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1 Introduction

The purpose of this series of lectures is to give a flavor of the concept of maximal regularity.
In the last ten-fifteen years, a lot of progress has been made on this subject. The problem of
parabolic maximal Lp−regularity can be stated as follows.

Let A be an (unbounded) operator on a Banach spaceX, with domainD(A). Let p ∈]1,∞[.
Does there exist a constant C > 0 such that for all f ∈ Lp(0,∞;X), there exists a unique
u ∈ Lp(0,∞;D(A)) ∩ Lp1(0,∞;X) solution of u′ +Au = f and u(0) = 0 verifying

‖u′‖Lp(0,∞;X) + ‖Au‖Lp(0,∞;X) ≤ ‖f‖Lp(0,∞;X)?

This problem, in its theoretical point of view, has been approached in different manners.

1. If −A generates a semigroup (T (t))t≥0, the solution u is given by the formula

u(t) =
∫ t

0
T (t− s)f(s) ds, t ≥ 0,

and therefore, the question of maximal Lp−regularity is to decide whether the operator R
defined by

Rf(t) =
∫ t

0
AT (t− s)f(s) ds, t ≥ 0,

for f ∈ Lp(0,∞;X), is bounded in Lp(0,∞;X). In the favorable case where the semigroup
is analytic, K has a convolution form with an operator-valued kernel, singular at 0. The
study of boundedness of R in Lp(0,∞;X) leads then to the theory of singular integrals.

2. One way to treat this convolution (in t) operator is to apply the Fourier transform to it.
The problem is now to decide whether M(t) = A(isI+A)−1, s ∈ R is a Fourier multiplier.
This has been studied by L. Weis in [40] who gave an equivalent property to maximal
regularity of A in terms of bounds of the resolvent of A.

3. Another approach is to see this problem as the invertibility of the sum of two operators
A+B where B is the derivative in time. G. Dore and A. Venni in [16] followed this idea,
using imaginary powers of A and B.

All these characterizations are not always easy to deal with when concrete examples are con-
cerned. To verify that a precise operator has the maximal Lp−regularity property needs other
results. This has been the case for operators with gaussian estimates ([21] and [12]) and more
recently for operator with generalized gaussian estimates ([24]). Among a very large literature,
let us mention the surveys by W. Arendt [4] and P.C. Kunstmann and L.Weis [25] where the
theory of maximal regularity is largely covered.

The first part is dedicated to the study of this problem in a theoretical point of view. In a
second part, we will give examples of operators having the maximal Lp−property : generators
of contraction semigroups in Lp(Ω), generators of semigroups having gaussian estimates or gen-
eralized gaussian estimates. Applications to partial differential equations, such as the semilinear
heat equation of the incompressible Navier-Stokes equations, are given in a third part. Finally,
in a last part, we give some results on the non-autonomous maximal Lp−regularity problem.
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Many results proved in the autonomous case are also true in the non-autonomous case provided
we assume enough regularity (in t) on the operators A(t). This condition may be removed
if the operators A(t) have the same domain D, and in that case, only continuity is required.
This non-autonomous maximal Lp−regularity is far from being understood, but is nonetheless
important for applications to quasi-linear evolution problems.
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2 The theoretical point of view

2.1 Statement of the problem

Let X be a Banach space and A be a closed (unbounded) operator with domain D(A) dense
in X. Let f : [0,∞[→ X a measurable function. We consider the problem of existence and
regularity of solution to the following equation{

u′(t) +Au(t) = f(t), t ≥ 0
u(0) = 0.

(2.1)

Definition 2.1. Let p ∈]1,∞[. We say that A has the (parabolic) maximal Lp−regularity
property if there exists a constant C > 0 such that for all f ∈ Lp(0,∞;X), there is a unique
u ∈ Lp(0,∞;D(A)) with u′ ∈ Lp(0,∞;X) satisfying (2.1) for almost every t ∈]0,∞[ and

‖u‖Lp(0,∞;X) + ‖u′‖Lp(0,∞;X) + ‖Au‖Lp(0,∞;X) ≤ C‖f‖Lp(0,∞;X). (2.2)

2.1.1 Analytic semigroup

Not all operators have the property (2.2). In particular,

Proposition 2.2. Let A be an operator on a Banach space X with the maximal Lp−regularity
property for one p ∈]1,∞[. Then −A generates a bounded analytic semigroup on X.

Proof. Let z ∈ C with <e(z) > 0. Define fz ∈ Lp(0,∞; C) by

fz(t) = ezt if 0 ≤ t ≤ 1
<e(z)

and fz(t) = 0 if t >
1
<e(z)

.

Step 1. Let x ∈ X and denote by uz the solution of (2.1) for f = fz ⊗ x. Define then

Rzx = <e(z)
∫ ∞

0
e−ztuz(t) dt.

Then the following estimates hold

‖Rzx‖X
(1)

≤ <e(z)‖uz‖Lp(0,∞;X)‖t 7→ e−zt‖Lp′ (0,∞)

(2)

≤ <e(z)C ‖fz‖Lp(0,∞;C)‖x‖X‖t 7→ e−zt‖Lp′ (0,∞)

(3)

≤ C
(ep − 1)

1
p

p
′ 1
p′

‖x‖X .

The first estimate comes from the Hölder inequality applied to the integral form of Rzx, p′ denot-
ing the conjugate exponent of p : 1

p + 1
p′ = 1. The inequality (2) is obtained by estimating uz by

f via the maximal Lp−regularity property of A ; remark that ‖f‖Lp(0,∞;X) = ‖fz‖Lp(0,∞;C)‖x‖X .
The last estimate comes from the calculations of the different norms of the previous line. By
writing Rzx as

Rzx =
<e(z)
z

∫ ∞
0

e−ztu′z(t) dt

5



(by performing a integration by parts), the same arguments as before give the estimate

‖Rzx‖X ≤
1
|z|

C
(ep − 1)

1
p

p
′ 1
p′

‖x‖X .

Therefore, we get

‖Rzx‖X ≤
M

1 + |z|
‖x‖X (2.3)

with M = C (ep−1)
1
p

p
′ 1
p′

.

Step 2. Let now x ∈ D(A). We have

Rz(zI +A)x
(1)
= zRzx+RzAx

(2)
= <e(z)

∫ ∞
0

e−ztu′z(t) dt+ <e(z)
∫ ∞

0
e−ztAuz(t) dt

(3)
= <e(z)

∫ ∞
0

e−ztfz(t)x dt
(4)
= x.

