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1. Introduction

A successful strategy for solving the Navier–Stokes system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂t
−�xu+∇xπ + (u · ∇x)u= 0 in ]0, T ] ×Ω,

divx u= 0 in [0, T ] ×Ω,

Trx u= 0 on [0, T ] × ∂Ω,

u(0)= u0 in Ω,

(1.1)

brought to prominence by the pioneering work of H. Fujita, and T. Kato in the 1960s, entails the
following three steps:

(i) recast (1.1) in the form of an abstract initial value problem:⎧⎪⎨⎪⎩
u′(t)+ (Au)(t)= f (t), t ∈ ]0, T [,

f (t) := −P
[(

u(t) · ∇x

)
u(t)

]
,

u(0)= u0;
(1.2)

(ii) convert (1.2) into the integral equation

u(t)= e−tAu0 −
t∫

0

e−(t−s)AP
[(

u(s) · ∇x

)
u(s)

]
ds, 0 < t < T ; (1.3)

(iii) solve (1.3) via fixed point methods (typically, a Picard iterative scheme).

Above, P is the Leray projection of L2(Ω,R3) onto H := {u ∈ L2(Ω,R3): divu= 0, ν ·u= 0},
where ν is the outward unit normal to ∂Ω , and A is the Stokes operator, i.e. the Friedrichs
extension of the symmetric operator P ◦ (−�), originally defined on H ∩C∞c (Ω,R3), to H.
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By relying on the theory of analytic semigroups generated by self-adjoint operators, Fujita
and Kato have proved in [21] short-time existence of strong solutions for (1.1) when Ω ⊂ R3

is bounded and sufficiently smooth. Somewhat more specifically, they have shown that if Ω is
a bounded domain in R3 with boundary ∂Ω of class C 3, and if the initial datum u0 belongs to

D(A
1
4 ), then a strong solution can be found for which u(t) ∈D(A

3
4 ) for t ∈ ]0, T [, granted that

T is small. Hereafter, D(Aα), α > 0, stands for the domain of the fractional power Aα of A.
An important aspect of this analysis is the ability to describe the size/smoothness of vector

fields belonging to D(Aα) in terms of more familiar spaces. For example, the estimates (1.18)
and (2.17) in [21] amount to

D
(
Aγ

)⊂ C α
(
Ω,R3) if 3

4 < γ < 1 and 0 < α < 2
(
γ − 3

4

)
, (1.4)

which plays a key role in [21]. Although Fujita and Kato have proved (1.4) via ad hoc methods,
it was later realized that a more resourceful and elegant approach to such regularity results is
to view them as corollaries of optimal embeddings for D(Aα), α > 0, into the scale of vector-
valued Sobolev (potential) spaces of fractional order, L

p
s (Ω,R3), 1 < p <∞, s ∈R. This latter

issue turned out to be intimately linked to the smoothness assumptions made on the boundary of
the domain Ω . For example, Fujita and Morimoto have proved in [22] that

∂Ω ∈ C∞ ⇒ D
(
Aα

)⊂ L2
2α

(
Ω,R3), 0 � α � 1, (1.5)

whereas the presence of a single conical singularity on ∂Ω may result in the failure of D(A) to
be included in L2

2(Ω,R3).
Another property of the Stokes operator which is heavily influenced by the smoothness of

∂Ω is whether e−tA, originally considered on H, extends to a bounded analytic semigroup of
operators in Hp , where

Hp :=
{
u ∈ Lp

(
Ω,R3): divu= 0, ν · u= 0

}
. (1.6)

When ∂Ω ∈ C∞, this is indeed the case for all p ∈ ]1,∞[ (cf. [23,51]) but matters are consid-
erably more subtle in the case when ∂Ω is only Lipschitz. For example, Taylor has conjectured
in [55] that for a given bounded Lipschitz domain Ω ⊂ R3 there exists ε = ε(Ω) > 0 such that
e−tA extends to an analytic semigroup on Hp provided 3

2 − ε < p < 3+ ε. This range of p’s is
naturally dictated by the mapping properties of the Leray projection. Indeed, it has been proved
by Fabes, Mendez and Mitrea in [19] that in the case when Ω is a bounded, Lipschitz domain
in R3,

P :Lp
(
Ω,R3)→Hp (1.7)

boundedly, precisely when 3
2 − ε < p < 3 + ε for some ε = ε(Ω) > 0. That this range of p’s

in Taylor’s conjecture is in the nature of best possible is also supported by the counterexamples
constructed by Deuring in [15], where he shows that, contrary to the case of smooth domains, the
Stokes operator in a cone-like domain in R3 may fail to be sectorial in Lp for some p > 3. Quite
recently, the version of Taylor’s conjecture corresponding to the Stokes operator with boundary
conditions of Neumann type has been proved by Mitrea and Monniaux in [39].

The main goal of the present paper is to continue this line of work and extend the Fujita–
Kato program outlined above to the case when the underlying Euclidean domain Ω has only a
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Lipschitz boundary. An earlier attempt in this regard is in [16], where Deuring and von Wahl have
established the local existence of strong solutions for the Navier–Stokes equations in a bounded
Lipschitz domain Ω ⊂R3 with a connected boundary, when the initial data satisfies

u0 ∈D
(
A

1
4+ε

)
for some ε > 0. (1.8)

At the core of their analysis is the fact that, for any bounded Lipschitz domain Ω ⊂R3,

D
(
A

3
4+ε

)⊂ L2
3
2−δ

(
Ω,R3), ∀ε, δ > 0, (1.9)

which they proved by relying on the work of Fabes, Kenig and Verchota [18], as well as
Shen [48]. On p. 114 of [16] the authors also raise the question of describing D(A) is terms
of Sobolev spaces. Shortly thereafter, by relying on the progress made by Shen in [49], Brown
and Shen have obtained in [9] certain related regularity results, including

D(A)⊂ L
p

1

(
Ω,R3) for some p = p(Ω) > 3, (1.10)

for any bounded, Lipschitz domain Ω ⊂R3.
Here we shall refine this analysis and improve upon these results in several important respects.

First, in Corollary 5.5 and Theorem 5.3, we shall show that (1.9) is still valid if either ε = 0 or
δ = 0. In the class of Lipschitz domains, this is in the nature of best possible since, in the critical
case,

D
(
A

3
4
)= {

u ∈ L2
1,z

(
Ω,Rn

)
: divu= 0 &�u ∈ L2

− 1
2

(
Ω,R3)+∇L2(Ω)

}
, (1.11)

where the scale L
p
s,z(Ω) is defined in (2.5). Thus, there is no reason to expect that D(A

3
4 ) ⊂

L2
3
2
(Ω,R3) for every bounded Lipschitz domain Ω ⊂ R3. In fact, Jerison and Kenig have

constructed a bounded C 1 domain Ω ⊂ Rn and f ∈ L2
− 1

2
(Ω) such that the unique solution

u ∈ L2
1,z(Ω) of �u = f does not belong to L2

3
2
(Ω); see [28, Theorem 0.4, p. 164]. We will,

nonetheless, prove that for any bounded Lipschitz domain Ω in R3,

D
(
A

3
4
)⊂ L

p
3
p

(
Ω,R3), ∀p > 2. (1.12)

Moreover, the limiting case ε = δ = 0 of (1.9) holds as well when the bounded Lipschitz domain
Ω satisfies a uniform exterior ball condition; cf. Theorem 5.3. In Corollary 5.5, we are also able
to sharpen (1.10) to

∀α > 3
4 ∃p > 3 such that D

(
Aα

)⊂ L
p

1

(
Ω,R3). (1.13)

In fact, we shall prove more general results, of the following nature. First, for 0 < γ < 3
4 , we

show in Theorem 5.1 that D(Aγ ) = L2
2γ,z(Ω,R3) ∩H. Second, when 3

4 � γ < 3
4 + ε where

ε = ε(Ω) > 0, we give sufficient conditions on the indices p, θ so that D(Aγ ) ⊂ L
p
θ (Ω,R3);
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see Theorem 5.4. In particular, this analysis shows that for any bounded, Lipschitz domain Ω

in R3, there exists ε = ε(Ω) > 0 such that

3
4 < γ < 3

4 + ε ⇒ D
(
Aγ

)⊂ C 2γ−3/2(Ω,R3). (1.14)

This is in agreement with the Fujita–Kato regularity result (1.4), which is thereby extended from
domains of class C 3 to the class of Lipschitz domains. Compared with the setting in [16], all of
our results are proved without the artificial assumption that the boundary of the Lipschitz domain
is connected.

More could be said if extra information about the geometry of ∂Ω is available. For example,
if Ω ⊂ R3 is a convex polyhedron, then the results proved by Dauge in [11] imply that D(A)=
L2

2(Ω,R3)∩L2
1,z(Ω,R3)∩H. Nonetheless, the goal here is to determine the maximal (Sobolev)

regularity exhibited by the elements in D(Aα) without assuming that the Lipschitz surface ∂Ω

has any particular structure.
Consider now the initial problem for the Navier–Stokes system (1.1) when Ω ⊂ R3 is a

bounded Lipschitz domain. As in [21], we shall work with initial data u0 belonging to the critical

space D(A
1
4 ), a membership which we prove to be equivalent to

u0 ∈ L2
1
2

(
Ω,R3), ∫

Ω

∣∣u0(x)
∣∣2 dist(x, ∂Ω)−1 dx <∞,

ν · u0 = 0 on ∂Ω, and divu0 = 0 in Ω. (1.15)

The description (1.15) is particularly satisfactory in the light of the comment made by Fujita and
Kato on p. 313 of their seminal paper [21], where they note that “in principle, it is desirable to
have existence theorems in which the assumption on the initial velocity is not only sufficiently
weak but easy to verify.”

For u0 as in (1.15), we then prove the local existence of a strong solution for (1.1) satisfying

u ∈ C
([0, T ];D(

A
1
4
))∩C 1(]0, T ];D(

A
3
4
))

, (1.16)

u ∈ L
p

1

(]0, T [;H)∩Lp
(]0, T [;D(A)

)
, 1 < p < 4

3 , (1.17)

plus naturally accompanying estimates. See Theorem 6.4 and (6.1). Furthermore, uniqueness

holds in the space C ([0, T ];D(A
1
4 )); cf. Theorem 6.7 where this issue is addressed.

We now wish to comment on a couple of key ingredients used in the proofs of our main results.
First, central to our approach to the regularity of the Stokes operator are the well-posedness
results for the homogeneous and inhomogeneous Dirichlet problems for the Stokes system in
Lipschitz domains from [17] and [41]. These results are reviewed in Sections 3.1 and 3.2, where
precise statements are given.

Second, we shall make essential use of an interpolation result of the following nature. For
1 < p <∞ and s >−1+ 1/p, denote by V s,p(Ω) the closure of {u ∈ C∞c (Ω,Rn): divu= 0}
in L

p
s,z(Ω,Rn). These smoothness spaces are well-adapted to the particular nature of the Stokes

operator and the question arises whether this scale is stable under complex interpolation [8].
More specifically, it is of interest to establish the identity[

V s0,p0(Ω), V s1,p1(Ω)
] = V s,p(Ω) (1.18)

θ
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whenever 1 < pj <∞, −1 + 1
pj

< sj , j = 0,1, and θ ∈ [0,1], granted that 1
p
:= 1−θ

p0
+ θ

p1

and s := (1 − θ)s0 + θs1. When the domain Ω is smooth, the Leray projection P extends to
a bounded operator from L

p
s (Ω,Rn) onto V s,p(Ω) for any 1 < p <∞ and s ∈ R and this

readily yields (1.18) for all indices (cf. [54, vol. III, Exercise 4, p. 492], at least for the case
when p0 = p1 = 2). For a general Lipschitz domain, the fact that P : Lp

s (Ω,Rn)→ V s,p(Ω)

is bounded imposes strong limitations on the indices p, s (see Proposition 2.16 in the body of
the paper for a precise formulation), thus a new approach had to be devised. We were able to
overcome this difficulty by relying on an abstract subspace interpolation scheme due to Lions
and Magenes [34] which, in turn, requires the existence of a linear right-inverse for the diver-
gence operator, with adequate mapping properties. A prototype of such an operator has been
first constructed by Bogovskiı̆ in [4,5], although the mapping properties established there are not
strong enough for our present purposes. Instead, here we make use of a refined version of this
construction, recently carried out in [37], where finer mapping properties have been proved.

A remarkable feature of our analysis of the Stokes operator and the Navier–Stokes system is
that all our main results can be formulated in the context of Lipschitz subdomains of a smooth,
compact, Riemannian manifold M . We elaborate on this point more fully in Section 7. In par-
ticular, our results further refine and strengthen those in [41, Sections 8, 9].

Let us now survey more literature dealing with issues pertaining to the regularity of the Stokes
operator and generalizations of the Fujita–Kato approach for the Navier–Stokes problem. An
excellent account of recent progress in the entire Euclidean space is Lemarié-Rieusset’s mono-
graph [32] (in particular, Section 1 of Chapter 35 contains a nice, brief survey of work in this
area). In [25], Y. Giga and T. Miyakawa have employed the Fujita–Kato approach in order to
prove existence and uniqueness of strong solutions for (1.1) when the initial data is in Lp(Ω),
1 < p <∞, provided ∂Ω ∈ C∞. In [10], R. Brown, P. Perry and Z. Shen have studied the do-
mains of the fractional powers of the Stokes operator in two-dimensional Lipschitz domains.
That the Stokes operator on Lp spaces, 1 < p <∞, in a smooth domain has bounded imag-
inary powers is contained in [24], where Y. Giga also identifies the domains of its fractional
powers in this context. A conceptually simple variant of Fujita–Kato’s approach in two and three-
dimensional Lipschitz domains was suggested by M. Taylor in [55]. In [27], Grubb has treated
the Navier–Stokes problem in smooth domains with data from anisotropic Lp Sobolev spaces
of Besov and Bessel-potential type. The earliest proof of the fact that, on a smooth domain Ω ,
the Stokes operator generates an analytic semigroup on the space Hp , introduced in (1.6), is
due to V.A. Solonnikov in [51]. New proofs and extensions of this result have been proved by
Giga [23], Borchers and Sohr in [6], and by Borchers and Varnhorn in [7], among others. Let us
also note that a version of the regularity result (1.5) already appears in the pioneering work of
P.E. Sobolevskiı̆ in [50]. The strong solvability of the system (1.1) in smooth domains for rough
initial data has been investigated by Amann in [1]. A more up-to-date account of the Fujita–Kato
method, as well as other pertinent bibliographical references can be found in, e.g., von Wahl’s
book [57].

The space D(A
1
4 ) is critical for the problem (1.1) in the Hilbert space setting. For the initial

value u0 ∈ D(A
1
4 ), it has been shown in [44] that (1.1) admits a solution u ∈ C (0, T ;D(A

1
4 ))

(with T depending on the size of u0) in the case when Ω ⊂R3 is an arbitrary open set. In the Lp-

setting, the critical space D(A
1
4 ) is contained in L3(Ω,R3) by Sobolev embeddings. This case

is more subtle since very little is known about the behavior of the Stokes operator in Lp-spaces
if the domain Ω is not smooth enough.
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We conclude this introduction with a brief discussion of a number of notational conventions
used throughout the paper. We denote by Z the ring of integers and by N= {1,2, . . .} the subset
of Z consisting of positive numbers. Also, we set No :=N∪ {0}. By C∞(Ω) we shall denote the
space of infinitely differentiable functions in the open set Ω ⊂R, by C∞(Ω) the restrictions of
C∞(Rn) to Ω , and by C∞c (Ω) the subspace of C∞(Ω) consisting of compactly supported func-
tions. When viewed as a topological space, the latter is equipped with the usual inductive limit
topology and its dual, i.e. the space of distributions in Ω , is denoted by D ′(Ω) := (C∞c (Ω))′.
Generally speaking, if X (Ω) is a space of distributions in Ω , we set X (Ω,Rn) :=X (Ω)⊗Rn,
i.e., the space of vector-valued distributions with coefficients in X (Ω). Throughout the paper,
we make the convention that

1 < p <∞ ⇒ p′ := p

p− 1
(1.19)

denotes the Hölder conjugate exponent of p. Finally, 〈·,·〉 will stand for various duality brackets
between a topological space X and its dual X ∗ (in each case, the space X should be clear
from the context). We shall occasionally write X ∗〈·,·〉X in order to stress the dependence of the
pairing 〈·,·〉 on the space X .

