t � T

�

8><
>:

2 c (M�+1)

� sin �(cos �)�
1

n���
�(�) kfkC0(I;X) if t � 1

n

c (M�+1)

� sin �(cos �)1+�
t
���

2

n
���

2

�(� + 1) kfkC0(I;X) if 1
n
< t � T

�
1

n
���

2

2 c (M� + 1)

� sin �(cos �)1+�
(�(�) + �(�+ 1))maxfT

���

2 ; 1gkfkC0(I;X);

and the lemma is proved.

We can now give the main result of this section.

Theorem 6. Under the assumptions (A1) and (A2), with the same notations as

those used in this section, the sequence consisting in the bounded C0�semigroups

(fTn(t); t � 0g)n�1 converges strongly (as n goes to 1) to a bounded C0�semigroup

fT (t); t � 0g uniformly in [0;1) which satis�es, for all f 2 C0(I;X),

T (t)f = U(t) +

Z t

0
K(t� �)T (�) d� for all t � 0: (5)

Proof. We know, by (1), that Tn = (1�Kn)
�1
Un . From Lemma 4 we have

sup
t�0

k((I �Kn)
�1(Un � U))(t)fkC0(I;X) � 2 sup

t�0

kUn(t)f � U(t)fkC0(I;X):

Using then Lemma 5 and (4), we obtain, for f 2 C0(I;X),

lim
n!1

sup
t�0

kTn(t)f � T (t)fk = 0;

where T (t) = ((I � K)�1
U)(t); t � 0; which gives (5). Since (Tn(t))t�0 is a

C0�semigroup for all n � 1, we can easily see that (T (t))t�0 is also a C0�semigroup

(the strong continuity follows from the convergence, and the semigroup formula for

Tn(�) gives the one for T (�)).

Remark 7. The restriction concerning the constant c in (A2) can be weakened.

In fact, the solutions of the problem

(nCP )R

(
u
0(t) + (R + L(t))u(t) = 0 ; t � s;

u(s) = x ;

are the same, modulo a factor e�R(t�s) , as the one of (nCP ). For R > 0 large

enough, the family (R + L(t))t2I veri�es the conditions (A1) and (A2) (in (A2), the

power � is maybe replaced by �
0 2 (�; �)). See also [12].
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3. Applications to non-autonomous Cauchy problems

In this section we apply our abstract result to the non-autonomous Cauchy problem

(nCP )

(
u
0(t) + L(t)u(t) = 0 ; t � s; t 2 I;

u(s) = x ;

where I = (0; T ], (L(t))t2I is a family of closed linear densely de�ned operators in a

Banach space X and x 2 D(L(s)) for a �xed s 2 I . The section concludes with an

application to parabolic partial di�erential equations.

Recall that u 2 C([s; T ];X) is called a classical solution of (nCP ) if u 2
C

1([s; T ];X)\fv 2 C([s; T ];X); v(t) 2 D(L(t)); L(�)v(�) 2 C([s; T ];X)g and satis�es

u
0 + L(�)u = 0 in [s; T ]; u(s) = x:

We prove here the following result.

Proposition 8. Let X be a Banach space, (L(t))t2I a family of closed linear

densely de�ned operators in X which is subject to (A1) and (A2), and let s 2 I and

x 2 D(L(s)). Then the Cauchy problem (nCP ) admits a unique classical solution

u. Moreover, u is given by

u(t) = (A�1
T (t� s)Af)(t); t 2 [s; T ];

where (T (t))t�0 is the C0 -semigroup obtained in Theorem 6 and f 2 D(A) with

f(s) = x.

Proof. For each n � 1 we consider the generator Gn := �An(An +B)A�1
n , with

domain D(Gn) = fg 2 C0(I;X) : A�1
n g 2 D(B)g, of the C0 -semigroup (Tn(t))t�0

given in Section 2. Since, for every t � 0, Tn(t)g 2 D(Gn) if g 2 D(Gn), we obtain

the following

d

d�
(e�(t��)B

A
�1
n Tn(� � s)g) = e

�(t��)B
BA

�1
n Tn(� � s)g

+ e
�(t��)B

A
�1
n GnTn(� � s)g

= �e�(t��)B
Tn(� � s)g

for n � 1; s � � � t and g 2 D(Gn). Integrating over [s; t], we obtain

A
�1
n Tn(t� s)g � e

�(t�s)B
A
�1
n g = �

Z t

s
e
�(t��)B

Tn(� � s)g d�;

for all g 2 D(Gn). Since D(Gn) is dense in C0(I;X), this also holds for every

g 2 C0(I;X). Since the semigroup (Tn(t))t�0 is bounded independently of n 2 IN,

we can pass to the limit as n goes to 1, and Theorem 6 yields

A
�1
T (t� s)g � e

�(t�s)B
A
�1
g = �

Z t

s
e
�(t��)B

T (� � s)g d�

for all t � s and all g 2 C0(I;X). In particular for g = Af with f := '(�)L(�)�1
L(s)x

such that ' 2 C1

c (I) and '(s) = 1 for a �xed s 2 I and x 2 D(L(s)), we obtain

u(t) := (A�1
T (t� s)Af)(t) = x�

Z t

s
L(�)u(�)d�:
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This proves the existence of a classical solution of (nCP ).