The first equality is straightforward. The first term of the second equality comes from the
integration by parts as in Step 1, whereas the second term comes from the fact that Auz ∈
Lp(0,∞;X) by the maximal Lp−regularity property of A. The equality (3) comes from (2.1)
and equality (4) is obtained by a simple calculation, reminding that f = fz ⊗ x.

Step 3. The equality Rz(zI + A)x = x for all x ∈ D(A) together with (2.3) ensure that Rz is
the resolvent of −A in z. Therefore, the spectrum of A σ(A) ⊂ C+ = {z ∈ C;<e(z) ≥ 0} and
there exists M > 0 such that for all z ∈ C with <e(z) > 0, we have (2.3). This implies that −A
generates a bounded analytic semigroup in X.

Let us consider for a moment a slightly different problem. We might ask what happens if
the initial condition in (2.1) is not equal to zero.

Remark 2.3. Once we know that −A generates a semigroup (T (t))t≥0 on the Banach space X,
we can study the following initial value Cauchy problem{

u′(t) +Au(t) = 0, t ≥ 0
u(0) = u0.

(2.4)

It is known that the solution u is given by u(t) = T (t)u0, t ≥ 0. This solution u belongs to
Lp(0,∞;X) if and only if ([30], Chapter 1) the initial value u0 belongs to the real interpolation
space (X,D(A)) 1

p′ ,p
(where p′ is the conjugate of p : 1

p + 1
p′ = 1).

2.1.2 Independence with respect to p

Proposition 2.4. Let A be an operator on a Banach space X with the maximal Lp−regularity
property for one p ∈]1,∞[. Then A has the maximal Lq−regularity property for all q ∈]1,∞[.

To prove this fact, we need the following auxiliary theorem due to A. Benedek, A.P. Calderón
and R. Panzone
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Theorem 2.5 (Theorem 2 of [7]). Let X be a Banach space and let p ∈]1,∞[. Let k : R→ L (X)
be measurable, k ∈ L1

loc(R \ {0}; L (X)). Let S ∈ L (Lp(R;X)) be the convolution operator with
k, i.e. for all f ∈ L∞(R;X) with compact support, one can write Sf as follows

Sf(t) =
∫

R
k(t− s)f(s) ds, ∀ t /∈ suppf. (2.5)

Assume that there exists a constant c > 0 such that∫
|t|>2|s|

‖k(t− s)− k(t)‖L (X) ≤ c, ∀ s ∈ R. (2.6)

Then S ∈ L (Lq(R, X)) for all q ∈]1,∞[.

Proof. We prove that S is bounded from L1(R;X) to L1
w(R;X) where L1

w stands for L1−weak
and is defined as follows

L1
w(R, X) =

{
f : R→ X measurable ; sup

α>0
α ·
∣∣∣{t ∈ R; ‖f(t)‖X > α}

∣∣∣ <∞} .
Let f ∈ L1(R;X) and fix λ > 0. By the Calderón-Zygmund decomposition applied to R 3 t 7→
‖f(t)‖X (see Theorem 6.7 below, in the case n = 1), we may decompose f into a “good” part g
and a “bad” part b =

∑
k bk. We have then Sf = Sg +

∑
k Sbk and therefore{

t ∈ R; ‖Sf(t)‖X > λ
}
⊂
{
t ∈ R; ‖Sg(t)‖X >

λ

2

}
∪
{
t ∈ R; ‖Sb(t)‖X >

λ

2

}
.

The measure of the first set is easy to estimate. Since g ∈ L1 ∩ L∞, we have g ∈ Lp and since
S is bounded in Lp, we have∣∣∣∣{t ∈ R; ‖Sg(t)‖X >

λ

2

}∣∣∣∣ (1)

≤
‖Sg‖pLp(R;X)

(λ2 )p

(2)

≤
2p‖S‖pL (Lp(R;X))

λp
‖g‖pp

(3)

≤
2p‖S‖pL (Lp(R;X))

λp

(
‖g‖

1
p

1 ‖g‖
1− 1

p
∞

)p
(4)

≤
2p‖S‖pL (Lp(R;X))

λp
‖f‖1(2λ)p−1

and therefore

λ

∣∣∣∣{t ∈ R; ‖Sg(t)‖X >
λ

2

}∣∣∣∣ ≤ 4p‖S‖pL (Lp(R;X))‖f‖1. (2.7)

Inequality (1) is obvious. Inequality (2) comes from the fact that S is bounded in Lp by

hypothesis. Inequality (3) comes from Hölder inequality ‖ · ‖p ≤ ‖ · ‖
1
p

1 ‖ · ‖
1− 1

p
∞ . Inequality (4)

comes from the fact that ‖g‖1 ≤ ‖f‖1 and ‖g‖∞ ≤ 2λ by construction in the Calderón-Zygmund
decomposition. It remains now to estimate the quantity∣∣∣∣{t ∈ R; ‖Sb(t)‖X >

λ

2

}∣∣∣∣ .
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We decompose the set as follows{
t ∈ R; ‖Sb(t)‖X >

λ

2

}
⊂ E ∪

{
t ∈ R \ E; ‖Sb(t)‖X >

λ

2

}
where E =

⋃
k∈N Q̃k (Q̃k beeing the double of Qk. We already have, by the Calderón-Zygmund

decomposition, |E| ≤ 2λ−1‖f‖1. The last term remaining to estimate is the measure of the set{
t ∈ R \ E; ‖Sb(t)‖X >

λ

2

}
,

and that is where the assumption (2.6) comes in. We denote by sk the center of Qk, k ∈ N. We
have ∫

R\E
‖Sb(t)‖Xdt

(1)

≤
∑
k∈N

∫
R\E

∥∥∥∫
Qk

k(t− s)bk(s) ds
∥∥∥
X
dt

(2)

≤
∑
k∈N

∫
R\E

∥∥∥∫
Qk

(k(t− s)− k(t− sk))bk(s) ds
∥∥∥
X
dt

(3)

≤
∑
k∈N

∫
R\Q̃k

∫
Qk

‖k(t− s)− k(t− sk)‖L (X)‖bk(s)‖Xds dt

(4)

≤
∑
k∈N

c

∫
Qk

‖bk(s)‖Xds
(5)

≤ 2c ‖f‖1

The first inequality comes from (2.5) since t ∈ R \ E and therefore, for t /∈ supp bk = Qk. The
second inequality is in fact an equality since

∫
Qk
bk = 0 by construction of the bk’s. The third

inequality is obvious and inequality (4) comes from the fact that, for t ∈ R \ Q̃k and s ∈ Qk, we
have |(t − sk)| > 2|(t − s) − (t − sk)|. We can then apply (2.6). The last inequality is obvious
taking the Calderón-Zygmund into account. Therefore, we have∣∣∣∣{t ∈ R; ‖Sb(t)‖X >

λ

2

}∣∣∣∣ ≤ |E|+
∣∣∣∣{t ∈ R \ E; ‖Sb(t)‖X >

λ

2

}∣∣∣∣
≤ 2λ−1‖f‖L1(R;X) +

1
λ
2

∫
R\E
‖Sb(t)‖Xdt

≤ 2(1 + 2c)
λ

‖f‖L1(R;X).