2. The Stokes scale

The main aim of this section is to introduce and study spaces measuring smoothness which
are also algebraically well-adapted to the particular form of the Stokes operator.

2.1. Potential spaces in Lipschitz domains

General references for the well-understood aspects of the material presented in this section
are [3,26,28,29,46,47,56]. In the interest of brevity, we shall refer the reader to these references
and only sketch the proofs of seemingly less-known results.

We begin by reviewing the Sobolev (or potential) class L
p
s (Rn) defined for 1 < p <∞ and

s ∈R by

L
p
s

(
Rn

) := {
(I −�)−s/2f : f ∈ Lp

(
Rn

)}
. (2.1)

As is well known,

(
L

p
s

(
Rn

))∗ = L
p′
−s

(
Rn

)
, 1 < p <∞, s ∈R. (2.2)

Given an open subset Ω of Rn, we shall denote by RΩ the operator of restriction to Ω of
distributions in Rn and, for 1 < p <∞ and s ∈R we introduce the following families of spaces:

L
p
s (Ω) := {

RΩu: u ∈ L
p
s

(
Rn

)}
, (2.3)

equipped with the natural infimum norm,

L
p

(Ω) := {
u ∈ L

p
s

(
Rn

)
: suppu⊆Ω

}
(2.4)
s,0
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with the norm inherited from L
p
s (Rn), as well as

L
p
s,z(Ω) := {

RΩu: u ∈ L
p

s,0(Ω)
}
, p ∈ ]1,∞[, s ∈R, (2.5)

equipped with the natural infimum norm. One property readily seen to be inherited from their
counterparts in Rn is that, for 1 < p <∞,

L
p
s1(Ω) ↪→ L

p
s2(Ω), −∞< s2 < s1 <+∞. (2.6)

For the remainder of this section we shall assume that Ω is a bounded Lipschitz domain
in Rn which means that Ω ⊂ Rn is open and bounded, and there exists a finite open covering
{Oj }1�j�N of ∂Ω with the property that, for every j ∈ {1, . . . ,N}, Oj ∩Ω coincides with the
portion of Oj lying in the over-graph of a Lipschitz function ϕj : Rn−1→ R (where Rn−1 × R

is a new system of coordinates obtained from the original one via a rigid motion). Such domains
are referred to as minimally smooth in E. Stein’s book (cf. [52, p. 189]). It is a classical result
that, for a Lipschitz domain Ω , the surface measure dσ is well-defined on ∂Ω and that there
exists an outward pointing normal vector ν at almost every (with respect to dσ ) point on ∂Ω .

In [46] it has been proved that there exists a universal linear extension operator mapping
potential spaces from a Lipschitz domain to the entire Euclidean space with preservation of
smoothness. More specifically, we have the following.

Proposition 2.1. For each Lipschitz domain Ω in Rn there exists a linear operator E mapping
C∞c (Ω) into tempered distributions in Rn, and such that

E :Lp
s (Ω)→ L

p
s

(
Rn

)
, (2.7)

RΩ ◦ E = I, the identity operator on L
p
s (Ω), (2.8)

whenever 1 < p <∞ and s ∈R.

Next, it is known that the following inclusions:

C̃∞c (Ω) ↪→ L
p

s,0(Ω), 1 < p <∞, s ∈R, (2.9)

C∞(Ω) ↪→ L
p
s (Ω), 1 < p <∞, s ∈R, (2.10)

C∞c (Ω) ↪→ L
p
s (Ω), 1 < p <∞, s � 1/p, (2.11)

C∞c (Ω) ↪→ L
p
s,z(Ω), 1 < p <∞, s ∈R, (2.12)

C∞c (Ω) ↪→ (
L

p
s (Ω)

)∗
, 1 < p <∞, s ∈R, (2.13)

have dense ranges for the indicated values of p and s. In (2.9), tilde denotes the extension by
zero outside Ω . Note the inclusion of the critical value s = 1

p
in (2.11); cf. [28, p. 180]. In this

regard, we would also like to point out that

L2
1
2 ,z

(
Ω,Rn

)= {
u ∈ L2

1
2

(
Ω,Rn

)
:
∫ ∣∣u(x)

∣∣2 dist(x, ∂Ω)−1 dx <∞
}
, (2.14)
Ω
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plus a natural equivalence of norms, cf. [35, Chapter 1, Theorem 11.7].
For later reference, let us also point out that RΩ , the restriction to Ω ,

RΩ :Lp

s,0(Ω)→ L
p
s,z(Ω), 1 < p <∞, s ∈R, (2.15)

is a linear, bounded, onto operator. It admits the factorization

L
p

s,0(Ω)
pr−→ L

p

s,0(Ω)

{u ∈ L
p
s (Rn): suppu⊆ ∂Ω}

RΩ−−→ L
p
s,z(Ω), 1 < p <∞, s ∈R, (2.16)

where the first arrow is the canonical projection onto the factor space, and the second arrow is an
isomorphism. Moreover, since

1 < p <∞, −1+ 1/p < s ⇒ {
u ∈ L

p
s

(
Rn

)
: suppu⊆ ∂Ω

}= 0 (2.17)

then

RΩ :Lp

s,0(Ω)→ L
p
s,z(Ω) isomorphically if 1 < p <∞, s >−1+ 1/p. (2.18)

In this latter case, its inverse is the operator of extension by zero outside Ω , denoted throughout
the paper by tilde, i.e.,

L
p
s,z(Ω) � u �→ ũ ∈ L

p

s,0(Ω), 1 < p <∞, −1+ 1/p < s. (2.19)

In particular, this allows the identification

L
p

s,0(Ω)≡ L
p
s,z(Ω), ∀p ∈ (1,∞), ∀s >−1+ 1/p. (2.20)

Lemma 2.2. The restriction operator satisfies

s >−1+ 1/p ⇒ 〈u,v〉 = 〈RΩu,RΩv〉, ∀u ∈ L
p

s,0(Ω), ∀v ∈ L
p′
−s

(
Rn

)
. (2.21)

As a corollary,

s >−1+ 1/p ⇒ 〈ũ,w〉 = 〈u,RΩw〉, ∀u ∈ L
p
s,z(Ω), ∀w ∈ L

p′
−s

(
Rn

)
, (2.22)

−1+ 1/p < s < 1/p ⇒ 〈ũ,w〉 = 〈u,RΩw〉, ∀u ∈ L
p
s (Ω), ∀w ∈ L

p′
−s

(
Rn

)
. (2.23)

Proof. Let u ∈ L
p

s,0(Ω) and v ∈ L
p′
−s(R

n) be arbitrary and consider a sequence ϕj ∈ C∞c (Ω),

j ∈ N, such that ϕ̃j → u in L
p

s,0(Ω) (and, hence, in L
p
s (Rn) = (L

p′
−s(R

n))∗ also) as j →∞.

Thus, as j →∞, we have that ϕj → RΩu in L
p
s,z(Ω) = (L

p′
−s(Ω))∗ as j →∞, since s >

−1+ 1/p. Based on this analysis we may then conclude that

〈u,v〉 = lim
j→∞〈ϕ̃j , v〉 = lim

j→∞〈ϕj ,RΩv〉 = 〈RΩu,RΩv〉, (2.24)

which justifies (2.21).
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With this in hand, (2.22) follows by observing that if u ∈ L
p
s,z(Ω) then ũ ∈ L

p

s,0(Ω) and

RΩ(ũ) = u. Finally, (2.23) is a consequence of (2.22) and the fact that L
p
s,z(Ω) = L

p
s (Ω) if

−1+ 1/p < s < 1/p; cf. (2.30) below. �
Next, assume that 1 < pj <∞, sj ∈ R, j ∈ {1,2}, θ ∈ (0,1) and that 1/p = (1− θ)/p1 +

θ/p2, s = (1− θ)s1 + θs2. Then[
L

p1
s1 (Ω),L

p2
s2 (Ω)

]
θ
= L

p
s (Ω), (2.25)[

L
p1
s1,0

(Ω),L
p2
s2,0

(Ω)
]
θ
= L

p

s,0(Ω), (2.26)

where [·,·]θ stands for the complex interpolation bracket.
Going further, let us also consider the space

◦
L

p
s (Ω) := the closure of C∞c (Ω) in L

p
s (Ω), 1 < p <∞, s ∈R. (2.27)

Then we have the continuous embeddings

L
p
s,z(Ω) ↪→

◦
L

p
s (Ω) ↪→L

p
s (Ω) (2.28)

and, furthermore,

◦
L

p
s (Ω)= L

p
s,z(Ω) if 1

p
− s /∈ Z and

◦
L

p
s (Ω)= L

p
s (Ω) if s < 1

p
. (2.29)

In particular,

◦
L

p
s (Ω)= L

p
s (Ω)= L

p
s,z(Ω) if s < 1

p
and 1

p
− s /∈N. (2.30)

Moreover, for every j = {1, . . . , n} and 1 < p <∞, s ∈R,

∂j :Lp
s (Ω)→ L

p

s−1(Ω),

∂j : Lp

s,0(Ω)→ L
p

s−1,0(Ω),

∂j :
◦

L
p
s (Ω)→ ◦

Lp
s−1 (Ω),

∂j : Lp
s,z(Ω)→ L

p

s−1,z(Ω), (2.31)

are well-defined, linear, bounded operators. Let us also record here a useful lifting result for
Sobolev spaces on Lipschitz domains, which has been proved in [37].

Proposition 2.3. Let 1 < p <∞ and s ∈R. Then for any distribution u in the bounded Lipschitz
domain Ω ⊂Rn, the following implication holds:

∇u ∈ L
p

s−1

(
Ω,Rn

) ⇒ u ∈ L
p
s (Ω). (2.32)

Throughout the paper, all duality pairings on Ω are extensions of the natural pairing between
test functions and distributions on Ω . Our next result elaborates on the nature of the dual scale
for L

p
s (Ω) when 1 < p <∞ and s ∈R are arbitrary.
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Lemma 2.4. For every 1 < p <∞ and s ∈R,

C̃∞c (Ω) � ϕ̃ �→ ϕ ∈ C∞c (Ω) extends to

an isomorphism Ψ :Lp

s,0(Ω)→ (
L

p′
−s(Ω)

)∗
. (2.33)

Proof. Let us define

Ψ :Lp

s,0(Ω) � u �→Λu ∈
(
L

p′
−s(Ω)

)∗
, (2.34)

where

〈Λu,v〉 := 〈u,V 〉 for every v ∈ L
p′
−s(Ω) and V ∈ L

p′
−s

(
Rn

)
such that RΩV = v. (2.35)

We claim that above definition does not depend on the particular extension V of a given v. To

justify this claim, let V1,V2 ∈ L
p′
−s(R

n) be such that RΩV1 =RΩV2. In particular, V1 − V2 ∈
L

p′
−s,0(Ω). Then, for a sequence {uj }j∈N of functions from C∞c (Ω) with the property that

ũj → u as j→∞ in L
p
s (Rn)= (L

p′
−s(R

n))∗, we may write

〈u,V1 − V2〉 = lim
j→∞〈ũj ,V1 − V2〉 = lim

j→∞
〈
uj ,RΩ(V1 − V2)

〉= 0, (2.36)

which proves the claim. It follows that the map (2.34)–(2.35) is well-defined, linear and bounded.

Note that if ϕ ∈ C∞c (Ω) and v ∈ L
p′
−s(Ω), V ∈ L

p′
−s(R

n) are such that RΩV = v, then

〈Λϕ̃, v〉 = 〈ϕ̃, V 〉 = 〈ϕ,RΩV 〉 = 〈ϕ,v〉. (2.37)

Consequently, the map (2.34)–(2.35) satisfies Ψ (ϕ̃)= ϕ, for each ϕ ∈ C∞c (Ω). Thus, the lemma
is proved as soon as we show that Ψ in (2.34)–(2.35) is an isomorphism.

We shall do so by constructing an explicit inverse for Ψ . Concretely, for every functional

Λ ∈ (L
p′
−s(Ω))∗ we set Ψ−1(Λ) := Λ ◦RΩ , where RΩ :Lp′

−s(R
n)→ L

p′
−s(Ω). It follows that

Ψ−1(Λ) ∈ (L
p′
−s(R

n))∗ = L
p
s (Rn) and we claim that, in fact, Ψ−1(Λ) belongs to L

p

s,0(Ω)

for each Λ ∈ (L
p′
−s(Ω))∗. Indeed, to check that suppΨ−1(Λ) ⊂ Ω it suffices to observe that

〈Ψ−1(Λ),ϕ〉 = 〈Λ,RΩ(ϕ)〉 = 〈Λ,0〉 = 0 for each ϕ ∈ C∞c (Rn \Ω). Hence, all in all,

Ψ−1 :
(
L

p′
−s(Ω)

)∗ �Λ �→Λ ◦RΩ ∈ L
p

s,0(Ω), (2.38)

is well-defined, linear and bounded.
There remains to check that Ψ and Ψ−1 are inverse of each other. With this in mind, for an

arbitrary Λ ∈ (L
p′
−s(Ω))∗, u ∈ L

p′
−s(Ω) and U ∈ L

p′
−s(R

n) such that RΩU = u, we have〈(
Ψ ◦Ψ−1)Λ,u

〉= 〈
Ψ−1(Λ),U

〉= 〈Λ,RΩU 〉 = 〈Λ,u〉, (2.39)

i.e., (Ψ ◦ Ψ−1)Λ=Λ, as desired. Conversely, if u ∈ L
p

s,0(Ω) and V ∈ L
p′
−s(R

n)= (L
p
s (Rn))∗,

we may write 〈(
Ψ−1 ◦Ψ

)
u,V

〉= 〈Ψ u,RΩV 〉 = 〈u,V 〉, (2.40)
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which shows that (Ψ−1 ◦Ψ )u= u and finishes the proof. �
Here we also want to note that there is a natural inclusion(

L
p
s,z(Ω)

)∗
↪→ L

p′
−s(Ω) whenever s ∈R and 1 < p <∞, (2.41)

described as follows. If ξ ∈ (L
p
s,z(Ω))∗ then ξ ◦RΩ ∈ (L

p

s,0(Ω))∗ and, by the Hahn–Banach

theorem, it can be extended to some ξ̂ ◦RΩ ∈ (L
p
s (Rn))∗ = L

p′
−s(R

n). Then (2.41) is simply the

assignment ξ �→RΩ(ξ̂ ◦RΩ), which can be seen to be well-defined, linear, bounded and one-
to-one. In the case when s >−1+ 1

p
it can be shown that this assignment becomes onto as well,

leading to the identification(
L

p
s,z(Ω)

)∗ = L
p′
−s(Ω) if 1 < p <∞ and s >−1+ 1

p
. (2.42)

Since for each s ∈ R and 1 < p <∞ the space L
p

s,0(Ω) is reflexive (cf. (2.2)), we have, as

a consequence of Lemma 2.4, that L
p
s (Ω) is reflexive as well. Furthermore, by (2.18), so is

L
p
s,z(Ω) if s >−1+ 1/p. Consequently, taking the dual of (2.42) then yields

(
L

p
s (Ω)

)∗ = L
p′
−s,z(Ω) if 1 < p <∞ and s < 1

p
. (2.43)

In particular, (
L

p
s (Ω)

)∗ = L
p′
−s(Ω), ∀s ∈ (−1+ 1

p
, 1

p

)
. (2.44)

Next, denote by L
p

1 (∂Ω) the Sobolev space of functions in Lp(∂Ω) with tangential gradients
in Lp(∂Ω), 1 < p <∞. Besov spaces on ∂Ω can then be introduced via real interpolation and
duality, i.e.

B
p,q
s (∂Ω) := (

Lp(∂Ω),L
p

1 (∂Ω)
)
s,q

, with 0 < s < 1, 1 < p,q <∞, (2.45)

and if 0 < s < 1, 1 < p,q <∞,

B
p,q
−s (∂Ω) := (

B
p′,q ′
s (∂Ω)

)∗
. (2.46)

Recall (cf. [28,29]) that the trace operator

Tr :Lp
s (Ω)→ B

p,p

s− 1
p

(∂Ω) (2.47)

is well-defined, bounded and onto if 1 < p <∞ and 1
p

< s < 1+ 1
p

. Furthermore, for this range

of indices, the trace operator (2.47) has a bounded, linear right inverse and its kernel is L
p
s,z(Ω).