To show the uniqueness we use the same procedure as in [2], p. 56, (cf. [18],

p. 257). We consider a classical solution v of (nCP ) and set w(�) := e
�(t��)L(t)

v(�)

for � 2 [s; t], where s is �xed in I and t > s. Then, for each � 2 [s; t],

w
0(�) = L(t)e�(t��)L(t)

v(�)� e
�(t��)L(t)

L(�)v(�)

= L(t)e�(t��)L(t)(L(�)�1 � L(t)�1)L(�)v(�):

Therefore, by integrating over [s; t] and applying L(t) to both sides, we obtain

L(t)v(t) = L(t)e�(t�s)L(t)
x+

Z t

s
L(t)2e�(t��)L(t)(L(�)�1 � L(t)�1)L(�)v(�)d�:

>From the de�nition of classical solutions of (nCP ) we have

v; v
0 = �Av 2 C([s; T ];X)

and then the previous equation can be rewritten as follows

(I �Ks)Av = Ae
�(��s)A

x;

where (Ks )(t) :=
R t
s L(t)

2
e
�(t��)L(t)(L(�)�1 � L(t)�1) (�)d� for all functions  2

C([s; T ];X) and t 2 [s; T ]. The same computation as in the proof of Lemma 4 implies

that

Ks 2 L(C([s; T ];X)) and kKskL(C([s;T ];X)) �
1

2
:

Therefore, we obtain

Av = (I � Ks)
�1(Ae�(��s)A

x) = Au

and then the uniqueness of the classical solution of (nCP ) follows.

We now show that the closure of �L(�)( d
dt
+L(�))L(�)�1 on a suitable domain

is the generator of the semigroup (T (t))t�0 given by (5).

From [14], Theorem 6 (see also [16], Theorem 2.4 and [17], Theorem 2.6 for

more general situations) it follows that the semigroup (Sn(t))t�0 generated by �(An+

B) is an evolution semigroup. This means that there is a family (Un(t; s))T�t�s>0 of

bounded linear operators satisfying

(i) the function f(t; s) 2 I � I : t � sg 3 (t; s) 7! Un(t; s) is strongly continuous,

(ii) kUn(t; s)k �Mn for a constant Mn � 1 and t � s; (t; s) 2 I � I;

(iii) Un(t; r)Un(r; s) = Un(t; s) for T � t � r � s > 0

such that

(Sn(t)f)(�) = Un(�; � � t)f(� � t)�I(� � t); t � 0; � 2 I and f 2 C0(I;X):

Hence, (Tn(t))t�0 is also a bounded evolution semigroup and

(Tn(t)f)(�) = Vn(�; � � t)f(� � t)�I(� � t); t � 0; s 2 I and f 2 C0(I;X);

where Vn(t; s) = Ln(t)Un(t; s)Ln(s)
�1
; T � t � s > 0:

By Lemmas 4, 5 and Theorem 6 we have the following assertions:
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(a) There is a constant M � 1 such that kVn(t; s)k � M for all n � 1 and

T � t � s > 0.

(b) The semigroup (T (t))t�0 is a bounded evolution semigroup, i:e:,

(T (t)f)(�) = V (�; � � t)f(� � t)�I(� � t); t � 0; s 2 I and f 2 C0(I;X):

(c) lim
n!1

sup
(t;s)2I�I;t�s

kVn(t; s)x� V (t; s)xk = 0 for every x 2 X .

(d) The evolution family (V (t; s))T�t�s>0 is given by

V (t; s) = L(t)U(t; s)L(s)�1
; T � t � s > 0;

where U(t; s) is the classical solution of (nCP ) given by Proposition 8.

Using the same idea as in [11], Proposition 2.9 (see also [17], Proposition 1.13) we

obtain the following result.

Corollary 9. Let (G;D(G)) be the generator of the semigroup (T (t))t�0 corre-

sponding to the evolution family (V (t; s))T�t�s>0 . Set

D := linff 2 C0(I;X) : f(s) =  (s)V (s; s0)x; s 2 I;

where s0 2 I; x 2 X; 2 C
1
c (I);  (s) = 0 for s � s0g:

Then D � D(A(A + B)A�1) := ff 2 C0(I;X) : A�1
f 2 D(B) & (A + B)A�1

f 2
D(A)g and D � D(G). Moreover, (G;D(G)) is the closure of (�A(A+B)A�1

;D).