Together with (2.7), this gives

λ
∣∣∣{t ∈ R; ‖Sf(t)‖X > λ

}∣∣∣ ≤ C‖f‖L1(R;X) (2.8)

where
C = 4p‖S‖pL (Lp(R;X)) + 2(1 + 2c),

which means that S is of weak type (1, 1). By Marcinkiewicz interpolation theorem (see Theo-
rem 6.5 below), the operator S is of strong type (q, q) for all q ∈]1, p[. Moreover, it is easy to
see that S′, the adjoint operator of S is of the same form as S : S′ is bounded in Lp

′
(R;X)

(where 1
p + 1

p′ = 1) and of weak type (1, 1) by the same arguments as before, which implies by
the Marcinkiewicz interpolation theorem that S′ is of strong type (q, q) for all q ∈]1, p′[, and
therefore, by duality, S is of strong type (q, q) for all q ∈]p,∞[. We have then proved that S is
a bounded operator in Lq(R;X) for all q ∈]1,∞[.
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Proof of Proposition 2.4. Let A be an unbounded operator on a Banach space X such that −A
generates an analytic semigroup (T (t))t≥0. Define k : R→ L (X) by

k(t) = AT (t) if t > 0 and k(t) = 0 if t ≤ 0.

Then k is measurable, k ∈ L1
loc(R \ {0}; L (X)). Pick any s ∈ R ; we have∫

|t|>2|s|
‖k(t− s)− k(t)‖L (X)dt

(1)
=

∫
t>2|s|

‖
∫ t−s

t
A2T (τ) dτ‖L (X)dt

(2)

≤ C

∫
t>2|s|

∣∣∣ ∫ t−s

t

1
τ2
dτ
∣∣∣ dt

(3)
= C

∫
t>2|s|

∣∣∣ 1
t− s

− 1
t

∣∣∣ dt
(4)

≤ C ln 2.

The first equality comes from the fact that k vanishes on ] −∞, 0[ and that an analytic semi-
group is differentiable on ]0,+∞[, its derivative at a point t > 0 beeing equal to AT (t). The
second inequality is due to the following property of analytic semigroups : for all n ∈ N,
sup
t>0
‖tnAnT (t)‖L (X) <∞. As for equality (3), it is obtained by integrating

∫ t−s
t

1
τ2 dτ , the last

inequality comes from the exact integration of the integral∫
t>2|s|

∣∣∣ 1
t− s

− 1
t

∣∣∣ dt,
which gives ln 2 if s > 0, 0 if s = 0 and ln 3

2 if s < 0. Therefore, we can apply Theorem 2.5 and
conclude then that the property of maximal Lp−regularity is independent of p ∈]1,∞[.

2.2 Necessary and sufficient conditions

2.2.1 Maximal regularity in Hilbert spaces

In the special case where the Banach space X is actually a Hilbert space, the reverse statement
of Proposition 2.2 is true.

Theorem 2.6 (de Simon, 1964). Let −A be the generator of a bounded analytic semigroup in
a Hilbert space H. Then A has the maximal Lp−regularity property for all p ∈]1,∞[.

Proof. This theorem is due to de Simon [15]. Denote by (T (t))t≥0 the semigroup generated by
−A and let f ∈ L2(0,∞;D(A)). Then it is easy to see that u given by

u(t) =
∫ t

0
T (t− s)f(s) ds, t ≥ 0 (2.9)

is the solution of (2.1), and Au has the form

Au(t) =
∫

R
k(t− s)f(s) ds, t ≥ 0,

9



where we have extended f by 0 on ]−∞, 0[ and k(t) = AT (t) if t > 0, k(t) = 0 if t ≤ 0. Applying
the Fourier transform (in t) F , we obtain for all x ∈ R

F (Au)(x) =
∫

R
e−itxAu(t) dt

=
∫

R

∫
R
e−itxk(t− s)f(s) ds dt

=
∫

R

∫
R
e−i(t+s)xk(t)f(s) ds dt

=
∫ ∞

0
e−itxT (t)

(∫
R
e−isxAf(s) ds

)
dt

= (ix+A)−1AF (f)(x) = A(ix+A)−1F (f)(x).

Since −A generates a bounded analytic semigroup, we have

sup
x∈R
‖A(ix+A)−1‖L (H) <∞,

and therefore
‖F (Au)‖L2(R;H) ≤ c ‖F (f)‖L2(R;H).

Since F is an isomorphism on L2(R;H), this implies that

‖Au‖L2(R;H) ≤ c ‖f‖L2(R;H).

This proves that A has the maximal L2−regularity property. By Proposition 2.4, the proof is
complete.

2.2.2 UMD−spaces

The question now arises, whether all negative generator of bounded analytic semigroup in any
Banach space X has the property of maximal Lp−regularity. This question, posed by Häım
Brézis, was first partially answered by T. Coulhon and D. Lamberton in [13]. To describe their
result, we need to define the notion of UMD−space. Actually, we give here a property of
UMD−spaces equivalent to the original definition. For more on this subject, see [10] and [9].
The Hilbert transform Hf of a measurable function f is, whenever it exists, the limit as ε→ 0+

and T → +∞ of

Hε,T f(t) =
1
π

∫
ε≤|s|≤T

f(t− s)
s

ds, t ∈ R.

Definition 2.7. A Banach space X is said to be of class UMD if the Hilbert transform H is
bounded in Lp(R;X) for all (or equivalently for one) p ∈]1,∞[.

Example 2.8. 1. A Hilbert space is in the class UMD.

2. If X is a Banach space in the UMD−class, then Lp(Ω;X), for Ω ⊂ Rd and p ∈]1,∞[, is
also in the UMD−class.

Theorem 2.9 (Coulhon-Lamberton, 1986). If the negative generator of the Poisson semigroup
on L2(R;X) has the maximal Lp−property, then the Hilbert transform is bounded in L2(R;X).
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This theorem implies that if X is a Banach space with the property that every negative
generator of a bounded analytic semigroup has the maximal Lp−property, then necessarily X is
of class UMD. The converse was an open problem until the work of N. Kalton and G. Lancien
[22] where it was proved that such a Banach space is “essentially” a Hilbert space.