Proposition 2.5. Let Ω be a bounded Lipschitz domain in Rn. Then there exists a linear operator
K such that

K :
(
L

p′
(Ω)

)∗ → L
p
s,z

(
Ω,Rn

)
, 1 < p <∞, s >−1+ 1 , (2.48)
1−s p



1534 M. Mitrea, S. Monniaux / Journal of Functional Analysis 254 (2008) 1522–1574
boundedly, and which satisfies the following additional properties:

f ∈ C∞c (Ω) ⇒ Kf ∈ C∞c
(
Ω,Rn

)
, (2.49)

f ∈ C∞c (Ω) with 〈f,1〉 = 0 ⇒ divKf = f. (2.50)

Proof. When the Lipschitz domain Ω is star-like with respect to a ball, an operator K satisfying
the properties (2.49)–(2.50) and such that

K :
(
L

p′
1−s(Ω)

)∗ → ◦
L

p
s

(
Ω,Rn

)
, 1 < p <∞, s ∈R, (2.51)

is bounded, has been constructed in [37]. Note that (2.48) follows from (2.51), first when s −
1/p /∈ Z by virtue of (2.29), then when s >−1+ 1/p with the help of (2.20) and interpolation;
cf. (2.26). Thus, we only need to explain how this construction can be further refined in order to
apply to an arbitrary bounded Lipschitz domain Ω ⊂Rn.

Given that any Lipschitz domain is locally star-like, it suffices to prove the following claim.
Let Ω ⊂Rn be an open, bounded, connected set such that

Ω ⊂
N⋃

j=1

Dj, Ω ∩Dj �= ∅, 1 � j � N, (2.52)

for a finite collection of open, bounded sets Dj ⊂ Rn, j = 1, . . . ,N . Then there exists a family
of linear operators {Pj }1�j�N satisfying the following properties:

Pj

[
C̃∞c (Ω)

]⊆ ˜C∞c (Ω ∩Dj), 1 � j � N, (2.53)∫
Pjf dx = 0, ∀f ∈ C̃∞c (Ω), 1 � j � N, (2.54)

N∑
j=1

Pjf = f, ∀f ∈ C̃∞c (Ω) with
∫

f dx = 0, (2.55)

∀j ∈ {1, . . . ,N} ⇒ ∃ ξj ∈ ˜C∞c (Dj ), ∃kj ∈ C̃∞c (Ω)⊗ ˜C∞c (Dj )

such that Pjf = ξjf +
∫

kj (·, y)f (y) dy ∀f ∈ C̃∞c (Ω), (2.56)

where tilde denotes the extension to Rn by setting zero outside of the support. Below, we shall
call such a family {Pj }1�j�N a partition of test functions (with vanishing moment), subordinate
to the cover {Dj }1�j�N .

Let us now explain how the existence of such a partition of test functions, {Pj }1�j�N , can
be used to conclude the proof of the proposition. Given a connected Lipschitz domain Ω , cover
its closure as in (2.52) in such a way that each Ω ∩Dj is a Lipschitz domain which is star-like
with respect to a ball. Now, for each j = 1, . . . ,N , let Kj be an operator which satisfies (2.51),
(2.49), (2.50) with Ω replaced by Ω ∩Dj . Then, granted the existence of a family {Pj }1�j�N

satisfying (2.53)–(2.56), set

Qj := ΨjPjΨ
−1, 1 � j � N, (2.57)
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where

Ψj :Lp

s−1,0(Ω ∩Dj)→
(
L

p′
1−s(Ω ∩Dj)

)∗
, 1 � j � N, (2.58)

Ψ−1 :
(
L

p′
1−s(Ω)

)∗ → L
p

s−1,0(Ω) (2.59)

are applications of the sort introduced in Lemma 2.4. In particular,

Ψj (ϕ̃)= ϕ, ∀ϕ ∈ C∞c (Ω ∩Dj), 1 � j � N, (2.60)

Ψ−1(ϕ)= ϕ̃, ∀ϕ ∈ C∞c (Ω). (2.61)

Since the representation formula (2.56) guarantees that each Pj , 1 � j � N , extends to a bounded
operator

Pj :Lp

s−1,0(Ω)→ L
p

s−1,0(Ω ∩Dj), (2.62)

it follows that

Qj :
(
L

p′
1−s(Ω)

)∗ → (
L

p′
1−s(Ω ∩Dj)

)∗
, 1 � j � N, (2.63)

are well-defined, linear and bounded operators which, in light of (2.60)–(2.61) and (2.53)–(2.55),
satisfy

Qj

[
C∞c (Ω)

]⊆ C∞c (Ω ∩Dj) and
∫

Qjf dx = 0 ∀f ∈ C∞c (Ω), 1 � j � N, (2.64)

N∑
j=1

RΩ [Q̃jf ] = f in Ω, ∀f ∈ C∞c (Ω) with
∫

f dx = 0. (2.65)

Finally, we introduce

Kf :=
N∑

j=1

RΩ

[
˜Kj(Qjf )

]
, ∀f ∈ C∞c (Ω). (2.66)

By virtue of (2.63) and the fact that each Kj maps (L
p′
1−s(Ω ∩Dj))

∗ boundedly into L
p
s,z(Ω ∩

Dj), we may conclude that (2.48) holds (here (2.15) and (2.19) are also used). Going further,
(2.49) is a direct consequence of (2.64). To justify (2.50), for an arbitrary f ∈ C∞c (Ω) with∫

f dx = 0 we write

divKf =
N∑

j=1

RΩ

[
˜divKj(Qjf )

]= N∑
j=1

RΩ [Q̃jf ] = f, (2.67)

by (2.65) and the properties of Kj .
There remains to justify the claim made in the second paragraph of the proof, i.e. prove the

existence of a partition of test functions subordinate to a given cover, of cardinality N . We shall
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proceed inductively, starting with the case N = 2. In this scenario, we have Ω ⊂D1 ∪D2 and
Dj ∩Ω �= ∅, j = 1,2. Since Ω is connected, it follows that D1 ∩D2 ∩Ω �= ∅ and we pick some
function ψ ∈ C∞c (D1 ∩D2 ∩Ω) with

∫
ψ dx = 1. If for some fixed ϕj ∈ C∞c (Dj ), j = 1,2,

such that ϕ1 + ϕ2 = 1 on Ω , we now set

(Pjf )(x) := ϕj (x)f (x)−
(∫

ϕj (y)f (y) dy

)
ψ(x), f ∈ C∞c (Ω), x ∈Dj ∩Ω, j = 1,2,

(2.68)

then the properties (2.53)–(2.56) are readily verified when N = 2 for the operators (2.68).
Assuming that a partition of test functions always exists whenever the cardinality of the cover

is N − 1, consider now the case when (2.52) holds. In a first stage, viewing
⋃

1�j�N Dj as
(
⋃

1�j�N−1 Dj)∪DN and invoking the case N = 2 yields a partition of test functions, {P,P ′},
subordinate to this cover, with the property that there exists an open, relatively compact subset
O of

⋃
1�j�N−1 Dj such that suppPf ⊂O ∩Ω for every f ∈ C∞c (Ω). Next, the induction’s

hypothesis yields yet another partition of test functions subordinate to the cover
⋃

1�j�N−1 Dj

of O ∩Ω , which we shall denote by {Pj }1�j�N−1. Then the desired partition of test functions
subordinate to the cover {Dj }1�j�N of Ω is {P1 ◦ P,P2 ◦ P, . . . ,PN−1 ◦ P,P ′}.

This concludes the proof of the existence of a family {Pj }1�j�N satisfying (2.53)–(2.56), and
finishes the proof of the proposition. �
2.2. Sobolev spaces of vector fields

We debut by defining the normal component of a field in a suitable, weak sense.

Lemma 2.6. Assume that Ω is a bounded Lipschitz domain in Rn whose outward unit normal is
denoted by ν and for 1 < p <∞, −1+ 1

p
< s < 1

p
, define

ν� :
{
(u, η) ∈ L

p
s

(
Ω,Rn

)⊕ (
L

p′
1−s(Ω)

)∗: divu= η as distributions in Ω
}→ B

p,p

s− 1
p

(∂Ω)

(2.69)

by setting

〈
ν � (u, η),φ

〉 := 〈η,Φ〉 + 〈u,∇Φ〉 (2.70)

for each φ ∈ (B
p,p

s−1/p(∂Ω))∗ = B
p′,p′
−s+1/p(∂Ω), where Φ ∈ L

p′
1−s(Ω) is such that TrΦ = φ. Then

the above definition is meaningful and the operator (2.69) is bounded in the sense that∥∥ν � (u, η)
∥∥

B
p,p

s− 1
p

(∂Ω)
� C

(‖u‖Lp
s (Ω,Rn) + ‖η‖(Lp′

1−s (Ω))∗
)
. (2.71)

Proof. Note that the second pairing in (2.70) is well-defined, thanks to (2.44).



M. Mitrea, S. Monniaux / Journal of Functional Analysis 254 (2008) 1522–1574 1537
We now prove that the definition (2.70) is independent of the choice of Φ . By linearity, this

comes down to checking the following claim. If u ∈ L
p
s (Ω,Rn) and η ∈ (L

p′
1−s(Ω))∗ are such

that divu= η as distributions in Ω , and if Φ ∈ L
p′
1−s(Ω) has TrΦ = 0, then

〈η,Φ〉 + 〈u,∇Φ〉 = 0. (2.72)

To this end, we note that −1 + 1
p

< s < 1
p

entails 1
p′ < 1 − s < 1 + 1

p′ . Thus Φ ∈ L
p′
1−s,z(Ω)

and, by (2.29), there exists a sequence Φj ∈ C∞c (Ω), j ∈ N, such that Φj → Φ in L
p′
1−s(Ω).

Now, since 〈η,Φj 〉 = 〈divu,Φj 〉 = −〈u,∇Φj 〉 for each j , (2.72) follows by letting j →∞ in
this identity.

Finally, the estimate (2.71) follows from (2.72), (2.46), (2.44) and the fact that there exists

C > 0 such that any φ ∈ B
p′,p′
−s+1/p(∂Ω) can be extended to a function Φ ∈ L

p′
1−s(Ω) such that

‖Φ‖
L

p′
1−s (Ω)

� C‖φ‖
B

p′,p′
−s+1/p(∂Ω)

; cf. the discussion pertaining to the properties of (2.47). �

A comment is in order here. The condition that there exists some η ∈ (L
p′
1−s(Ω))∗ such that

divu= η as distributions in Ω is a genuine demand. Indeed, if u ∈ L
p
s (Ω,Rn) then divu belongs

to L
p

s−1(Ω) but this membership does not guarantee that this distribution extends to a functional

in (L
p′
1−s(Ω))∗. Nonetheless, there are cases when such an extension naturally presents itself. For

example, since

1
p

> s >−1+ 1
p
⇒ L

p
s (Ω)= (

L
p′
−s(Ω)

)∗
↪→ (

L
p′
1−s(Ω)

)∗ (2.73)

it follows that if −1 + 1
p

< s < 1
p

then any distribution in L
p
s (Ω)(↪→ L

p

s−1(Ω)) canonically

extends to a functional in (L
p′
1−s(Ω))∗. This observation suggests the following result.

Proposition 2.7. Let Ω be a bounded Lipschitz domain in Rn with outward unit normal ν and
assume that 1 < p <∞, −1+ 1

p
< s < 1

p
. Define the mapping

ν· :{u ∈ L
p
s

(
Ω,Rn

)
: divu ∈ L

p
s (Ω)

}→ B
p,p

s− 1
p

(∂Ω) (2.74)

by setting

〈ν · u,φ〉 := 〈divu,Φ〉 + 〈u,∇Φ〉 (2.75)

for each φ ∈ (B
p,p

s−1/p(∂Ω))∗ = B
p′,p′
−s+1/p(∂Ω), where Φ ∈ L

p′
1−s(Ω) is such that TrΦ = φ. Then

the above definition is meaningful and the operator (2.74) is bounded in the sense that

‖ν · u‖Bp,p

s− 1
p

(∂Ω) � C
(‖u‖Lp

s (Ω,Rn) + ‖divu‖Lp
s (Ω)

)
. (2.76)

Proof. It suffices to observe that the application

ν· :{u ∈ L
p
s

(
Ω,Rn

)
: divu ∈ L

p
s (Ω)

}→ B
p,p

s− 1 (∂Ω) (2.77)

p
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can be factored as the composition between

ν� :
{
(u, η) ∈ L

p
s

(
Ω,Rn

)⊕ (
L

p′
1−s(Ω)

)∗: divu= η in D ′(Ω)
}→ B

p,p

s− 1
p

(∂Ω) (2.78)

and

j :
{
u ∈ L

p
s

(
Ω,Rn

)
: divu ∈ L

p
s (Ω)

}
→ {

(u, η) ∈ L
p
s

(
Ω,Rn

)⊕ (
L

p′
1−s(Ω)

)∗: divu= η in D ′(Ω)
}

(2.79)

where j (u) := (u,divu). Then everything follows from Lemma 2.6. �
Remark 1. When 1 < p <∞, s � 1/p and u ∈ L

p
s (Ω,Rn) has divu ∈ L

p
s (Ω), Proposition 2.7

yields

ν · u ∈
⋂

−1+ 1
p

<α< 1
p

B
p,p

α− 1
p

(∂Ω) (2.80)

and

ν · u= 0 ⇔ 〈u,∇Φ〉 = −〈divu,Φ〉, ∀Φ ∈ C∞(Ω). (2.81)

Remark 2. If 1 < p <∞, s > 1/p and u ∈ L
p
s,z(Ω,Rn) has divu ∈ L

p
s (Ω) then, necessarily,

ν · u= 0.

Proposition 2.8. Let Ω be a bounded Lipschitz domain in Rn and assume that 1 < p <∞ and
s > −1 + 1

p
. Then, for each vector field u ∈ L

p
s,z(Ω,Rn) with divu ∈ L

p
s,z(Ω), the following

equivalences hold:

div ũ ∈ L
p
s

(
Rn

) ⇔ d̃ivu= div ũ in Rn ⇔ ν · u= 0 on ∂Ω. (2.82)

There are two consequences of this result which we wish to single out before going any
further. First, if u is as in the statement of the proposition and s > 1

p
, Remark 2 above shows that

d̃ivu = div ũ in Rn. Second, when −1+ 1
p

< s < 1
p

, then the equivalences (2.82) hold for any

vector field u ∈ L
p
s (Ω,Rn) such that divu ∈ L

p
s (Ω).

Proof of Proposition 2.8. In general, given a field u as in the statement of the proposition, the
distribution div ũ satisfies

〈div ũ,Φ〉 = −〈ũ,∇Φ〉 = −〈u,RΩ(∇Φ)
〉=−〈u,∇(RΩΦ)

〉
= 〈divu,RΩΦ〉 − 〈ν · u,TrΦ〉, ∀Φ ∈ C∞c

(
Rn

)
. (2.83)

On the one hand, if div ũ ∈ L
p
s (Rn) then div ũ− d̃ivu belongs to {w ∈ L

p
s (Rn): suppw ⊂ ∂Ω}.

Thanks to (2.17) and the current assumptions on our indices s, p, the latter space is trivial, which
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proves that d̃ivu = div ũ in Rn. Armed with this, the fact that d̃ivu ∈ L
p

s,0(Ω), and (2.23), we
can further transform the penultimate pairing in (2.83) by writing

〈divu,RΩΦ〉 = 〈d̃ivu,Φ〉 = 〈div ũ,Φ〉. (2.84)

In concert, (2.83) and (2.84) then force 〈ν · u,TrΦ〉 = 0 for each Φ ∈ C∞c (Rn). Since

TrC∞(Ω) ↪→ B
p′,p′
−α+1/p(∂Ω) densely whenever−1+ 1

p
< α < 1

p
, we ultimately obtain ν ·u= 0

on ∂Ω ; cf. Remark 1 above.
On the other hand, if ν · u= 0 on ∂Ω , we may write, based on (2.83) and (2.23),

〈div ũ,Φ〉 = 〈divu,RΩΦ〉 = 〈d̃ivu,Φ〉, ∀Φ ∈ C∞c
(
Rn

)
. (2.85)

Thus, div ũ= d̃ivu as distributions in Rn. This concludes the proof of the proposition. �
Corollary 2.9. Let Ω be a bounded Lipschitz domain and consider p ∈ (1,∞), s > −1 + 1

p
.