Proof. Let  2 C1
c (I); s0 2 I; and x 2 X . Assume that  (s) = 0 for s � s0 and

set f(s) =  (s)V (s; s0)x; s 2 I . Then, from (b), it is easy to see that (T (t)f)(�) =

 (� � t)V (�; s0)x; � 2 I . Hence, f 2 D(G) and (Gf)(�) = � 0(�)V (�; s0)x; � 2 I:

Therefore, T (t)D � D � D(G) for t � 0. From (d) we have (A�1
f)(�) =

 (�)U(�; s0)L(s0)
�1
x and since U(�; s0) gives the classical solution of (nCP ), we

obtain A
�1
f 2 D(B) and

(BA�1
f)(�) =  

0(�)U(�; s0)L(s0)
�1 �  (�)V (�; s0)x; � 2 I:

This implies that f 2 D(A(A+B)A�1) and

(�A(A+B)A�1
f)(�) = � 0(�)V (�; s0)x = (Gf)(�):

Due to [13], A-I, Proposition 1.9, it remains to show that D is dense in C0(I;X).

This follows from the strong continuity of the evolution family (V (t; s))t�s and by

considering a partition of unity. For more details see [17], Proposition 1.13 (cf. [11],

Proposition 2.9).

Remark 10. If we replace C0(I;X) by L
p(I;X) for 1 < p <1 and assume that

the Banach space X has the UMD�property (for de�nitions and properties of such
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spaces see [7], [8] and [6]) then we obtain more. Suppose that L(t) 2 BIP (X) for all

t 2 I and that there are constants KA > 0 and 'A 2 (0; �
2
) such that

kL(t)isk � KAe
'Ajsj for all s 2 IR;

for all t � 0; � 2 ���'A . Then A + B considered as an operator in L
p(I;X) with

D(A + B) = D(A) \D(B) is sectorial (see [12], Theorem 1). Therefore one can see

that the operator �A(A+B)A�1 with

D(A(A+B)A�1) = ff 2 C0(I;X) : A�1
f 2 D(B) and (A+B)A�1

f 2 D(A)g

is the generator of the evolution semigroup (T (t))t�0 given by (5).

Remark 11. Let u0 2 D and consider the function u(t; a) := (T (t)u0)(a); t � 0

and a 2 I . By Corollary 9, we obtain that u is the unique solution of the following

partial di�erential equation(
@
@t
u(t; a) = �L(a)(u(t; a) + @

@a
(L(a)�1

u(t; a))) ; t � 0; a 2 I;

u(0; a) = u0(a) ; a 2 I:

Remark 12. The solution of (nCP ) satis�es u(0) = 0 since we work in the

space C0(I;X). This is not a restriction. Indeed, we extend L(�) to the interval

J := (�1; T ] by setting L(t) := L(0) for t 2 (�1; 0). Clearly, the extension

still satis�es (A1) and (A2) with the same constants and one can do the same in

C0(J ;X) := ff : [�1; T ]! X continuous and f(�1) = 0g instead of C0(I;X).

Example 13. By using Proposition 8, we can solve in L
1(
) the following non-

autonomous partial di�erential equation:

(�)

8><
>:

@
@t
u(t; x) = div[a(t; x)ru(t; x)]; t � s; x 2 
;

Buj@
(t; x) := n(x) � (a(t; x)ru(t; x)) + b(t; x)u(t; x) = 0; t � s; x 2 @
;

u(s; x) = u0(x); x 2 
;

where s 2 I; 
 � IRN is a bounded domain of class C2 , n(x) denotes the outer

normal of 
 at x 2 @
 and u0 is a given function in L
1(
).

We shall assume the following conditions:

(1) a : [0; T ]�
! Sym(n) satis�es the strong ellipticity condition, i:e:, there exist

a constant a0 > 0 such that y � a(t; x)y � a0jyj
2 , for all t � 0, x 2 
, y 2 IRN

:

(2) a; axj 2 C
Æ([0; T ]; C(
)) and b; bxj 2 C

Æ([0; T ]; C(@
)) for some Æ > 1
2
.

We denote by L(t); t 2 [0; T ] the realization of the di�erential operator

�div[a(t; x)r�] in L
1(
) under the boundary conditions Buj@
 = 0 (cf. [3], Section

9).

From a result of Amann [3] (see also [5], Theorem 3.2 and the references therein)

follows that the family L(�) satis�es (A1) and in [18], 6.13, it is proved that (A2)

holds. Therefore Proposition 8 implies that (�) has a unique classical solution in

L
1(
).
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