Theorem 2.10 (Kalton-Lancien, 2000). On every Banach lattice which is not isomorphic to
a Hilbert space, there are generators of analytic semigroups without the maximal Lp−regularity
property.

Proof of Theorem 2.9. The Poisson semigroup (P (t))t≥0 on L2(R;X) is defined as follows

(P (t)f)(x) =
∫

R

t

π(y2 + t2)
f(x− y) dy, x ∈ R, t > 0, f ∈ L2(R;X).

This semigroup is bounded analytic and its generator −A satisfies

(AP (t)f)(x) =
∫

R

t2 − y2

π(y2 + t2)2
f(x− y) dy, x ∈ R, t > 0, f ∈ L2(R;X).

This relation is obtained by taking the derivative in t of P (t)f . As we have already seen,
the assumption that A has the maximal Lp−regularity property in L2(R;X) implies that the
operator

f 7→
(

]0,∞[×R 3 (t, x) 7→
∫ t

0

(∫
R

s2 − y2

π(y2 + s2)2
f(t− s, x− y) dy

)
ds

)
is bounded in L2(0,∞;L2(R;X)) = L2(]0,∞[×R;X). By the change of variables y − s = u,
y + s = v, x − t = u′ and x + t = v′, and the change of function F (u, v) = f(v−u2 , v+u

2 ) the
operator K defined by

(KF )(u′, v′) =
∫

R

(∫ +∞

u

−uv
(v2 + u2)2

F (u′ − u, v′ − v) dv
)
du, (u′, v′) ∈ E,

is bounded in L2(E;X), where E = {(u, v) ∈ R2; v > u}. It means then that there exists a
constant C > 0 such that∫

R

(∫ +∞

u′
‖KF (u′, v′)‖2Xdv′

)
du′ ≤ C

∫
R

(∫ +∞

u
‖F (u, v)‖2Xdv

)
du, (2.10)

for all F ∈ L2(E;X). Let now a > 0 and φ ∈ L2(R;X) and take

F (u, v) = φ(u)χ0<v−u<1.

Then we have ∫
R

(∫ +∞

u
‖F (u, v)‖2Xdv

)
du = ‖φ‖L2(R;X). (2.11)

Computing KF , we get

KF (u′, v′) =
∫

R

(∫ v′−u′+u

max{u,u+(v′−u′)−1}

−uv
(v2 + u2)2

dv
)
φ(u′ − u) du

11



and therefore, if 0 < v′ − u′ < 1 we have

KF (u′, v′) =
∫

R

( u

2[(v′ − u′ + u)2 + u2]2
− 1

4u

)
φ(u′ − u) du

=
(∫

R

u

2[(v′ − u′ + u)2 + u2]2
φ(u′ − u) du

)
− π

4
H(φ)(u′),

or equivalently if 0 < v′ − u′ < 1

H(φ)(u′) = − 4
π
KF (u′, v′) +

(∫
R

2u
π[(v′ − u′ + u)2 + u2]2

φ(u′ − u) du
)
.

We take the norm in X, square it and then integrate in v′ between u′+ 1
2 and u′+ 1 and u′ ∈ R

we obtain
1
2

∫
R
‖H(φ)(u′)‖2Xdu′ ≤ 2

(
16
π2
‖KF‖2L2(E;X) + c2‖φ‖2L2(R;X)

)
(2.12)

since ∫
R

2u
π[(v′ − u′ + u)2 + u2]2

φ(u′ − u) du = (av′−u′ ∗ φ)(u′)

where
aw(u) =

2u
π[(w + u)2 + u2]2

, u ∈ R :

aw ∈ L1(R) for all w ∈ [1
2 , 1]. Putting (2.10), (2.11) and (2.12) together, we conclude that the

Hilbert transform is bounded in L2(R;X) and therefore X is of the UMD−class.

2.2.3 R−boundedness

All the details about the following results can be found in [40]. For X and Y Banach spaces, we
denote by L (X,Y ) the space of bounded linear operators from X to Y , S (R, X) denoting the
rapidly decreasing functions from R to X. As before, F denotes the Fourier transform (in t).

Definition 2.11. A function M : R \ {0} → L (X,Y ) is said to be a Fourier multiplier on
Lp(R;X) if the expression Rf = F−1

(
M F (f)

)
is well-defined for f ∈ S (R;X) and R extends

to a bounded operator R : Lp(R;X)→ Lp(R;Y ).

It has been observed by G. Pisier that the converse of Theorem 6.6 is true : if X = Y and
all M satisfying for some constant C > 0,

‖M(t)‖L (X,Y ) ≤ C and ‖tM ′(t)‖L (X,Y ) ≤ C for all t ∈ R \ {0}

are Fourier multipliers in L2(R;X), then X is isomorphic to a Hilbert space. Therefore, to
decide whether a particular M is a Fourier multiplier, some additional assumptions are needed.
This was done by L. Weis in [40] in 2001. His result gives also an equivalent property to maximal
regularity in terms of R−boundedness of the resolvent of the operator.

Definition 2.12. A set τ ⊂ L (X,Y ) is called R−bounded if there is a constant C > 0 such
that for all n ∈ N, T1, ..., Tn ∈ τ and x1, ..., xn ∈ X,∫ 1

0

∥∥∥ n∑
j=1

rj(s)Tjxj
∥∥∥
Y
ds ≤ C

∫ 1

0

∥∥∥ n∑
j=1

rj(s)xj
∥∥∥
X
ds, (2.13)

12



where (rj)j=1,...,n is a sequence of independent {−1, 1}−valued random variables on [0, 1] ; for
example, the Rademacher functions rj(t) = sign(sin(2jπt)). The R−bound of τ is

R(τ) = inf{C > 0; (2.13) holds}.

Remark 2.13. If X and Y are Hilbert spaces, a set τ ⊂ L (X,Y ) is R−bounded if and only if it
is bounded.

We have already seen that the maximal Lp−regularity property of an operator A on a Banach
space X is equivalent to the boundedness in Lp(0,∞;X) of the operator R given by

Rf(t) =
∫ t

0
AT (t− s)f(s) ds, t ∈ [0,∞[, f ∈ Lp(0,∞;X). (2.14)

When taking (formally) the Fourier transform of Rf , we get

F (Rf)(σ) = A(iσI +A)−1F (f)(σ), σ ∈ R.