Then

w ∈ L
p

s,0

(
Ω,Rn

)
and divw ∈ L

p

s,0(Ω) ⇒ ν ·RΩw = 0 on ∂Ω. (2.86)

Proof. Let w be as in the right-hand side of the implication (2.86) and set u := RΩw ∈
L

p
s,z(Ω,Rn). In particular, divu = RΩ(divw) ∈ L

p
s,z(Ω) and div ũ = divw ∈ L

p

s,0(Ω). Thus,
by Proposition 2.8, ν · u= 0 on ∂Ω and the desired conclusion follows. �

We continue by discussing a basic density result.

Proposition 2.10. Let Ω be a bounded Lipschitz domain in Rn and assume that 1 < p <∞,
s >−1+ 1

p
. Then the closure of

D := {
u ∈ C∞c

(
Ω,Rn

)
: divu= 0 in Ω

}
(2.87)

in L
p
s,z(Ω,Rn) is the space

V s,p(Ω) := {
u ∈ L

p
s,z

(
Ω,Rn

)
: divu= 0 in Ω and ν · u= 0 on ∂Ω

}
. (2.88)

We shall refer to the family V s,p(Ω), 1 < p <∞, s >−1+ 1
p

, as the Stokes scale associated

with the Lipschitz domain Ω . Since, by the first equality in (2.29), L
p
s,z(Ω,Rn) is a closed

subspace of L
p
s (Ω,Rn) for s− 1

p
/∈ Z, it follows that V s,p(Ω) can also be viewed as the closure

of (2.87) in L
p
s (Ω,Rn) whenever 1 < p <∞, s >−1+ 1

p
and s − 1

p
/∈No.

Proof of Proposition 2.10. From Proposition 2.7, we see that V s,p(Ω) is a closed subspace of
L

p
s,z(Ω,Rn), hence the closure of {u ∈ C∞c (Ω,Rn): divu= 0 in Ω} in L

p
s,z(Ω,Rn) is included

in V s,p(Ω). Conversely, consider now an arbitrary field u ∈ V s,p(Ω). Hence u ∈ L
p
s,z(Ω,Rn)

and, as the inclusion in (2.12) has dense range, there exists a sequence {uj }j∈N of vector fields
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in C∞c (Ω,Rn) converging to u in L
p
s,z(Ω,Rn). In particular, since s > −1+ 1

p
, we have ũ ∈

L
p

s,0(Ω,Rn), div ũ= 0 in Rn, and

ũj → ũ in L
p

s,0

(
Ω,Rn

)
and d̃ivuj = div ũj → 0 in L

p

s−1,0(Ω) as j→∞. (2.89)

Consequently, by Proposition 2.5, the sequence vj := uj − K(divuj ), j ∈ N, consists of
divergence-free vector fields in C∞c (Ω,Rn) and

vj = uj −K
(
Ψ (d̃ivuj )

)→ u in L
p
s,z

(
Ω,Rn

)
as j→∞, (2.90)

thanks to (2.89), (2.33) and (2.48). This finishes the proof of the proposition. �
As an immediate consequence of (2.30) and Remark 2 above, we have the following.

Corollary 2.11. The Stokes scale introduced in (2.88) satisfies

V s,p(Ω)=
{ {u ∈ L

p
s (Ω,Rn): divu= 0 in Ω and ν · u= 0} if − 1+ 1

p
< s < 1

p
,

{u ∈ L
p
s,z(Ω,Rn): divu= 0 in Ω} if s > 1

p
.

(2.91)

We are now ready to state and prove the main result in this subsection.

Theorem 2.12. For each bounded Lipschitz domain Ω ⊂Rn, the Stokes scale{
V s,p(Ω): 1 < p <∞, s >−1+ 1

p

}
(2.92)

is a complex interpolation scale. In other words, if [·,·]θ stands for the usual complex interpola-
tion bracket, then [

V s0,p0(Ω),V s1,p1(Ω)
]
θ
= V s,p(Ω) (2.93)

whenever 1 < pi < ∞, −1 + 1
pi

< si , i = 0,1, θ ∈ [0,1], 1
p
:= 1−θ

p0
+ θ

p1
and s :=

(1− θ)s0+ θs1.

Before turning to the proof of Theorem 2.12, we recall a version of an abstract interpolation
result from [34].

Lemma 2.13. Let Xi , Yi , i = 0,1, be two pairs of Banach spaces such that X0 ∩ X1 is dense
in both X0 and X1, and similarly for Y0, Y1. Let D be a linear operator such that D :Xi → Yi

boundedly for i = 0,1, and consider the following closed subspaces of Xi , i = 0,1:

Ker(D;Xi) := {u ∈Xi : Du= 0}, i = 0,1. (2.94)

Finally, suppose that there exists a continuous linear mapping G :Yi → Xi with the property
D ◦G= I , the identity on Yi for i = 0,1. Then, for each 0 < θ < 1,[

Ker(D;X0),Ker(D;X1)
]
θ
= {

u ∈ [X0,X1]θ : Du= 0
}
, θ ∈ (0,1). (2.95)
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Proof of Theorem 2.12. Fix p0,p1,p, s0, s1, s, θ as in the statement of the theorem. In a first
stage, we attempt to implement Lemma 2.13 in which we take

Xi := L
pi

si ,0

(
Ω,Rn

)
and Yi :=

{
f ∈ L

pi

si−1,0(Ω): 〈f,1〉 = 0
}
, i = 0,1, (2.96)

as well as

Du := divu and Gf := K̃(Ψ f ), (2.97)

where tilde is the extension by zero, K is the operator constructed in Proposition 2.5 and Ψ has
been introduced in (2.33). In particular,

Ψ : Lpi

si−1,0(Ω)→ (
L

p′i
1−si

(Ω)
)∗

, i ∈ {0,1}, and (2.98)

Ψ (ϕ̃)= ϕ for every ϕ ∈ C∞c (Ω). (2.99)

From (2.31) it is then immediate that

D :Xi→ Yi is well-defined, linear and bounded, for i = 0,1. (2.100)

Furthermore, from (2.98), (2.48) and (2.19), the operator

G= K̃ ◦Ψ :Lpi

si−1,0(Ω)→ L
pi

si ,0

(
Ω,Rn

)
, i = 0,1, (2.101)

is well-defined, linear and bounded. There remains to check that

D ◦G= I on Yi for i = 0,1. (2.102)

To see this, fix f ∈ Yi and pick ϕj ∈ C∞c (Ω) such that 〈ϕj ,1〉 = 0 for each j and ϕ̃j → f in
L

pi

si−1,0(Ω) as j→∞ (the fact that the inclusion in (2.9) has dense range guarantees that this is
possible). Then, based on (2.50), (2.49) and (2.99) we may write

ϕ̃j = ˜divKϕj = div(K̃ϕj )

= div ˜(KΨ ϕ̃j )= div(Gϕ̃j ), ∀j. (2.103)

Passing to the limit j→∞ in the identity (2.103) finally yields, on account of (2.101) and (2.31),
that f = div(Gf ) in L

pi

si−1,0(Ω).
This proves (2.102). Thus, Lemma 2.13 in concert with (2.26) then gives[

Ker(D;X0),Ker(D;X1)
]
θ
= {

u ∈ L
p

s,0

(
Ω,Rn

)
: divu= 0 in Rn

}
, (2.104)

where

Ker(D;Xi)=
{
u ∈ L

pi

si ,0

(
Ω,Rn

)
: divu= 0 in Rn

}
, i = 0,1. (2.105)

Our next step is to prove that the restriction operator induces an isomorphism

RΩ :
{
u ∈ L

p (
Ω,Rn

)
: divu= 0 in Rn

}→ V s,p(Ω) (2.106)
s,0
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for each 1 < p <∞ and s > −1 + 1/p. Indeed, in order to show that RΩ in (2.106) is well-
defined, we need to check that ν ·RΩu= 0 for each divergence-free field u ∈ L

p

s,0(Ω,Rn). This,
however, is a consequence of Corollary 2.9.

Hence, in order to prove that (2.106) is an isomorphism, it suffices to check that the extension
by zero operator

·̃ :V s,p(Ω)→ {
u ∈ L

p

s,0

(
Ω,Rn

)
: divu= 0 in Rn

}
(2.107)

is well-defined and bounded. To this end, we notice that if u ∈ V s,p(Ω) then Proposition 2.8
yields ũ ∈ L

p

s,0(Ω,Rn) and div ũ = d̃ivu = 0, as desired. All in all, the operator (2.106) is an
isomorphism, whose inverse is (2.107).

The endgame in the proof of (2.93) is as follows. First, since

RΩ : Ker(D;Xi)→ V si ,pi (Ω), i = 0,1, (2.108)

isomorphically (and with compatible inverses), it follows that

RΩ :
[
Ker(D;X0),Ker(D;X1)

]
θ
→ [

V s0,p0(Ω),V s1,p1(Ω)
]
θ

isomorphically. (2.109)

Now (2.93) is a direct consequence of this, (2.104) and the fact that (2.106) is an isomor-
phism. �

Our next goal is to identify the duals of the spaces in the Stokes scale introduced in (2.88). To
set the stage, we first recall the following particular case of a more general result due to G. De
Rham [13].

Proposition 2.14. For an arbitrary open set Ω ⊆ Rn define the space D as in (2.87). Then, for
each u ∈ (C∞c (Ω,Rn))′, the following equivalence holds:

〈u,v〉 = 0 for each v ∈D ⇔ ∃Φ ∈ (C∞c (Ω)
)′

such that u=∇Φ in Ω. (2.110)

We are now ready to state the following.

Theorem 2.15. Let Ω ⊂ Rn be a bounded Lipschitz domain and fix 1 < p <∞. Next, for each
s >−1+ 1/p, let

Js,p :V s,p(Ω) ↪→ L
p
s,z

(
Ω,Rn

)
(2.111)

be the canonical inclusion, and consider its dual

J ∗s,p :
(
L

p
s,z

(
Ω,Rn

))∗ → (
V s,p(Ω)

)∗
. (2.112)

Then the mapping (2.112) is onto and its kernel is precisely ∇[Lp′
1−s(Ω)]. In particular,

J ∗s,p :
L

p′
−s(Ω,Rn)

∇[Lp′
1−s(Ω)]

→ (
V s,p(Ω)

)∗
(2.113)

is an isomorphism.
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Proof. Since V s,p(Ω) is a closed subspace of L
p
s,z(Ω), Hahn–Banach’s theorem immediately

gives that the mapping (2.112) is onto. That (2.113) is an isomorphism will then follow as soon

as we show that KerJ ∗s,p , the null-space of the application (2.112), coincides with ∇[Lp′
1−s(Ω)].

In one direction, if u ∈ (L
p
s,z(Ω,Rn))∗ = L

p′
−s(Ω,Rn) is such that J ∗s,p(u)= 0, then 〈u,v〉 = 0

for each v ∈D. In particular, by virtue of Proposition 2.14, there exists Φ ∈ (C∞c (Ω))∗ such that

∇Φ = u. Proposition 2.3 then ensures that Φ ∈ L
p′
1−s(Ω), so that u ∈ ∇[Lp′

1−s(Ω)], as desired.

Conversely, if u= ∇Φ ∈ L
p′
−s(Ω,Rn) for some Φ ∈ L

p′
1−s(Ω) then Proposition 2.7 (cf. also

the comments following its proof) allows us to write〈
J ∗s,p(u), v

〉= 〈∇Φ,v〉 = −〈Φ,divv〉 + 〈TrΦ,ν · v〉 = 0, (2.114)

for every v ∈ V s,p(Ω). Thus, J ∗s,p(u)= 0, finishing the proof of the theorem. �
Proposition 2.16. For each bounded Lipschitz domain Ω ⊂ Rn there exists ε = ε(Ω) ∈]0,1]
with the following significance. Assume that 1 < p <∞, −1+ 1/p < s < 1/p and that the pair
(s,1/p) satisfies either of the following three conditions:

(I) 0 < 1
p

< 1−ε
2 and − 1+ 1

p
< s < 3

p
− 1+ ε;

(II) 1−ε
2 � 1

p
� 1+ε

2 and − 1+ 1
p

< s < 1
p
;

(III) 1+ε
2 < 1

p
< 1 and − 2+ 3

p
− ε < s < 1

p
. (2.115)

Then

L
p
s

(
Ω,Rn

)= V s,p(Ω)⊕∇[Lp

s+1(Ω)
]
, (2.116)

where the direct sum is topological (in fact, orthogonal when s = 0 and p = 2). Furthermore, if

P :Lp
s

(
Ω,Rn

)→ V s,p(Ω) (2.117)

denotes the projection onto the first summand in the decomposition (2.116), then its kernel is
∇[Lp

s+1(Ω)]. In particular,

P :
L

p
s (Ω,Rn)

∇[Lp

s+1(Ω)] → V s,p(Ω) (2.118)

is an isomorphism. Also, the adjoint of the operator

Pp,s :Lp
s

(
Ω,Rn

)
P−→ V s,p(Ω)

Js,p−−→ L
p
s

(
Ω,Rn

)
(2.119)

is the operator Pp′,−s , and

(
V s,p(Ω)

)∗ = V −s,p′(Ω). (2.120)
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Proof. The decomposition (2.116) corresponding to the case when s = 0 has been established in
[19] via an approach which reduces matters to the well-posedness of the inhomogeneous Neu-
mann problem for the Laplacian in the Lipschitz domain Ω . The more general case considered
here can be proved in an analogous fashion. With (2.116) in hand, the claims about the projec-
tion (2.117) are straightforward.

Finally, (2.120) is a consequence of the fact that V s,p(Ω) is a closed subspace of L
p
s (Ω,Rn),

the Hahn–Banach theorem, (2.44), (2.116) and the identity P∗p,s = Pp′,−s . We omit the de-
tails. �
Remark 3. When ∂Ω ∈ C 1, one can choose ε = 1 in Proposition 2.16.

3. Boundary value problems for the Stokes system

For the reader’s convenience, in this section we shall briefly review the solution of the Poisson
and Dirichlet problems for the Stokes system.

3.1. The Poisson problem

Let Ω ⊂Rn be a bounded, connected Lipschitz domain and consider

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�u+∇π = f ∈ L
p

s+ 1
p
−2

(
Ω,Rn

)
,

divu= 0 in Ω,

u ∈ L
p

s+ 1
p

,z

(
Ω,Rn

)
,

π ∈ L
p

s+ 1
p
−1

(Ω), 〈π,1〉 = 0.

(3.1)

According to [17, Theorem 5.6], the boundary value problem (3.1) has a unique solution in each
of the following scenarios:

(i) n � 2, ∂Ω ∈ C 1, and p ∈ ]1,∞[, s ∈ ]0,1[ arbitrary;
(ii) n � 2, s ∈ ]0,1[, and | 1

p
− 1

2 |< ε for some ε = ε(Ω) ∈ ]0, 1
2 ];

(iii) n= 3 and, for some ε = ε(Ω) ∈ ]0,1], the pair (s,1/p) satisfies either one of the following
three conditions:

(I) 1+ε
2 � 1

p
< 1 and 2

p
− 1− ε < s < 1;

(II) 1−ε
2 � 1

p
� 1+ε

2 and 0 < s < 1;
(III) 0 < 1

p
� 1−ε

2 and 0 < s < 2
p
+ ε; (3.2)

(iv) n= 2 and, for some ε = ε(Ω) ∈] 12 ,1],

0 < s < 1, 1 < p <∞,
∣∣ 1
p
− s

∣∣< ε. (3.3)
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3.2. The Dirichlet problem

Recall that by interpolating Sobolev (potential) spaces by the real method yields Besov spaces.
More specifically, (

Lp(Ω),L
p
k (Ω)

)
s,q
= B

p,q
sk (Ω), (3.4)

if 1 < p,q <∞, k > 0, 0 < s < 1.
It has been proved in [18] and [41] that for each bounded, connected, Lipschitz domain Ω in

Rn there exists ε = ε(Ω) > 0 with the following property. If 2− ε < p < 2+ ε, the boundary
value problem ⎧⎪⎨⎪⎩

−�u+∇π = 0 in Ω,

divu= 0 in Ω,

Tru= g ∈ L
p

1 (∂Ω,Rn),
∫
∂Ω

ν · g dσ = 0,

(3.5)

has a solution which satisfies

u ∈ B
p,p#

1+ 1
p

(
Ω,Rn

)
, π ∈ B

p,p#

1
p

(Ω), where p# :=max{p,2}. (3.6)

Moreover, when n = 3, the above range of p’s extends to 1 < p < 2+ ε. See [42] for this last
statement.