Therefore, if M denotes the operator valued function M(σ) = A(iσI + A)−1, our problem is
now to find conditions on M (and therefore on A and its resolvent) assuring that M is a Fourier
multiplier in Lp(R;X).

Theorem 2.14 (L. Weis, 2001). Let X and Y be UMD−Banach spaces. Let

M : R \ {0} → L (X,Y )

be a differentiable function such that the sets{
M(t), t ∈ R \ {0}

}
and

{
tM ′(t), t ∈ R \ {0}

}
are R−bounded. Then M is a Fourier multiplier on Lp(R;X) for all p ∈]1,∞[.

References for the proof. This theorem can be found in [40], Theorem 3.4.

Applying this theorem to our problem of maximal Lp−regularity, we get the following result.

Corollary 2.15 (L. Weis, 2001). Let X be a UMD−Banach space and A be the negative
generator of an analytic semigroup on X. Then A has the maximal Lp−regularity property if
and only if the set

{
iσ(iσI +A)−1, σ ∈ R

}
is R−bounded.

Idea of the proof. This can be found in [40], Corollary 4.4. Denoting as before

M(σ) = A(iσI +A)−1, σ ∈ R,

we have M(σ) = iσ(iσI +A)−1 − I. Therefore, if

M0 : σ 7→ iσ(iσI +A)−1

is a Fourier multiplier, so is M . The first part of Theorem 2.14 applied to M0 holds by the
assumption that {

iσ(iσI +A)−1, σ ∈ R
}

is R−bounded. For the second part, we must show that {σM ′0(σ), σ ∈ R} is also R−bounded.
For that purpose, remark that σM ′0(σ) = M0(σ)(I −M0(σ)).

13



3 Examples

In this section, we give three classes of operators in Lq−spaces having the maximal Lp−regula-
rity property. We consider analytic semigroups in L2(Ω, µ) which can be extended to Lp(Ω, µ)
((Ω, µ) being a measure space) for p in a subinterval of ]1,∞[ containing 2.

3.1 Contraction semigroups

3.1.1 The abstract result

The result presented here is due to D. Lamberton in [28].

Theorem 3.1 (D. Lamberton, 1987). Let (Ω, µ) be a measure space and A the negative generator
of an analytic semigroup of contractions (T (t))t≥0 in L2(Ω, µ). Assume that for all q ∈ [1,∞],
the estimate

‖T (t)f‖q ≤ ‖f‖q holds for all t ≥ 0 and all f ∈ L2(Ω) ∩ Lq(Ω).

Then the operator A has the maximal Lp−regularity property in Lq(Ω).

Reference for the proof. The proof of this theorem can be found in [28]. The idea of it is to
remark first that A has the maximal Lp−regularity property in L2(Ω) by Theorem 2.6. The
strategy is to show that the convolution operator R defined by

Rf(t) =
∫ t

0
AT (t− s)f(s) ds, t ≥ 0, f ∈ Lp(0,∞;Lp(Ω)) = Lp(]0,∞[×Ω)

is bounded in Lp(]0,∞[×Ω). We already know that this is true if p = 2. To get the other
p ∈]1,∞[, D. Lamberton uses Coifman-Weiss transference principle (this is the core of the
proof). Once this is proved, by Theorem 2.4, we conclude that A has the maximal Lp−regularity
property in Lq(Ω).

3.1.2 An application

This theorem can be applied to show that certain operators have the maximal Lp−regularity
property, such as the Laplacian in Lp(Ω) (Ω ⊂ Rn sufficiently regular) with Dirichlet, Neuman
or Robin (Fourier) boundary conditions.

Proposition 3.2. Let Ω ⊂ Rn be a domain such that the Stokes formula (integration by parts)
applies. We denote by ν the outer normal unit at ∂Ω. Let Aj (j = D,N or R) be the unbounded
operator defined in L2(Ω) by

D(Aj) = {u ∈ H1(Ω); ∆u ∈ L2(Ω) and bj(u) = 0 on ∂Ω}
Aju = −∆u,

where bD(u) = u, bN (u) = ∂νu and bR(u) = αu+ ∂νu for α ≥ 0.

Proof. Thanks to Theorem 3.1, we only need to show that −Aj generates an analytic semigroup
(Tj(t))t≥0 in L2(Ω) and that this semigroup satisfies the estimate

‖Tj(t)f‖q ≤ ‖f‖q, t ≥ 0, f ∈ L2(Ω) ∩ Lq(Ω). (3.1)

14



Case j = D. This case corresponds to Dirichlet boundary conditions. The first assumption
to verify is that −AD generates an analytic semigroup (TD(t))t≥0 in L2(Ω). Let aD be the
sesquilinear form defined by

aD(u, v) =
∫

Ω
∇u · ∇v dx, u, v ∈ H1

0 (Ω; C).

This form aD is sesquilinear, continuous and coercive. It is easy to show that AD is associated
to the form aD and therefore generates a bounded analytic semigroup. It remains to show that
(3.1) holds for j = D. Let q ∈ [1,∞[ and let

u(t) = TD(t)f, t ≥ 0,

be the solution of the Cauchy problem

∂u

∂t
+ADu(t) = 0, u(0) = f ∈ L2(Ω) ∩ Lq(Ω).

Multiplying this equation with v = |u|q−2uχu6=0 and integrating on Ω, we obtain for all t ≥ 0,

0 =
∫

Ω

∂u

∂t
(t)v(t) dx−

∫
Ω
v(t)∆u(t) dx

=
1
q

d

dt

(∫
Ω
|u(t)|qdx

)
+
∫

Ω
|u(t)|q−2|∇u(t)|2χu6=0 dx

+
∫

Ω
u∇(|u(t)|q−2) · ∇uχu6=0 dx

=
d

dt

(
‖u‖qq

)
(t) + (q − 1)

∫
Ω
|u(t)|q−2|∇u(t)|2χu6=0 dx

and therefore
d

dt

(
‖u‖qq

)
(t) ≤ 0

which implies that ‖u(t)‖q ≤ ‖f‖q. We can let q → ∞ to obtain ‖u(t)‖∞ ≤ ‖f‖∞. This shows
(3.1) for j = D.

Case j = N . This case corresponds to Neumann boundary conditions. It goes more or less
as the previous case. The integrations by parts can be performed and give 0 for the boundary
terms since ∂νu = 0 at the boundary. As before, the first assumption to verify is that −AN
generates an analytic semigroup (TN (t))t≥0 in L2(Ω). Let aN be the sesquilinear form defined
by

aN (u, v) =
∫

Ω
∇u · ∇v dx, u, v ∈ H1(Ω; C).

This form aN is sesquilinear, continuous and coercive. It is easy to show that AN is associated
to the form aN and therefore generates a bounded analytic semigroup. It remains to show that
(3.1) holds for j = N . As in the previous case for

u(t) = TN (t)f, t ≥ 0

the solution of the Cauchy problem

∂u

∂t
+ANu(t) = 0, u(0) = f ∈ L2(Ω) ∩ Lq(Ω),

15



we have

0 =
∫

Ω

∂u

∂t
(t)v(t) dx−

∫
Ω
v(t)∆u(t) dx

=
1
q

d

dt

(∫
Ω
|u(t)|qdx

)
+
∫

Ω
|u(t)|q−2|∇u(t)|2χu6=0 dx

+
∫

Ω
u∇(|u(t)|q−2) · ∇uχu6=0 dx

=
d

dt

(
‖u‖qq

)
(t) + (q − 1)

∫
Ω
|u(t)|q−2|∇u(t)|2χu6=0 dx

and therefore
d

dt

(
‖u‖qq

)
(t) ≤ 0

which implies that ‖u(t)‖q ≤ ‖f‖q. We can let q → ∞ to obtain ‖u(t)‖∞ ≤ ‖f‖∞. This shows
(3.1) for j = N .

Case j = R. This case corresponds to Robin (also called Fourier) boundary conditions. The
first assumption to verify is that −AR generates an analytic semigroup (TR(t))t≥0 in L2(Ω). Let
aR be the sesquilinear form defined by

a(u, v) =
∫

Ω
∇u · ∇v dx+

∫
∂Ω
αuv dσ, u, v ∈ H1(Ω; C).

This form aR is sesquilinear, continuous and coercive. It is easy to show that AR is associated
to the form aR and therefore generates a bounded analytic semigroup. It remains to show that
(3.1) holds for j = R. As in the two previous cases for

u(t) = TR(t)f, t ≥ 0

the solution of the Cauchy problem

∂u

∂t
+ARu(t) = 0, u(0) = f ∈ L2(Ω) ∩ Lq(Ω),

we have

0 =
∫

Ω

∂u

∂t
(t)v(t) dx−

∫
Ω
v(t)∆u(t) dx

=
1
q

d

dt

(∫
Ω
|u(t)|qdx

)
+
∫

Ω
|u(t)|q−2|∇u(t)|2χu6=0 dx

+
∫

Ω
u∇(|u(t)|q−2) · ∇uχu6=0 dx−

∫
∂Ω
∂νu(t)|u(t)|q−2u(t) dσ

=
d

dt

(
‖u‖qq

)
(t) + (q − 1)

∫
Ω
|u(t)|q−2|∇u(t)|2χu6=0 dx

+
∫
∂Ω
α |u(t)|q dσ

and therefore
d

dt

(
‖u‖qq

)
(t) ≤ 0
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which implies that ‖u(t)‖q ≤ ‖f‖q. We can let q → ∞ to obtain ‖u(t)‖∞ ≤ ‖f‖∞. This shows
(3.1) for j = R.

It suffices now to apply Theorem 3.1 to obtain that the operators Aj (j = D,N or R) have the
maximal Lp−regularity property in Lq(Ω) for all p, q ∈]1,∞[ (Proposition 3.2).

3.2 Gaussian bounds

3.2.1 Pointwise estimates

The result presented here is due first to M. Hieber and J. Prüss ([21]) and was somewhat
extended by T. Coulhon and X.T. Duong ([12]). The theorem below is adapted to semigroups
with Gaussian estimates (so, not stated in the full generality).

Theorem 3.3 (Hieber-Prüss 1997, Coulhon-Duong 2000). Let Ω ⊂ Rn. Assume that T (t))t≥0

is an analytic semigroup in L2(Ω) with representation for all f ∈ L2(Ω) and z ∈ C, | arg z| < ε

T (z)f(x) =
∫

Ω
p(z, x, y)f(y) dy, x ∈ Ω,

where the kernel p, for t > 0, enjoys the following estimates

|p(t, x, y)| ≤ cg(bt, x, y), x, y ∈ Ω, (3.2)

with c, b > 0. Here g(t, x, y) = 1

(4πt)
n
2
e−
|x−y|2

4t . Then the semigroup (T (t))t≥0 can be extended as

an analytic semigroup in Lq(Ω) for all q ∈]1,∞[ and its negative generator Aq has the maximal
Lp−regularity property for all p ∈]1,∞[.

Lemma 3.4. Let be the hypotheses of Theorem 3.3 hold. Then there exist θ ∈]0, π2 ] and constants
c1, b1 > 0 such that

|p(z, x, y)| ≤ c1g(b1<e(z), x, y), x, y ∈ Ω, z ∈ C, | arg z| < ε (3.3)

and consequently there are two constants c2, b2 > 0 such that∣∣∣∂p
∂t

(t, x, y)
∣∣∣ ≤ c2

t
g(b2t, x, y), t > 0, x, y ∈ Ω. (3.4)

Proof. This result is well-known (see e.g. Davies’ book [14]). The estimate(3.4) follows from
(3.3), using the Cauchy formula for the holomorphic function z 7→ p(z, x, y).

Idea of the proof of Theorem (3.3). Let Q = [0,∞[×Ω. The space (Q,µ, d), where µ is the
Lebesgue measure on Rn+1 and d is the quasi-metric defined by

d
(

(t, x), (s, y)
)

= |x− y|2 + |t− s|,

is of homogeneous type (has the doubling property : there exists a constant C > 0 such that
if we denote B(ξ, r) = {η ∈ Q; d(ξ, η) < r2} then µ(B(ξ, 2r)) ≤ cµ(B(ξ, r))). Let K be the
operator with kernel

k((t, x), (s, y)) =
∂p(t− s, x, y)

∂t
, t > 0, x, y ∈ Ω.