4. The Stokes operator on Lipschitz domains

Starting from an abstract setting, here we define the Stokes operator on a Lipschitz domain
and study its properties.

4.1. The {H,V, a} formalism

Let V be a reflexive Banach space continuously and densely embedded into a Hilbert space
H so that, in particular,

V ↪→H ↪→ V∗ (4.1)

and assume that

a(·,·) :V × V→C (4.2)

is a sesqui-linear, bounded form. Then

Ao :V→ V∗, Aou := a(u, ·) ∈ V∗, ∀u ∈ V, (4.3)

is a linear, bounded operator satisfying

V∗〈Aou,v〉V = a(u, v), ∀u,v ∈ V . (4.4)
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Assume further that a(·,·) is symmetric and coercive, in the sense that there exists κ > 0 such
that

Rea(u,u) � κ‖u‖2
V , ∀u ∈ V . (4.5)

Then

Ao :V→ V∗ is bounded, self-adjoint and invertible. (4.6)

Going further, take A to be the part of Ao in H, i.e., the unbounded operator

A :=Ao|D(A) :H→H, (4.7)

where

D(A) := {u ∈ V: Aou ∈H}. (4.8)

Then the unbounded operator (4.7)–(4.8) is self-adjoint and invertible on H. Furthermore, there
exists θ ∈ (0,π/2) such that

∥∥(λI −A)−1
∥∥� C

|λ| , θ <
∣∣arg(λ)

∣∣� π, (4.9)

i.e., A is sectorial; cf., e.g., [12]. In particular, the operator −A generates an analytic semigroup
on H according to the formula

e−zAu := 1

2πi

∫
Γθ ′

e−λz(λI −A)−1udλ,
∣∣arg(z)

∣∣< π/2− θ ′, (4.10)

where θ ′ ∈ (θ,π/2) and Γθ ′ := {reiθ ′ : r > 0}. Furthermore, since A is invertible in our case,
the semigroup (e−tA)t>0 is bounded. See, e.g., [12,45,54] (let us also point out that the above
formalism—discussed in detail in, e.g., [12]—is closely related to K.O. Friedrichs’ extension
method, as described [31, p. 325], and [54, p. 514, vol. I]).

Since A satisfies (4.9), we can also define fractional powers of A. Specifically, for z ∈C with
Re z ∈ [0,1) and u ∈D(A)∩AD(A) (which is a dense subset of H), we set

Azu := sin(πz)

π

∞∫
0

tz(t +A)−1Au
dt

t
. (4.11)

More generally, for z ∈C with Re z ∈ (−1,1) and u ∈D(A)∩AD(A),

Azu := sin(πz)

π

(
u

z
− A−1u

1+ z
+

1∫
tz+1(t +A)−1Audt +

∞∫
tz−1(t +A)−1Audt

)
. (4.12)
0 1
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The above formula reduces, for −1 < Re z < 0, to

Azu := sin(πz)

π

∞∫
0

tz(t +A)−1udt, ∀u ∈H. (4.13)

In this case, the integral is absolutely convergent and Az is bounded on H.
Another useful representation of A−α as a bounded operator on H, whose validity extends to

any α > 0, is

A−αu := 1

�(α)

∞∫
0

tαe−tAu
dt

t
, ∀u ∈H, (4.14)

where � is the classical Gamma function.
Then A−α is one-to-one for every α > 0 and one convenient way to introduce the domain of

(positive) fractional powers of the unbounded operator A is

D
(
Aα

) :=A−αH, the range of A−α acting on H, α > 0, (4.15)

which becomes a Banach space when equipped with the graph norm

‖u‖D(Aα) := ‖u‖H +
∥∥Aαu

∥∥
H. (4.16)

In this connection, it is useful to note that since A−α is bounded on H, we have ‖u‖H =
‖A−α(Aαu)‖H � C‖Aαu‖H for every u ∈H, α > 0, and hence

‖u‖D(Aα) ≈ ‖Aαu‖H, uniformly for u ∈D
(
Aα

)
, (4.17)

for every α > 0.
Later on, we shall make frequent use of the fact that∥∥Aαe−tA

∥∥
L (H)

� Cαt−α, α > 0, (4.18)

where L (H) denotes the Banach space of linear, bounded operators mapping H into itself. In
turn, (4.18) can be used to show that, for each α > 0 and u ∈H, the mapping

]0,∞[ � t �→ e−tAu ∈D
(
Aα

)
(4.19)

is continuous. Furthermore,

the map (4.19) extends continuously to [0,∞[ ⇔ u ∈D
(
Aα

)
. (4.20)

Other properties are discussed in, e.g., Pazy’s book [45], to which we refer the interested
reader. Here we only wish to summarize the properties of fractional powers which are relevant
for our work.
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Proposition 4.1. For the operator A associated with the triplet {V,H, a} as before, the following
hold:

(i) For each α � 0, A−α is one-to-one, bounded and with dense range on H. Furthermore, there
exists C > 0 such that ‖A−αu‖H � C‖u‖H for every α ∈ [0,1].

(ii) For every α,β � 0, A−αA−β =A−(α+β), and limα→0+ A−αu= u for every u ∈H.

Furthermore, if Aα := (A−α)−1 for α > 0, then also:

(iii) For each α > 0, Aα is an unbounded, self-adjoint operator on H, whose domain is A−αH,
the range of A−α . In particular, u=A−α(Aαu) for every u ∈D(Aα).

(iv) If α � β � 0, then D(Aα)⊂D(Aβ).
(v) For each α ∈]0,1[ there exists C > 0 such that ‖Aαu‖H � C‖u‖1−α

H ‖Au‖αH for every
u ∈D(A).

(vi) If α,β ∈R then Aα(Aβu)=Aα+βu for every u ∈D(Aγ ), where γ :=max {α,β,α + β}.
(vii) For every α ∈]0,1[ and u ∈H, there holds Aα(

∫ t

0 e−sAuds)= ∫ t

0 Aαe−sAuds.

We continue by recording some well-known results of Kato and Lions (see [30,33]).

Proposition 4.2. For A as above, there holds

D
(
A1/2)= V (4.21)

and

D
(
Aθ

)= [
H,D(A)

]
θ
, 0 � θ � 1. (4.22)

Hence, by the reiteration theorem for the complex method,{
D
(
A

s
2
)
: 0 � s � 2

}
is a complex interpolation scale. (4.23)

In particular,

D
(
Aθ/2)= [H,V]θ , 0 � θ � 1. (4.24)

Corollary 4.3. Under the assumptions (4.1)–(4.5) and with Ao as in (4.6)–(4.7),

D
(
A

1+θ
2
)=A−1

o

(
D
(
A

1−θ
2
))∗ (4.25)

for every 0 � θ � 1.

Proof. As already observed above, the fact that (4.5) holds entails that Ao :V→ V∗ is an iso-
morphism. Based on this and the definition of D(A), it is then immediate that Ao :D(A)→H
is an isomorphism as well. Interpolating between these two cases then proves (with the help of
(4.21)–(4.22), and the duality theorem for the complex method) that the operator

Ao: D
(
A

1+θ
2
)= [

V,D(A)
] → [

V∗,H
] = [H,V]∗1−θ =

(
D
(
A

1−θ
2
))∗ (4.26)
θ θ
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is an isomorphism, for every 0 � θ � 1. From this, (4.25) readily follows. �
We conclude with a brief discussion of the abstract Cauchy problem{

u′ +Au= f, on (0, T ),

u(0)= u0,
(4.27)

for some given

u0 ∈H and f ∈ Lp
([0, T ];H)

, 1 � p �∞. (4.28)

Call u ∈ C ([0, T ];H) a mild solution of (4.27) if it satisfies an integrated version of this problem,
i.e.

t∫
0

u(s) ds ∈D(A) and u(t)= u0 +A

( t∫
0

u(s) ds

)
+

t∫
0

f (s) ds, ∀t ∈ [0, T ]. (4.29)

As is well known (cf., e.g., the discussion in [2, p. 9]), given that A is the generator of a C0-
semigroup, (4.27) has a unique mild solution given by

u(t)= e−tAu0 +
(
e−·A ∗ f

)
(t)= e−tAu0 +

t∫
0

e−(t−s)Af (s) ds, t ∈ [0, T ]. (4.30)

In order to be able to discuss the concept of strong solution of the Cauchy problem (4.27),
consider

L
p

1

(]0, T [;H) := {
u ∈ Lp

(]0, T [;H)
: u′ ∈ Lp

(]0, T [;H)}
, (4.31)

where the time-derivative is taken in the sense of distributions. Sobolev’s embedding theorem
yields

L
p

1

(]0, T [;H)
↪→ C

([0, T ];H)
(4.32)

for each p ∈ [1,∞]. In particular, the Fundamental Theorem of Calculus holds for functions
u ∈ L

p

1 (]0, T [;H), i.e., u(t1) − u(to) =
∫ t1
to

u′(s) ds if to, t1 ∈ [0, T ]. Consequently, this and
Lebesgue’s differentiation theorem then prove that the pointwise derivative u′(t) exists at almost
every t ∈ [0, T ].

With this preamble out of the way, call u a strong solution of the abstract Cauchy problem
(4.27)–(4.28) if u ∈ L

p

1 (]0, T [;H), u(t) ∈D(A) for a.e. t ∈ [0, T ], and u′(t)+ (Au)(t)= f (t)

for a.e. t ∈ [0, T ]. A few remarks are in order here. First, for a strong solution, the condition
u(t) ∈ D(A) for a.e. t ∈ [0, T ] self-improves a posteriori to u ∈ Lp([0, T ];D(A)). Second,
since A is the infinitesimal generator of a C0-semigroup on H, it follows that the (unique) mild
solution of (4.27)–(4.28) is a strong solution if and only if u ∈ L

p
(]0, T [;H). Third,
1
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α ∈ ]0,1[ and u0 ∈D
(
Aα

) ⇒ e−tAu0 ∈ L
p

1

(]0, T [;H)
whenever 1 < p < (1−α)−1.

(4.33)

According to a fundamental result, originally due to L. de Simon [14], for each p ∈ (1,∞),

e−·A ∗ f ∈ L
p

1

(]0, T [;H)
for all f ∈ Lp

([0, T ];H)
, (4.34)

given that A generates an analytic semigroup on the Hilbert space H. As a consequence of this
discussion we can now state the following.

Corollary 4.4. Let A, H be as before, and fix T > 0, α ∈ (0,1), and 1 < p < (1−α)−1. Then the
(unique) mild solution of the Cauchy problem (4.28)–(4.29) is in fact a strong solution whenever
u0 ∈D(Aα).

4.2. The Stokes operator

We continue to assume that Ω ⊂ Rn is a bounded Lipschitz domain and denote by ν its unit
normal. Set

H := V 0,2(Ω)= {
u ∈ L2(Ω,Rn

)
: divu= 0 in Ω, ν · u= 0 on ∂Ω

}
, (4.35)

V := V 1,2(Ω)=H ∩L2
1,z

(
Ω,Rn

)= {
u ∈ L2

1,z

(
Ω,Rn

)
: divu= 0 in Ω

}
, (4.36)

and note that, by Proposition 2.10, the spaces H, V are the closure of D in the norm of L2(Ω,Rn)

and L2
1,z(Ω,Rn), respectively. In particular, the canonical injection V ↪→H has dense range.

Going further, on V × V we define the form a(·,·) by

a(u, v) :=
∫
Ω

〈∇u,∇v〉dx, u, v ∈ V, (4.37)

and note that this is a bilinear, symmetric and coercive, thanks to Poincaré’s inequality. The
goal is to identify the unbounded operator A canonically induced by the triplet {V,H, a} just
introduced. To this end, we bring in the Leray projection

P :L2(Ω,Rn
)→H, (4.38)

i.e., the orthogonal projection from L2(Ω,Rn) onto the closed subspace H. The operator P, orig-
inally defined as in (4.38), can then be naturally extended to other settings. First, it is clear that
(4.38) is compatible with (2.117), defined under the assumption that one of the three conditions
in (2.115) holds.

Second, with D as in (2.87), we let

J :D ↪→ C∞c
(
Ω,Rn

)
, (4.39)
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stand for the canonical inclusion and note that the diagram

(C∞c (Ω,Rn))′ J ∗
D′

L2(Ω,Rn)
P

H

(4.40)

in which the vertical arrows are natural inclusions, is commutative. Consequently, we may extend
(4.38) to

P= J ∗ :
(
C∞c

(
Ω,Rn

))′ →D′. (4.41)

Next, for 1 < p <∞ and s >−1+ 1/p, recall the injections Js,p :V s,p(Ω) ↪→ L
p
s,z(Ω,Rn)

from (2.111) and consider the commutative diagram

(C∞c (Ω,Rn))′ J ∗
D′

L
p′
−s(Ω,Rn)

J ∗s,p
(V s,p(Ω))∗

(4.42)

in which, once again, the two vertical arrows are natural inclusions. Thus, the operator (4.41) can
be further viewed as

P= J ∗s,p :Lp′
−s

(
Ω,Rn

)→ (
V s,p(Ω)

)∗
, s >−1+ 1

p
. (4.43)

In particular, corresponding to p = 2 and s = 1,

P :L2−1

(
Ω,Rn

)→ V∗. (4.44)

For further use, let us also point out that the operator (4.43) factors as

P :Lp′
−s

(
Ω,Rn

) pr−→ L
p′
−s(Ω,Rn)

∇[Lp′
1−s(Ω)]

J ∗s,p−−→ (
V s,p(Ω)

)∗
, (4.45)

where the first arrow is the canonical projection onto the quotient space, and the second arrow is
the isomorphism (2.113). In addition, as a corollary of Proposition 2.14 and Theorem 2.15, the
null-spaces of these operators are

Ker
[
P :

(
C∞c

(
Ω,Rn

))′ →D′
]=∇(C∞c (Ω)

)′
, (4.46)

Ker
[
P :Lp′

−s

(
Ω,Rn

)→ (
V s,p(Ω)

)∗]=∇[Lp′
1−s(Ω)

]
, (4.47)

whenever 1 < p <∞ and s >−1+ 1/p.
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In summary, we shall continue to denote by P the extension of the Leray projection (4.38) to
any of the situations (4.41), (4.43). Moreover, since for each s >−1+ 1/p the diagram

V s,p(Ω)
Js,p

L
p
s,z(Ω,Rn)

D
J

C∞c (Ω,Rn)

(4.48)

is also commutative, in an effort to streamline notation we also agree to drop the subscripts s, p

when referring to the operator Js,p and simply write J (as in (4.39)).
After this preamble, we return to the task of defining the Stokes operator. As before, the form

(4.37) gives rise to a bounded, invertible, self-adjoint operator Ao mapping V onto its dual, and
such that Aou := a(u, ·) for every u ∈ V .

Proposition 4.5. With �D :L2
1,z(Ω,Rn)→ L2−1(Ω,Rn), �Du := �u, denoting the Dirichlet-

Laplacian acting componentwise on vector fields in Ω , there holds

Ao = P ◦ (−�D) ◦ J :V→ V∗. (4.49)

Proof. Let u,v ∈ V be arbitrary. By unraveling definitions, we may write

V∗〈Aou,v〉V = a(u, v)=
n∑

i=1

〈∂iJu, ∂iJ v〉

= L2−1(Ω,Rn)

〈
(−�D)Ju,Jv

〉
L2

1,z(Ω,Rn)

= V∗
〈
P(−�D)u, v

〉
V , (4.50)

where the last equality uses the fact that

L2−1(Ω,Rn)〈w,Jv〉L2
1,z(Ω,Rn) = V∗〈Pw,v〉V , (4.51)

for each w ∈ L2−1(Ω,Rn) and v ∈ V . �
Definition 4.6. Assume that Ω is a connected, bounded Lipschitz domain in Rn. The unbounded
operator A :H→H defined on its domain D(A) := {u ∈ V: Aou ∈H} by Au :=Aou, is called
the Stokes operator (associated with the domain Ω).

We are finally ready to describe the Stokes operator associated with a Lipschitz domain Ω .