17



We know that the operator K defined by

Kf(ξ) =
∫
Q
k(ξ, η)f(η) dµ(η), a.e. ξ = (t, x) ∈ Q

is bounded on L2(Q) : this is only a reformulation of the maximal L2−regularity property on
L2(Ω). The strategy is to prove that K is of weak-type (1, 1). By interpolation, we can then
prove that K is a bounded operator on Lq(Q) for all q ∈]1, 2]. A duality argument is then used
to prove that K is bounded on Lq

′
(Q) (where 1

q + 1
q′ = 1 : q′ ∈ [2,∞[). Therefore, using the

p−independence of the maximal Lp−regularity property (see Theorem 2.4), we finish the proof.
Of course, the core of the proof is to show that K is of weak-type (1, 1). For that purpose,
since the kernel k has a behavior like (3.4), we have to study a singular integral. We will use a
(regularized) Calderón-Zygmund decomposition (see Theorem 6.7) adapted to the problem. For
any f ∈ L1(Q), for all α > 0, there exist g, bi ∈ L1(Q) with the properties

(i) |g(ξ)| ≤ κα, for µ− a.e. ξ ∈ Q ;

(ii) there exist balls Bi = B(ξi, ri) ⊂ Q (i.e. (t, x) ∈ B(ξi, ri) if |x − xi|2 + |t − ti| < r2
i and

ξi = (ti, xi)) such that supp bi ⊂ Bi and∫
Q
|bi(ξ)| dµ(ξ) ≤ καµ(Bi);

(iii)
∞∑
i=1

µ(Bi) ≤
κ

α
‖f‖1 ;

(iv) any ξ ∈ Q belongs to at most N0 balls Bi.

We “regularize” the functions bi by applying an operator Ri defined by a kernel ρi : Q → R as
follows

ρi(ξ, η) = ϕi(t− s)χ[(t−ri)+,t](s)kri(x, y), where ξ = (t, x), η = (s, y)

and where ϕi(σ) = 1
ri

e
2(e−1) e

− |σ|
ri . This idea was first applied by X.T. Duong and A. McIntosh in

[17]. We can show that
∞∑
i=1

Ribi ∈ L2(Q) with norm, in L2(Q) controlled by α
1
2 ‖f‖1. Therefore,

if we write

Kf = Kg +
∞∑
i=1

KRibi +
∞∑
i=1

(K −KRi)bi,

only the last term is still to be investigated, the first two coming directly from the fact that K
is bounded in L2(Q). It remains to show that

µ
({
ξ ∈ Q;

∣∣∣ ∞∑
i=1

(K −KRi)bi(ξ)
∣∣∣ > α

})
≤ cst α‖f‖1.

This can be done once we prove that∫
d(ξ,η)≥cri

|k(ξ, η)− ki(ξ, η)|dµ(ξ) ≤ cst,

where ki(ξ, η) =
∫
Q k(ξ, ζ)ρi(ζ, η)dµ(ζ) is the kernel of KRi. Indeed, the proof at this step is

very much like the proof of Theorem 2.4, using this last estimate.
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Example 3.5. Consider a divergence form second order operator L = −divA∇ with Dirich-
let boundary conditions in a domain Ω ⊂ Rn with A ∈ L∞(Ω; Mn(C)) with antisymmetric
imaginary part. Then it has been proved by E.M. Ouhabaz ([35] and [36]) that −L gener-
ates an analytic semigroup in L2(Ω) with gaussian estimates. Therefore, L has the maximal
Lp−regularity property on Lq(Ω) for all q ∈]1,∞[, by Theorem 3.3.

3.2.2 Generalized Gaussian bounds

The abstract result It is sometimes not clear, or not true, whether a semigroup in L2(Ω)
has Gaussian estimates of the type (3.2). However, it is sometimes possible to prove a weaker
form, namely a local integrated bound of the following form. To make the notations shorter, we
will use

‖ · ‖L (Lq0 (Ω),Lq1 (Ω) = ‖ · ‖q0→q1
and

A(x, ρ, k) = B(x, (k + 1)ρ) \B(x, kρ), x ∈ Ω, ρ > 0, k ∈ N.
Definition 3.6. Let Ω ⊂ Rn be a domain. Let A be the negative generator of an analytic
semigroup (T (t))t≥0 in Lq0(Ω). We say that A has generalized Gaussian estimates (q0, q1)
(where 1 < q0 ≤ q1 <∞) if one of the following properties holds :

(1) the semigroup (T (t))t≥0 satisfies

‖χB(x,ρ(t))T (t)χA(x,ρ(t),k)‖q0→q1 ≤ |B(x, ρ(t))|−( 1
q0
− 1
q1

)
h(k) (3.5)

for t > 0, x ∈ Ω, k ∈ N, ρ :]0,∞[→]0,∞[, and (h(k))k≥1 satisfying

h(k) ≤ cδ(k + 1)−δ for some δ >
n

q0
+

1
q′0

;

(2) or the resolvent of A satisfies

‖χB(x,ρ(t))(I + zA)−1χA(x,ρ(t),k)‖q0→q1 ≤ |B(x, ρ(t))|−( 1
q0
− 1
q1

)
h(k) (3.6)

for z ∈ Σθ = {w ∈ C \ {0}; | arg(w)| < π − θ}, t = |z|−
1
2 , x ∈ Ω, k ∈ N, ρ :]0,∞[→]0,∞[,

and (h(k))k≥1 satisfying

h(k) ≤ cδ(k + 1)−δ for some δ >
n

q0
+

1
q′0
.

Remark 3.7. A semigroup satisfying the Gaussian estimates (3.2) satisfies the two bounds above
for all 1 < q0 ≤ q1 <∞.

These kinds of bounds for q0 = 2 are easier to prove than the pointwise Gaussian estimates
(3.2), more particularly the second one (3.6). Indeed, it is, for instance for divergence form
elliptic operators, only a matter of partial integration, as we will see below for the Lamé operator
(see Theorem 3.10).

Theorem 3.8 (Kunstmann, 2008). Let Ω ⊂ Rn be a domain. Let A be the negative generator
of an analytic semigroup (T (t))t≥0 in L2(Ω) satisfying (3.6) with q1 > q0 = 2, then A has the
maximal Lp−regularity property in Lq(Ω) for all q ∈ [2, q1[.

References for the proof. This result is due to P.C. Kunstmann [24]. The original statement
uses (3.5) instead of (3.6), and is presented in a more general context : instead of Ω ⊂ Rn, Ω is
assumed to be a space of homogeneous type.
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An example We apply here the previous result to the Lamé operator, which appears in the
linearization of the compressible Navier-Stokes equations.

Definition 3.9. The Lamé operator with Dirichlet boundary conditions, denoted by L, is
defined on L2(Ω; Rn) as the operator generated by the following sesquilinear form

`(u, v) = µ

∫
Ω
∇u · ∇v dx+ (λ+ µ)

∫
Ω

divudiv v dx, u, v ∈ H1
0 (Ω; R3),

where µ > 0 and µ + λ ≥ 0. Since ` is continuous, coercive, the operator L is self-adjoint,
generates a bounded analytic semigroup in L2(Ω; Rn).