Theorem 4.7. The Stokes operator is characterized by

D(A)= {
u ∈ L2

1,z

(
Ω,Rn

)
: divu= 0 and ∃π ∈ L2(Ω) such that −�u+∇π ∈H}

,

Au=−�u+∇π, ∀u ∈D(A) and π ∈ L2(Ω) such that −�u+∇π ∈H.
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Proof. From (4.7)–(4.8) we know that a vector field u ∈ V belongs to D(A) if and only if
Aou ∈H, in which case Au=Aou. Thus, if u ∈D(A) then (4.49) yields

P
(
Au− (−�D)Ju

)= PAu− P
(
(−�D)Ju

)=Au−Au= 0, (4.52)

since P leaves each vector in H invariant. Hence, by (4.47), there exists a unique scalar function
π ∈ L2(Ω) such that

∫
Ω

π dx = 0 and Au− (−�D)Ju=∇π .
Conversely, if u ∈ V is such that there exists π ∈ L2(Ω) for which −�u+∇π ∈H, then

Aou= P
[
(−�D)Ju

]= P
[
(−�D)Ju+∇π

]=−�u+∇π ∈H (4.53)

thanks to (4.47) and the fact that P leaves H invariant. �
Remark. Note that the unbounded operator

B :H→H, D(B) :=D = C∞c
(
Ω,Rn

)∩H,

Bu := −P(�u), ∀u ∈D(B), (4.54)

is densely defined, symmetric and positive. The Friedrichs extension of B is then given by

A :H→H, Au := B∗u, ∀u ∈D(A),

D(A) := {
u ∈D

(
B∗

)
: ∃uj ∈D(B) such that

uj → u in H and
〈
B(uj − uk), uj − uk

〉→ 0
}

(4.55)

(cf., e.g., the discussion in [53, p. 194], and in [31, pp. 325–326]). It is then straightforward to
check that (4.55) is precisely the Stokes operator described in Theorem 4.7.

Corollary 4.8. Let Ω be a bounded Lipschitz domain in Rn. Then the Stokes operator A de-
scribed in Theorem 4.7 is self-adjoint and generates an analytic semigroup (e−tA)t≥0 in H. In
addition, (4.21)–(4.24) and (4.25) hold as well.

Proof. All claims are direct consequences of the discussion in Section 3.1. �
Corollary 4.9. The Stokes operator A satisfies the maximal Lp-regularity condition for all p ∈
]1,∞[. That is, for each 1 < p <∞ there exists a constant Cp > 0 such that for all 0 < T �∞,
for all f ∈ Lp([0, T ];H) the inhomogeneous Cauchy problem{

u′(t)+Au(t)= f (t) a.e. t ∈ (0, T ),

u(0)= 0
(4.56)

has a unique strong solution u ∈ L
p

1 (]0, T [;H) ∩ Lp(]0, T [;D(A)) given by the convolution
formula

u(t)= (
e−·A ∗ f

)
(t) :=

t∫
e−(t−s)Af (s) ds, t ∈ (0, T ), (4.57)
0
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and for which

‖u′‖Lp([0,T ];H) + ‖Au‖Lp
([0,T ];H) � Cp‖f ‖Lp([0,T ];H). (4.58)

Proof. That the Stokes operator satisfies the maximal Lp-regularity condition for every p ∈
(1,∞), follows from Corollary 4.8 and the fact that the space H is Hilbert; cf., e.g., [14]. �

As discussed in Proposition 4.5, the operator Ao :V→ V∗ factors as

Ao :V 1,2(Ω)
J

↪→L2
1,z

(
Ω,Rn

) −�D−−→ L2−1

(
Ω,Rn

) P−−→ (
V 1,2(Ω)

)∗
. (4.59)

This suggests the possibility of extending the action of the operator (4.49) according to

Ao :V s+ 1
p

,p
(Ω)

J
↪→ L

p

s+ 1
p

,z

(
Ω,Rn

) −�D−−→ L
p

s+ 1
p
−2

(
Ω,Rn

) P→ (
V

1−s+ 1
p′ ,p

′
(Ω)

)∗
(4.60)

whenever 1 < p <∞ and −1 < s < 2.

Proposition 4.10. Let Ω be a bounded Lipschitz domain in Rn. Then for every 1 < p <∞ and
−1 < s < 2, the operator

Ao :V s+ 1
p

,p
(Ω)→ (

V
1−s+ 1

p′ ,p
′
(Ω)

)∗ (4.61)

which makes the diagram (4.60) commutative, is well-defined, linear, bounded and compatible
with (4.59). Furthermore, the adjoint of (4.61) is Ao :V 1−s+1/p′,p′(Ω)→ (V s+1/p,p(Ω))∗.

Finally, the operator (4.61) is an isomorphism in either of the cases (i)–(iv) listed in Sec-
tion 3.1.

Proof. The claims made in the first part of the statement are clear from definitions. As for the
last claim in the proposition, we first note that the operator (4.61) is injective if and only if the
problem (3.1) has at most one solution. Likewise, (4.61) is surjective if and only if (3.1) has at
least one solution. All in all, the operator (4.61) is invertible if and only if the problem (3.1) is
well-posed. Then the desired conclusion follows from the discussion in Section 3.1. �
5. Domains of fractional powers of the Stokes operator

Here, the goal is to determine the domains of fractional powers of the Stokes operator, D(Aα)

for α ∈ [0,1], in Lipschitz domains.

5.1. The n-dimensional case

Retain the notation and conventions used in the previous section; in particular, Ω is a bounded
Lipschitz domain in Rn.



M. Mitrea, S. Monniaux / Journal of Functional Analysis 254 (2008) 1522–1574 1555
Theorem 5.1. For s ∈ [0,2], the domain of the fractional power of the Stokes operator As/2 is
given by

D
(
A

s
2
)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L2
s (Ω,Rn)∩H if 0 � s < 1

2 ,

{u ∈ L2
1
2
(Ω,Rn)∩H:

∫
Ω
|u(x)|2 dist(x, ∂Ω)−1dx <∞} if s = 1

2 ,

{u ∈ L2
s,z(Ω,Rn): divu= 0} if 1

2 < s < 3
2 ,

{u ∈ L2
1,z(Ω,Rn): divu= 0 and �u ∈ L2

s−2(Ω,Rn)+∇[L2(Ω)]} if 3
2 � s � 2.

Proof. Consider the families of spaces {V s,2(Ω): s > − 1
2 } and {D(As/2): 0 � s � 2}. From

Theorem 2.12 and Proposition 4.2 we know that both are complex interpolation scales, and

D
(
A0)=H= V 0,2(Ω), D

(
A

1
2
)= V = V 1,2(Ω). (5.1)

Thus, by interpolation,

D
(
A

s
2
)= V s,2(Ω), 0 � s � 1. (5.2)

With this in hand, the description of D(As/2) stated in the theorem for s ∈ [0,1] follows from
Corollary 2.11 and (2.14).

Consider next the case when s ∈]1,2]. From (4.25)–(5.2) we obtain

D
(
A

s
2
)=A−1

o

(
V 2−s,2(Ω)

)∗
, 1 � s � 2. (5.3)

Equivalently, for each s ∈ [1,2],

u ∈D
(
A

s
2
) ⇔ u ∈ V and Aou ∈

(
V 2−s,2(Ω)

)∗
↪→ V∗. (5.4)

Next, we note that (4.45) implies that the operator P :L2
s−2(Ω,Rn)→ (V 2−s,2(Ω))∗ is onto

and has ∇[L2
s−1(Ω)] as null-space. In concert with (4.49) this readily gives that, for each s ∈

[1,2],

u ∈D
(
A

s
2
) ⇔ u ∈ V and ∃π ∈ L2(Ω) such that f :=�u−∇π ∈ L2

s−2

(
Ω,Rn

)
.

(5.5)

On the other hand, in the case s ∈]1, 3
2 [, the discussion in Section 3.1 gives{

u ∈ V, π ∈ L2(Ω)

−�u+∇π ∈ L2
s−2

(
Ω,Rn

) ⇔
{

u ∈ L2
s,z

(
Ω,Rn

)
, divu= 0,

π ∈ L2
s−1(Ω).

(5.6)

With this in hand, the remaining claims in the statement of the theorem follow easily. �
As is customary, by X(u)≈ Y(u) we shall mean that there exists a finite positive constant κ

such that κ−1X(u) � Y(u) � κX(u) for every u.
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Corollary 5.2. Let Ω be a bounded Lipschitz domain in Rn. Then for each 0 < s < 3
2 , s �= 1

2 ,

∥∥A s
2 u
∥∥

L2(Ω,Rn)
≈ ‖u‖L2

s (Ω,Rn), uniformly for u ∈D
(
A

s
2
)
. (5.7)

Moreover, corresponding to s = 1
2 ,

∥∥A 1
4 u
∥∥

L2(Ω,Rn)
≈ ‖u‖L2

1
2
(Ω,Rn) +

(∫
Ω

∣∣u(x)
∣∣2 dist(x, ∂Ω)−1 dx

)1/2

, (5.8)

uniformly for u ∈D(A1/4).

Proof. The equivalence (5.7) is a consequence of Theorem 5.1 and the fact that for 0 < s < 3
2 ,

s �= 1
2 , L2

s,z(Ω,Rn) is a closed subspace of L2
s (Ω,Rn); cf. the first identity in (2.29). Likewise,

(5.8) is a consequence of Theorem 5.1 and the equivalence of norms implicit in (2.14). �
Next, denote by B(x, r) the ball of center x ∈ Rn and radius r > 0. Recall that a domain

Ω ⊂Rn is said to satisfy a uniform exterior ball condition if there exists r > 0 with the property
that for every x ∈ ∂Ω one can pick y = y(x) ∈Rn such that

x ∈ ∂B(y, r) and B(y, r) \ {x} ⊆Rn \Ω. (5.9)

Informally speaking, the family just described models the class of domains for which the bound-
ary singularities are directed outwardly. In particular, if Ω is convex, or if ∂Ω ∈ C 1,1, then Ω

does satisfy a uniform exterior ball condition.

Theorem 5.3. Let Ω ⊂Rn be a bounded Lipschitz domain. Then

D
(
As/2)⊂ L2

3
2 ,z

(
Ω,Rn

)
if s > 3

2 . (5.10)

Furthermore, if Ω satisfies a uniform exterior ball condition, then

D
(
A

3
4
)= {

u ∈ L2
3
2

(
Ω,Rn

)
: divu= 0 and Tru= 0

}
. (5.11)

Proof. For starters, we note that if s ∈ [ 32 ,2] then (5.5) holds. Assume now that u, π , f are as
in the right-hand side of (5.5) and use Proposition 2.1 in order to extended f to a compactly
supported vector-valued distribution F ∈ L2

s−2(R
n,Rn). Based on standard Fourier analysis and

classical Calderón–Zygmund theory, one can then find a solution to the problem⎧⎪⎨⎪⎩
−�U +∇Π = F in Rn,

divU = 0 in Rn,

R U ∈ L2
(
Ω,Rn

)
, R Π ∈ L2 (Ω).

(5.12)
Ω s Ω s−1
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At this point, the discussion branches out and there are two cases to consider, depending on
whether s > 3

2 , or s = 3
2 . In the first case, we note that since

L2
s (Ω)

∂j−→ L2
s−1(Ω)

Tr−→ B
2,2
s− 3

2
(∂Ω) ↪→ Lp(∂Ω) if 1 < p � 2(n−1)

n+2−2s
, 1 � j � n, (5.13)

it follows that

TrU ∈ {g ∈ L
p

1

(
∂Ω,Rn

)
:
∫

∂Ω
ν · g dσ = 0

}
, ∀p ∈ ]

1,
2(n−1)
n+2−2s

]
. (5.14)

Thus, by the discussion in Section 3.2, the boundary-value problem

⎧⎪⎨⎪⎩
−�w+∇η= 0 in Ω,

divw = 0 in Ω,

Trw = TrU,

(5.15)

has a solution satisfying w ∈ L2
3/2(Ω,Rn), η ∈ L2

1
2
(Ω). In particular, the pair u−RΩU +w ∈ V

and π −RΩΠ + η ∈ L2(Ω) is a null-solution for the Stokes system in Ω . By uniqueness, this
forces u=RΩU −w ∈ L2

3/2,z(Ω,Rn), as desired.

Finally, in the case when s = 3
2 and Ω satisfies a uniform exterior ball condition, we proceed

as before with the main significant difference being that, this time,

Tr
[
L2

3
2

(
Rn

)]= L2
1(∂Ω). (5.16)

See [20]. This proves the left-to-right inclusion in (5.11). Finally, with the help of Theorem 5.1,
it is easy to check that the right-to-left inclusion in (5.11) holds under the mere assumption that
Ω is a bounded, Lipschitz domain. This finishes the proof of the theorem. �
Remark. The same proof shows that for any bounded Lipschitz domain Ω ⊂ Rn there exists
some small ε > 0 such that

3
2 < s < 3

2 + ε ⇒ D
(
As/2)⊂ B

p,p

1+ 1
p

(
Ω,Rn

)
where p = 2(n−1)

n+2−2s
. (5.17)

The remarkable feature of (5.17) is that even though we do not expect D(As/2) to be a subspace
of L2

s (Ω,Rn) for any s > 3
2 , the embedding L2

s (Ω,Rn) ⊂ B
p,p

1+1/p(Ω,Rn) is sharp precisely

when p = 2(n−1)
n+2−2s

.

5.2. The three-dimensional case

Theorem 5.1 describes D(As/2) completely if s ∈ [0, 3
2 [ in all space-dimensions. Nonetheless,

for bounded Lipschitz domains in R3, it is possible to further extend the scope of this analysis. To
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Fig. 1.

state our main result in this regard, for each ε ∈ ]0,1] and s ∈ [ 32 ,2] define the two-dimensional
region

Rs,ε :=

⎧⎪⎪⎨⎪⎪⎩
(θ, 1

p
): 0 < 1

p
< θ < 1+ 1

p
� 3

2 and
1
p
− θ

3 � 1
2 − s

3 if 3
2 � s < 3

2 + ε,

1
p
− θ

3 >− ε
3 if 3

2 + ε � s � 2.

(5.18)

Fig. 1 depicts the region Rs,ε in the case when 3
2 � s < 3

2 + ε and when 3
2 + ε � s � 2, respec-

tively.

Theorem 5.4. For every bounded Lipschitz domain Ω ⊂R3 there exists ε = ε(∂Ω) > 0 with the
property that for every 3

2 � s � 2 the following implication holds:(
θ, 1

p

) ∈Rs,ε ⇒ D
(
A

s
2
)⊂ L

p
θ

(
Ω,R3). (5.19)

Proof. The strategy is to combine the characterization proved in Theorem 5.1, i.e. that

D
(
A

α
2
)= {

u ∈ L2
1,z

(
Ω,R3): divu= 0 and �u ∈ L2

α−2

(
Ω,R3)+∇L2(Ω)

}
if 3

2 � α � 2,

(5.20)

with the well-posedness result for the Poisson problem for the Stokes system (3.1). In concert,
these two results show that D(Aα/2)⊂ L

p
θ (Ω,R3) provided

∃(s, 1
p

)
as in (3.2) such that θ = s + 1

p
and L2

α−2(Ω) ↪→ L
p

θ−2(Ω). (5.21)

Now, elementary algebra shows that, given α ∈ [3/2,2], the condition (5.21) holds if and only if
(θ,1/p) ∈Rα,ε . Clearly, this proves (5.19), after re-adjusting notation. �
Corollary 5.5. For an arbitrary bounded Lipschitz domain Ω in R3, the following hold:

D
(
A

3
4
)⊂⋂

L
p
3
p

,z

(
Ω,R3); (5.22)
p>2



M. Mitrea, S. Monniaux / Journal of Functional Analysis 254 (2008) 1522–1574 1559
Fig. 2.

D
(
A

3
4
)⊂ L3

1,z

(
Ω,R3); (5.23)

D
(
Aα

)⊂⋃
p>3

L
p

1,z

(
Ω,R3) if α > 3

4 ; (5.24)

D
(
Aα

)⊂ C 2α−3/2(Ω,R3) if 3
4 < α < 3

4 + ε, (5.25)

for some small ε = ε(Ω) > 0.

Proof. These are all immediate consequences of Theorem 5.4 and classical embeddings. �
Let us remark that, by relying on the cases (i), (ii) in Section 3.1, the same strategy employed

in the proof of Theorem 5.4 can be used to derive certain regularity results which are similar
in spirit to (5.19), in the n-dimensional case. We leave the formulation of these results to the
interested reader and, instead, choose to focus on bounded Lipschitz domains in R2.

5.3. The two-dimensional case

Here we complement Theorem 5.1 by further refining the description of D(As/2) for s ∈ [ 32 ,2]
in the case when Ω is a bounded Lipschitz domain in R2. To set the stage, for each ε ∈ ] 12 ,1]
and s ∈ [ 32 ,2] define the two-dimensional region

Qs,ε :=

⎧⎪⎪⎨⎪⎪⎩
(θ, 1

p
): 0 < 1

p
< θ < 1+ 1

p
� 3

2 and
1
p
− θ

2 � 1−s
2 if 3

2 � s < 1+ ε,

1
p
− θ

2 >− ε
2 if 1+ ε � s � 2.

(5.26)

Given some ε ∈] 12 ,1], here is how the region Qs,ε looks in the case when 3
2 � s < 1+ ε and

when 1+ ε � s � 2, respectively (see Fig. 2).

Theorem 5.6. For each bounded Lipschitz domain Ω ⊂R2 there exists ε = ε(∂Ω) ∈] 12 ,1] with
the property that the implication(

θ, 1
p

) ∈Qs,ε ⇒ D
(
A

s
2
)⊂ L

p
θ

(
Ω,R2) (5.27)

holds for every 3 � s � 2.
2
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Proof. The proof parallels that of Theorem 5.4, the only major difference being that, instead
of (3.2), the two-dimensional version of (3.1) is well-posed whenever the conditions (3.3) hold
for some ε = ε(∂Ω) ∈ ] 12 ,1]. �

A simple consequence of Theorem 5.6 and embeddings is as follows.

Corollary 5.7. For each bounded Lipschitz domain Ω in R2 there exists ε = ε(Ω) > 0 such that

3
4 < γ < 3

4 + ε ⇒ D
(
Aγ

)⊂ C 2γ−1(Ω,R2). (5.28)

6. Navier–Stokes equations

In this section, we make use of our earlier analysis of the fractional powers of the Stokes
system in order to study issues such as existence, uniqueness and regularity for the Navier–Stokes
system in bounded Lipschitz subdomains of R3.

6.1. Existence

Let Ω be a bounded Lipschitz domain in R3 and, for each T > 0, define the following Banach
space:

FT :=
{
u ∈ C

([0, T ];D(
A

1
4
))∩C 1(]0, T ];D(

A
3
4
)):

sup
0<s<T

∥∥s 1
2 A

3
4 u(s)

∥∥
H + sup

0<s<T

∥∥s 3
4 u′(s)

∥∥
H + sup

0<s<T

∥∥s 3
2 A

3
4 u′(s)

∥∥
H <∞

}
(6.1)

endowed with the norm

‖u‖FT
:= sup

0<s<T

∥∥A 1
4 u(s)

∥∥
H + sup

0<s<T

∥∥s 1
2 A

3
4 u(s)

∥∥
H

+ sup
0<s<T

∥∥s 3
4 u′(s)

∥∥
H + sup

0<s<T

∥∥s 3
2 A

3
4 u′(s)

∥∥
H. (6.2)

For the convenience of notation, let us also denote the Stokes semigroup by

(Su)(t) := e−tAu, u ∈H, t � 0. (6.3)

Lemma 6.1. If u ∈D(A
1
4 ) then Su ∈FT for each T > 0 and

‖Su‖FT
� C

∥∥A 1
4 u
∥∥
H, (6.4)

where C > 0 is a finite constant independent of T > 0.

Proof. Fix some number T > 0, as well as a field u ∈ D(A
1
4 ). Since (Su)′(t) = −Ae−tAu

for t > 0, it follows from (4.19)–(4.20) that Su ∈ C ([0, T ];D(A
1
4 )) ∩ C 1(]0, T ];D(A

3
4 )). We

also have that t
1
2 A

3
4 (Su)(t) = t

1
2 A

1
2 e−tAA

1
4 u is bounded from ]0, T [ into H, thanks to (4.18).

Likewise, the functions t
3
2 A

3
4 (Su)′(t) = −t

3
2 A

3
2 e−tAA

1
4 u and t

3
4 (Su)′(t) = −t

3
4 A

3
4 e−tAA

1
4 u
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are bounded from ]0, T [ into H. This proves that w ∈ FT . Now, (6.4) is implicit in the above
analysis. �

Recall the operator P from (4.43) and, for each u,v ∈FT , introduce

Φ(u,v)(t) :=
t∫

0

e−(t−s)A
(− 1

2P
)((

u(s) · ∇)v(s)+ (
v(s) · ∇)u(s)

)
ds, 0 < t < T . (6.5)

Proposition 6.2. The application

Φ :FT ×FT →FT (6.6)

is well-defined, bilinear, symmetric and continuous. Furthermore,∥∥Φ(u,v)
∥∥
FT

� κ‖u‖FT
‖v‖FT

, u, v ∈FT , (6.7)

where κ = κ(Ω) > 0 is a finite constant, independent of T .

Proof. The fact that Φ is bilinear and symmetric is clear. Moreover, Φ(u,v)= e−·A ∗ f , where
f is defined by

f (s) := (− 1
2P

)((
u(s) · ∇)v(s)+ (

v(s) · ∇)u(s)
)
, 0 < s < T . (6.8)

We have D(A
3
4 )⊂ L3

1(Ω,R3) by Corollary 5.5 and [D(A
1
4 ),D(A

3
4 )] 1

2
=D(A

1
2 )⊂ L6(Ω,R3).

Thus, by Hölder’s inequality, (u(s) · ∇)v(s) + (v(s) · ∇)u(s) ∈ L2(Ω,R3) for each u,v ∈ FT

and, therefore, f (s) ∈H for s ∈]0, T [, with

sup
0<s<T

s
3
4
∥∥f (s)

∥∥
H � sup

0<s<T

s
3
4
(∥∥u(s)

∥∥
L3

1(Ω,Rn)

∥∥v(s)
∥∥

L6(Ω,Rn)

+ ∥∥v(s)
∥∥

L3
1(Ω,Rn)

∥∥u(s)
∥∥

L6(Ω,Rn)

)
� C sup

0<s<T

s
3
4
(∥∥u(s)

∥∥
D(A

3
4 )

∥∥v(s)
∥∥1/2

D(A
1
4 )

∥∥v(s)
∥∥1/2

D(A
3
4 )

+ ∥∥v(s)
∥∥

D(A
3
4 )
‖u‖1/2

D(A
1
4 )

∥∥u(s)
∥∥1/2

D(A
3
4 )

)
� C sup

0<s<T

s
3
4
(∥∥A 3

4 u(s)
∥∥
H
∥∥A 1

4 v(s)
∥∥1/2
H

∥∥A 3
4 v(s)

∥∥1/2
H

+ ∥∥A 3
4 v(s)

∥∥
H
∥∥A 1

4 u(s)
∥∥1/2
H

∥∥A 3
4 u(s)

∥∥1/2
H

)
� C‖u‖FT

‖v‖FT
. (6.9)

Based on (6.9) and (4.18) we may then estimate:
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∥∥A 1
4 Φ(u,v)(t)

∥∥
H �

t∫
0

∥∥A 1
4 e−(t−s)A

∥∥
L (H)

∥∥f (s)
∥∥
H ds

� C

( t∫
0

(t − s)−
1
4 s−

3
4 ds

)
‖u‖FT

‖v‖FT

� C

( 1∫
0

(1− σ)−
1
4 σ−

3
4 ds

)
‖u‖FT

‖v‖FT

� C‖u‖FT
‖v‖FT

. (6.10)

In order to check that the application [0, T ] � t �→ Φ(u,v)(t) ∈ D(A
1
4 ) is continuous, fix

an arbitrary to ∈ [0, T ] and estimate ‖A 1
4 Φ(u,v)(t)− A

1
4 Φ(u,v)(to)‖H by distinguishing two

scenarios: 0 � t � to, and to � t � T . In the first case, we recall a general identity to the effect
that

e−toAw− e−tAw =A

( to∫
t

e−τAw dτ

)
, ∀w ∈H, (6.11)

cf. [45, (2.4), p. 5]. Formula (6.11) allows us to write

A
1
4 Φ(u,v)(t)−A

1
4 Φ(u,v)(to)

=−A
1
4

t∫
0

A

( to∫
t

e−(τ−s)Af (s) dτ

)
ds −

to∫
t

A
1
4 e−(t−s)Af (s) ds

=: I1 + I2. (6.12)

Now,

‖I1‖H � C sup
0<s<T

[
s

3
4
∥∥f (s)

∥∥
H
][ t∫

0

( to∫
t

dτ

(τ − s)5/4

)
s−

3
4 ds

]

� C‖u‖FT
‖v‖FT

t∫
0

[
(to − s)−

1
4 − (t − s)−

1
4
]
s−

3
4 ds→ 0 as t ↗ to, (6.13)

and

‖I2‖H � C‖u‖FT
‖v‖FT

( to∫
(t − s)−

1
4 s−

3
4 ds

)
→ 0 as t ↗ to. (6.14)
t
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Thus, altogether, ‖A 1
4 Φ(u,v)(t) − A

1
4 Φ(u,v)(to)‖H→ 0 as t ↗ to. In fact, the same is true

when t ↘ to and this ultimately shows that

Φ(u,v) ∈ C
([0, T ];D(

A
1
4
))

and sup
0<t<T

∥∥A 1
4 Φ(u,v)(t)

∥∥
H � C‖u‖FT

‖v‖FT
(6.15)

for every u,v ∈FT , where C > 0 is a finite constant, independent of T > 0.
Going further, we estimate:

∥∥A 3
4 Φ(u,v)(t)

∥∥
H �

t∫
0

∥∥A 3
4 e−(t−s)A

∥∥
L (H)

∥∥f (s)
∥∥
H ds

� C

( t∫
0

(t − s)−
3
4 s−

3
4 ds

)
‖u‖FT

‖v‖FT

� Ct−
1
2

( 1∫
0

(1− σ)−
3
4 σ−

3
4 dσ

)
‖u‖FT

‖v‖FT

� Ct−
1
2 ‖u‖FT

‖v‖FT
. (6.16)

The continuity of the map ]0, T ] � t �→A
3
4 Φ(u,v)(t) ∈H can then be established as before.

In order to estimate the derivative in time of Φ(u,v)(t), we first note that for each s ∈ ]0, T [

f ′(s)=− 1
2P

((
u′(s) · ∇)v(s)+ (

u(s) · ∇)v′(s)+ (
v′(s) · ∇)u(s)+ (

v(s) · ∇)u′(s)). (6.17)

In particular, much as in (6.9),

sup
0<s<T

s
7
4
∥∥f ′(s)∥∥H � C ‖u‖FT

‖v‖FT
, (6.18)

where C > 0 is independent of T . After this preamble we write

Φ(u,v)(t)=
t
2∫

0

e−sAf (t − s) ds +
t
2∫

0

e−(t−s)Af (s) ds, t ∈ ]0, T [, (6.19)

and, therefore,

Φ(u,v)′(t)= e−
t
2 Af

(
t
2

)+
t
2∫

0

e−sAf ′(t − s) ds +
t
2∫

0

−Ae−(t−s)Af (s) ds. (6.20)

In concert with (6.9) and (6.18), this allows us to estimate
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∥∥Φ(u,v)′(t)
∥∥
H � C

∥∥f ( t
2

)∥∥
H +C

t
2∫

0

∥∥−Ae−(t−s)A
∥∥

L (H)

∥∥f (s)
∥∥
H ds

+C

t
2∫

0

∥∥e−sA
∥∥

L (H)

∥∥f ′(t − s)
∥∥
H ds

� Ct−
3
4 ‖u‖FT

‖v‖FT
+C

t
2∫

0

(t − s)−1s−
3
4 ds ‖u‖FT

‖v‖FT

+C

t
2∫

0

(t − s)−
7
4 ds ‖u‖FT

‖v‖FT

� Ct−
3
4

(
1+

1
2∫

0

(1− σ)−
7
4 dσ +

1
2∫

0

(1− σ)−1σ−
3
4 dσ

)
‖u‖FT

‖v‖FT

� Ct−
3
4 ‖u‖FT

‖v‖FT
, (6.21)

where C > 0 is independent of T . Furthermore, by reasoning as before, one can show that the

application ]0, T ] � t �→Φ(u,v)′(t) ∈D(A
3
4 ) is continuous.

Finally,

∥∥A 3
4 Φ(u,v)′(t)

∥∥
H � C

∥∥A 3
4 e−

t
2 A
∥∥

L (H)

∥∥f ( t
2

)∥∥
H +C

t
2∫

0

∥∥−A
7
4 e−(t−s)A

∥∥
L (H)

∥∥f (s)
∥∥
H ds

+C

t
2∫

0

∥∥A 3
4 e−sA

∥∥
L (H)

∥∥f ′(t − s)
∥∥
H ds

� C t−
3
2 ‖u‖FT

‖v‖FT
+C

t
2∫

0

(t − s)−
7
4 s−

3
4 ds‖u‖FT

‖v‖FT

+C

t
2∫

0

(t − s)−
7
4 s−

3
4 ds ‖u‖FT

‖v‖FT

� Ct−
3
2

(
1+

1
2∫

0

(1− σ)−
7
4 σ−

3
4 dσ +

1
2∫

0

(1− σ)−
7
4 σ−

3
4 dσ

)
‖u‖FT

‖v‖FT

� Ct−
3
2 ‖u‖FT

‖v‖FT
, (6.22)

where, once again, the constant C does not depend on T .
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The above analysis ensures that Φ(u,v) ∈ FT whenever u,v ∈ FT . Moreover, from (6.15),
(6.16), (6.21) and (6.22), there exists a constant κ > 0 independent of T > 0 such that (6.7)
holds. �

We are now ready to discuss the existence of mild solutions for the Navier–Stokes system.

Theorem 6.3. Given u0 ∈D(A
1
4 ) and T > 0, the equation

u(t)= e−tAu0 +Φ(u,u)(t), 0 < t < T, (6.23)

has a unique solution u ∈FT , if either ‖u0‖
D(A

1
4 )

or T are sufficiently small.

Proof. Let T > 0 be given and consider the bilinear, continuous mapping Φ :FT × FT → FT

defined as in (6.5). As in [21], a solution of (6.23) will be found implementing Picard’s fixed
point theorem. That is, consider the sequence in {vj }j of functions in FT defined by v0 := Su0
and

vj+1 := v0 +Φ(vj , vj ), j ∈N. (6.24)

As is well known (cf., e.g., [36, Lemma 20, p. 157]), this sequence converges to the unique
solution u ∈FT of (6.23) provided

‖v0‖FT
<

1

4κ
, (6.25)

where κ is the constant appearing in (6.7). In turn, since ‖v0‖FT
� C‖A 1

4 u0‖H, the estimate
(6.25) is satisfied granted that ‖u0‖

D(A
1
4 )

is small enough.

To finish the proof, it suffices to show that, irrespective of the size of ‖u0‖
D(A

1
4 )

, matters can

be arranged so that (6.25) holds by taking T small enough (relative to ‖u0‖
D(A

1
4 )

). To see this,

we shall make use of the fact that for each ε > 0 there exists u0,ε ∈D(A) such that ‖A 1
4 (u0 −

u0,ε)‖H � ε. If we now consider v0,ε(t) := Su0,ε for 0 < t < T , then

‖v0 − v0,ε‖FT
� C

∥∥A 1
4 (u0 − u0,ε)

∥∥
H � Cε, (6.26)

by (6.4) and, for each fixed ε,

‖v0,ε‖FT
� C T

3
4 ‖Au0,ε‖H −→

T→0+
0. (6.27)

By first choosing ε > 0 small enough, we can therefore find T > 0 such that (6.25) is valid. This
concludes the proof of the theorem. �
Remark. A somewhat smaller space for which the analogues of (6.4) and (6.6) hold is as follows:

F0
T :=

{
u ∈FT : lim

τ→0+
‖u‖Fτ

= 0
}
. (6.28)
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6.2. Regularity

Here, we shall prove that the solution u ∈ FT of the fixed point problem (6.23) is actually a
solution of the Navier–Stokes system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂t
−�xu+∇xπ + (u · ∇x)u= 0 in ]0, T ] ×Ω,

divx u= 0 in [0, T ] ×Ω,

Trx u= 0 on [0, T ] × ∂Ω,

u(0)= u0 in Ω,

(6.29)

in the suitable sense, made precise in the theorem below.

Theorem 6.4. Any solution u ∈ FT of the problem (6.23) satisfies u(0)= u0 in Ω and, in addi-
tion, has the following properties. For every t ∈ [0, T ], the field u(t, ·) is divergence free in Ω

and of vanishing trace on ∂Ω . Also, there exists a scalar function π ∈ C (]0, T ];L2(Ω)) such
that −�xu+∇xπ ∈ L2(Ω,R3) and for which the first equation in (6.29) is satisfied everywhere
in the time variable t ∈]0, T ] and almost everywhere in the space variable x ∈Ω . Furthermore,

u ∈ L
p

1

(]0, T [;H)∩Lp
(]0, T [;D(A)

)
, 1 < p < 4

3 , (6.30)

and matters can be arranged so that

lim
τ→0+

‖u‖Fτ
= 0. (6.31)

Proof. Assume that u ∈FT solves (6.23) and introduce

f (s) := −P
[(

u(s) · ∇x

)
u(s)

]
, s ∈ [0, T ]. (6.32)

From (6.9) we may conclude that f ∈ Lp([0, T ];H) whenever 1 < p < 4
3 and, from (6.23),

that u = e−·Au0 + e−·A ∗ f . Now, Corollary 4.9 and the fact that u0 ∈ D(A
1
4 ) entail Au ∈

Lp([0, T ];H) and that u solves

u′(t)+ (Au)(t)= f (t) for a.e. t ∈ ]0, T [, and u(0)= u0. (6.33)

Thus, since the definition of the space FT implies u′ ∈ C (]0, T ];H), it follows that Pu′ = u′
and, further,

P

(
∂u

∂t
−�xu+ (u · ∇x)u

)
= 0 in C

(]0, T ];V∗), (6.34)

thanks to (4.49) and (6.32). With the help of (4.44), it now follows from (6.32) that there exists a
unique scalar function π ∈ C (]0, T ],L2(Ω)) such that

∂u −�xu+ (u · ∇x)u=−∇xπ in C
(]0, T ];L2−1

(
Ω;R3)). (6.35)
∂t



M. Mitrea, S. Monniaux / Journal of Functional Analysis 254 (2008) 1522–1574 1567
Moreover, since u′ ∈ C (]0, T ];H) and f ∈ C (]0, T ];H), we may finally conclude from (6.35)
that−�xu+∇xπ ∈ C (]0, T ];L2(Ω,R3)). Thus, the Navier–Stokes system (6.29) holds as men-
tioned. Finally, (6.30) follows from Corollary 4.9 and (4.33), whereas (6.31) is a consequence of
the remark made at the end of Section 6.1. �
6.3. Uniqueness

We have already proved that there exists a local mild solution to the Navier–Stokes system
which is unique in the space FT . Following [43], here we shall prove that, in fact, uniqueness

holds in the larger space C ([0, T ];D(A
1
4 )).

Prior to formally stating this as a theorem, we need to make sense of the non-linearity Φ(u,u)

for fields u ∈ C ([0, T ];D(A
1
4 )). To this end, for u,v ∈ C ([0, T ];D(A

1
4 )) consider

f (s) := (− 1
2P∇·)(u(s)⊗ v(s)+ v(s)⊗ u(s)

)
, s ∈ ]0, T [, (6.36)

where, generally speaking, a ⊗ b denotes the matrix (aibj )1�i,j�3 for any a = (a1, a2, a3) and
b= (b1, b2, b3) ∈R3. In this connection, let us also note that if a and b are smooth vector fields
then

∇ · (a ⊗ b)= (a · ∇)b+ (∇ · a)b. (6.37)

This elementary identity allows us to extend the bilinear form Φ , originally defined on FT ×FT ,

to the larger space C ([0, T ];D(A
1
4 )) in the following sense. First, if u,v ∈ C ([0, T ];D(A

1
4 ))

are arbitrary then both u ⊗ v and v ⊗ u belong to C ([0, T ];L 3
2 (Ω,R3×3)), since D(A

1
4 ) ⊂

L3(Ω,R3). In particular,

∇ · (u⊗ v+ v⊗ u) ∈ C
([0, T ];L

3
2−1

(
Ω,R3)). (6.38)

We now digress momentarily in order to establish a useful auxiliary result.

Lemma 6.5. The operator P, originally introduced in (4.41), has the property that

A−
3
4 P :L

3
2−1

(
Ω,R3)→H (6.39)

in a bounded fashion.

Proof. From (4.45) we know that P maps L
3
2−1(Ω,R3) boundedly into the space (V 1,3(Ω))∗

which, in turn, embeds continuously into D(A
3
4 )∗ by (5.23). Since A is self-adjoint, we also

have A− 3
4 [D(A

3
4 )∗] =H, and (6.39) follows. �

Returning to the mainstream discussion, we note that A− 3
4 f ∈ C ([0, T ];H), by (6.38) and

Lemma 6.5. Therefore, writing

Φ(u,v)(t)=
t∫
A

3
4 e−(t−s)AA−

3
4 f (s) ds, t ∈ [0, T ], (6.40)
0
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it follows that

Φ :C
([0, T ];D(

A
1
4
))×C

([0, T ];D(
A

1
4
))→ C

([0, T ],H)
(6.41)

in a bilinear, bounded fashion. Another useful property of this map is as follows.

Proposition 6.6. For each p ∈ (1,∞) the mapping (6.41) further extends to a bounded bilinear
application

Φ :Lp
([0, T ];D(

A
1
4
))×L∞

([0, T ];D(
A

1
4
))→ Lp

([0, T ];D(
A

1
4
))

. (6.42)

Furthermore, the norm of (6.42) is bounded by a constant which depends exclusively on p.

Proof. For u ∈ Lp([0, T ];D(A
1
4 )) and v ∈ L∞([0, T ];D(A

1
4 )), the function f defined in (6.36)

satisfies the estimate∥∥A− 3
4 f

∥∥
Lp([0,T ];H)

� Cp

∥∥A 1
4 u
∥∥

Lp([0,T ];H)

∥∥A 1
4 v
∥∥

L∞([0,T ];H)
(6.43)

for a finite constant Cp > 0. Then, according to Corollary 4.9, we have A
1
4 Φ(u,v)= A(e−·A ∗

f ) ∈ Lp([0, T ];H) and∥∥A 1
4 Φ(u,v)

∥∥
Lp([0,T ];H)

� Cp

∥∥A 1
4 u
∥∥

Lp([0,T ];H)

∥∥A 1
4 v
∥∥

L∞([0,T ];H)
, (6.44)

as desired. �
We are now in a position to discuss the uniqueness of mild solutions for the Navier–Stokes

system, which is the main result of this subsection. To state it formally, for a measurable set
E ⊂R and a Banach space X , we set Cb(E;X ) := C (E;X )∩L∞(E;X ).

Theorem 6.7. For each u0 ∈ D(A
1
4 ), there is at most one field u ∈ Cb([0, T [;D(A

1
4 )) which

satisfies (6.23).

Proof. Assume that for some u0 ∈ D(A
1
4 ) there exist two vector fields u1, u2 which be-

long to Cb([0, T [;D(A
1
4 )) and which solve (6.23). Then w := u1 − u2 also belongs to

Cb([0, T [;D(A
1
4 )) and, in addition, satisfies

w =Φ(u1, u1)−Φ(u2, u2)=Φ(w,u1 + u2)=Φ(w,u1 + u2 − 2Su0)+ 2Φ(w,Su0), (6.45)

where S is the Stokes semigroup (cf. (6.3)).
The traditional strategy (cf., e.g., [43] and the references therein) is to prove that, for a fixed

p ∈ ]1,∞[, there exists τ ∈ ]0, T ] such that

‖w‖
Lp([0,τ ];D(A

1
4 ))

� 1

2
‖w‖

Lp([0,τ ];D(A
1
4 ))

. (6.46)

Granted this estimate, we may conclude that w vanishes on [0, τ [ which, in turn, proves that {τ ∈
]0, T ]: w(t)= 0 for 0 � t < τ } is nonempty. Let us denote its supremum by τmax. If τmax < T ,
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the continuity of w entails w(τmax) = 0. In this scenario, the above scheme can be reiterated,
taking τmax as the initial time, and we eventually conclude that there exists some δ > 0 such that
w = 0 on [0, τmax + δ[. This contradicts the maximality of τmax and proves that τmax = T . Thus
w = 0 on [0, T [, as wanted.

There remains to establish (6.46). For starters, we note that for any p ∈ (1,∞), Proposition 6.6
gives∥∥Φ(w,u1 + u2 − 2Su0)

∥∥
Lp([0,τ ];D(A

1
4 ))

� Cp‖w‖
Lp([0,τ ];D(A

1
4 ))

(‖u1 − Su0‖
L∞([0,τ ];D(A

1
4 ))
+ ‖u2 − Su0‖

L∞([0,τ ];D(A
1
4 ))

)
. (6.47)

Since

‖uj − Su0‖
L∞([0,τ ];D(A

1
4 ))
−→
τ→0+

0, j = 1,2, (6.48)

it follows that (6.47) is useful for the purpose of establishing (6.46).
There remains to handle the term 2Φ(w,Su0). To this end, for an arbitrary ε > 0, to be

specified later, pick u0,ε ∈D(A) such that ‖u0 − u0,ε‖
D(A

1
4 )

< ε and then write

∥∥Φ(w,Su0)
∥∥

Lp([0,τ ];D(A
1
4 ))

� Cp‖w‖
Lp([0,τ ];D(A

1
4 ))

× (∥∥S(u0 − u0,ε)
∥∥

L∞([0,τ ];D(A
1
4 ))
+ ‖Su0,ε‖

L∞([0,τ ];D(A
1
4 ))

)
. (6.49)

Next, ∥∥S(u0 − u0,ε)
∥∥

L∞([0,τ ];D(A
1
4 ))

� ‖u0 − u0,ε‖
D(A

1
4 )

< ε. (6.50)

Finally, much as with (6.27),

‖Su0,ε‖
L∞([0,τ ];D(A

1
4 ))

� C τ
3
4 ‖Au0,ε‖H −→

τ→0+
0. (6.51)

In summary, by first choosing ε > 0 small enough (relative to the constant Cp in (6.49)) it is then
possible to ensure that (6.46) holds provided τ > 0 is sufficiently small. This justifies (6.46) and
concludes the proof of the theorem. �
7. The case of domains on manifolds

7.1. Geometrical preliminaries

Let M be a smooth, compact, boundaryless manifold of (real) dimension n. As usual, by T M
and T ∗M we denote, respectively, the tangent and cotangent bundle on M . Also, we shall let
Λ� stand for the corresponding (exterior) power of the tangent bundle T M . We assume that M
is equipped with a smooth Riemannian metric tensor g = gjk dxj ⊗ dxk , denote by (gjk)jk the
inverse matrix to (gjk) and set g := det(gjk)jk . Thus, in local coordinates, the volume element is
given by dV =√g dx1 . . . dxn. The pairing 〈dxj , dxk〉 := gjk defines an inner product in Λ1. As
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it is customary, we may identify vector fields with one-forms (i.e., T M ∼= T ∗M =Λ1) via ∂j �→
gjkdxk (lowering indices). This mapping is an isometry whose inverse (raising indices) is given
by dxj �→ gjk∂k . In the sequel, we shall not make any notational distinction between a vector
field and its associated one-form. Under this identification, we have grad ≡ d and div ≡ −δ.
Hereafter, we let d and δ stand, respectively, for the exterior derivative and exterior co-derivative
operators. The Hodge Laplacian is then given by

� := −dδ− δd. (7.1)

Furthermore, if ∇ is the Levi-Civita connection and Ric is the Ricci tensor on M then, under the
above identification, the Bochner Laplacian and the Hodge Laplacian are related by

−∇∗∇ ≡�+Ric, (7.2)

a special case of the Weitzenbock identity.
The deformation tensor Def X of a field X ∈ T M is given by

(Def X)(Y,Z)= 1
2

{〈∇Y X,Z〉 + 〈∇ZX,Y 〉}, ∀X,Y,Z ∈ T ∗M . (7.3)

Thus, Def :C∞(M , T M )→ C∞(M , S2T ∗M ), where S2T ∗M stands for the bundle of sym-
metric tensor fields of type (0,2) on M . In coordinate notation,

(Def X)jk = (Def X)(∂j , ∂k)= 1
2 (Xj ;k +Xk;j ), ∀j, k. (7.4)

Here, for a vector field X = Xj∂j it is customary to set Xk;j := ∂jXk − �l
kjXl , where �l

kj are
the Christoffel symbols associated with the metric. In the sequel, we shall find it convenient to
denote T M � Z �→ (Def X)(Y,Z) ∈ R by (Def X)Y ∈ Λ1. In local coordinates, the adjoint
of the operator Def is (Def ∗ v)j = −vjk;k for each v ∈ S2T ∗M and each j . For an arbitrary
u ∈ T M , we also compute

〈
Def ∗(u⊗ u),X

〉= 〈u⊗ u,Def X〉 = 〈∇uX,u〉
= 〈

X,∇∗uu
〉=−〈X,∇uu+ (divu)u

〉
, ∀X ∈ T M , (7.5)

which proves that

Def ∗(u⊗ u)=−∇uu+ (divu)u, ∀u ∈ T M . (7.6)

Another operator which is going to play an important role is

L := 2Def ∗Def =∇∗∇ − grad div−Ric≡−�+ dδ− 2 Ric. (7.7)

Clearly, (7.7) is a second-order, symmetric, partial differential operator and a symbol calculation
reveals that L is strongly elliptic as well.
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7.2. Outline of results

The Navier–Stokes equations, modeling the flow of a viscous, incompressible fluid occupying
the subdomain Ω of the manifold M read⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂t
−Lxu+ gradx π +∇uu= 0 in ]0, T ] ×Ω,

divx u= 0 in [0, T ] ×Ω,

Trx u= 0 on [0, T ] × ∂Ω,

u(0)= u0 in Ω,

(7.8)

where L is the operator introduced in (7.7), the velocity u is a time-dependent section in T M |Ω ,
and the pressure π is a scalar function defined in ]0, T [ ×Ω .

Sobolev (potential) spaces on M can be lifted from Rn via smooth local coordinate charts
and a standard localization argument involving a smooth (finite) partition of unity. Next, assum-
ing that an arbitrary Lipschitz domain Ω ⊂M has been fixed, define L

p
s (Ω) as the restriction

of distributions from L
p
s (M ) to Ω , and set L

p
s (Ω,T M ) := L

p
s (Ω) ⊗ T M for the space of

vector fields with components from L
p
s (Ω). Starting from these, all the other smoothness spaces

considered in Section 2.1 can be defined in an analogous fashion and all the results stated there
hold with virtually identical proofs. Here we only wish to point out that Proposition 2.5 naturally
extends to Lipschitz subdomains of smooth manifolds since the results from [37] on which its
proof is based have been originally derived in the manifold setting to begin with. Going further,
the Stokes scale can be introduced as in (2.88) and all its properties discussed in Section 2.2
continue to hold in this more general setting. In this connection, we would like to mention that
Proposition 2.14 is known to hold on arbitrary open subdomains of manifolds, and that Hodge
decompositions analogous to (2.116) have been proved in [40] and [38].

Next, the boundary value problems (3.1), (3.5), have been studied for Lipschitz subdomains of
Riemannian manifolds in [17] and [41], respectively, where well-posedness statements analogous
to those in Sections 3.1–3.2 have been established.

As regards the sesquilinear form utilized in Section 4.2, in the current setting we shall take

a(u, v) :=
∫
Ω

〈Def u,Def v〉dV, u, v ∈ V, (7.9)

and note that matters can be arranged so that this form continues to be coercive. More specifically,
by eventually altering M away from Ω , we can henceforth ensure that:

M has no global nontrivial Killing fields, and M \Ω is connected. (7.10)

See [41] for more details. Now (7.10) guarantees that KerDef = {0}. In particular, the Korn type
estimate

‖u‖L2(Ω,T M ) ≈ ‖Def u‖L2(Ω,S2T ∗M ) (7.11)

1
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holds uniformly for u ∈ L2
1,z(Ω,T M ). With this as a substitute for Poincaré’s inequality (used in

the flat, Euclidean setting), it follows that (7.9) is indeed coercive. The construction in Section 4.2
then eventually leads to the identification

Ao = P ◦L ◦ J : V→ V∗ (7.12)

in place of (4.49), with the operator L from (7.7) playing the role of −�D.
Finally, after this preamble, results analogous to those proved in Sections 5–6 follow based

on similar considerations. Here we only want to remark that the manifold version of the identity
(6.37) is (7.6), which shows that

Def ∗(u⊗ u)=−∇uu, ∀u ∈ T M with divu= 0. (7.13)
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