Theorem 3.10. Let Ω be a domain in Rn (n ≥ 3). Then the Lamé operator with Dirichlet
boundary conditions has the maximal Lp−regularity property in Lq(Ω) for all q ∈] 2n

n+2 ,
2n
n−2 [.

Proof. Fix an arbitrary point x ∈ Ω, z ∈ Σθ, where

Σθ = {w ∈ C \ {0}; | arg(w)| < π − θ},

t = |z|−
1
2 and an arbitrary partition of unity {ηj , j ∈ N} of Rn such that

η0 ∈ C∞c (B(x, 2t); R), ηj ∈ C∞c

(
B(x, 2j+1t) \B(x, 2j−1t); R

)
,

0 ≤ ηj ≤ 1, |∇ηj | ≤ 1
2j−1t

,
∑∞

j=0 ηj = 1,
(3.7)

where B(x, r) is the ball in Rn with center at x ∈ R3 and radius r > 0 and decompose f ∈
L2(Ω,Rn) as follows

f =
∞∑
j=0

fj , fj = ηjf ; u =
∞∑
j=0

uj , uj = (zI + L)−1fj ∈ D(L). (3.8)

We will prove that for all p ∈ [2, 2n
n−2 ], there exists two constants C, c > 0 such that

|z|
[ ∫

Ω∩B(x,t)
|uj |pdy

] 1
p ≤ Ce−c2j tn( 1

p
− 1

2
)
[ ∫

Ω
|fj |2dy

] 1
2 ∀ j ∈ N. (3.9)

This will be done in three steps.

Step 1. Pick a new family of functions (ξj)j≥1 such that ξj ∈ C∞c (B(x, 2j−1t); R). Taking the
L2−pairing of ξ2

juj with both sides of zuj + Luj = fj , and keeping in mind that ξjfj = 0 for
each j ≥ 1 we may write, based on integration by parts that

z

∫
Ω
ξ2
j |uj |2dy + µ

∫
Ω
ξ2
j |∇uj |2dy + (λ+ µ)

∫
Ω
ξ2
j |divuj |2dy (3.10)

=
∫

Ω
O
(
|∇ξj ||uj ||ξj |

[
µ|∇uj |+ (λ+ µ)|divuj |

])
dy.

From this, via Cauchy-Schwarz inequality and a standard trick that allows us to absorb like-
terms with small coefficients in the left-hand side, we get

|z|
∫

Ω
ξ2
j |uj |2dy ≤ C

∫
Ω
|∇ξj |2|uj |2dy (3.11)
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and, since λ+ µ ≥ 0, ∫
Ω
ξ2
j |∇uj |2dy ≤ C

∫
Ω
|∇ξj |2|∇uj |2dy. (3.12)

Step 2. Much as in [6], we now replace the cutoff function ξj in (3.11) by another cutoff function
eαjξj − 1 (which has the same properties as ξj), with

αj =

√
|z|

2
√
C‖∇ξj‖∞

, j ≥ 2.

In a first stage, this yields∫
Ω
|uj |2|eαjξj − 1|2dy ≤ 1

4

∫
Ω
|uj |2|eαjξj |2dy,

then further ∫
Ω
|uj |2|eαjξj |2dy ≤ 4

∫
Ω
|uj |2dy, (3.13)

in view of the generic, elementary implication

‖f − g‖ ≤ 1
2
‖f‖ =⇒ ‖f‖ ≤ 2‖g‖.

If we now assume that the original cutoff functions (ξj)j≥2 also satisfy

0 ≤ ξj ≤ 1, ξj = 1 on B(x, t) and ‖∇ξj‖∞ ≤
κ

2jt
,

it follows from the definition of αj that αj ≥ c2j and from (3.13) that

|eαj |2
∫

Ω∩B(x,t)
|uj |2dy ≤ 4

∫
Ω
|uj |2dy ≤

cst
|z|2

∫
Ω
|fj |2dy,

the second inequality coming from the fact that −L generates an analytic semigroup. This gives
then

|z|2
∫

Ω∩B(x,t)
|uj |2dy ≤ Ce−c2

j

∫
Ω
|fj |2dy, (3.14)

The same procedure allows to estimate ∇u on B(x, t) using (3.12) as follows

|z|
∫

Ω∩B(x,t)
|∇uj |2dy ≤ Ce−c2

j

∫
Ω
|fj |2dy. (3.15)

Those two estimates are also valid if j = 0 since the resolvent of L is bounded in L2(Ω; Rn).

Step 3. Let p = 2∗ = 2n
n−2 . Sobolev’s embedding in a (Lipschitz) domain D ⊂ Rn (n ≥ 3) of

diameter R > 0 for a function u ∈ H1(D), after rescaling, reads as follows

R
n( 1

2
− 1
p

)
(∫

D
|u|pdy

) 1
p ≤ C

[( ∫
D
|u|2dy

) 1
2 +R

(∫
D
|∇u|2dy

) 1
2
]
. (3.16)
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Combining this inequality with (3.14) and (3.15), and keeping in mind that |z| = 1
t2

, we have
for all j ∈ N

|z|
(∫

Ω∩B(x,t)
|uj |

2n
n−2dy

)n−2
2n ≤ C t−1e−c2

j
(∫

Ω
|fj |2dy

) 1
2
. (3.17)

By interpolation, using (3.14) and (3.17), the generalized Gaussian bound (3.9) is proved for all
2 ≤ p ≤ 2n

n−2 .

By Theorem 3.8, we may conclude that L has the maximal Lp−regularity property in the
space Lq(Ω; Rn) for all q ∈ [2, 2n

n−2 [. By duality (since L is self-adjoint), we can prove also
that L has the maximal Lp−regularity property in Lq(Ω; Rn) for all q ∈] 2n

n+2 , 2], which proves
Theorem 3.10.
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4 Applications to partial differential equations

In this section, we will apply maximal Lp−regularity results to show the uniqueness of solutions
of certain partial differential equations. We start with a toy problem, studied by F. Weissler
in [41]. This will lead the way to prove uniqueness of mild solutions of the incompressible
Navier-Stokes system.

4.1 A semilinear initial value problem

We are interested in the following equation

∂u
∂t −∆u = u2 in ]0, T [×Ω
u(t, x) = 0 on ]0, T [×∂Ω
u(0) = u0 in Ω,

(4.1)

where T > 0 and Ω ⊂ Rn is a domain with no particular regularity at the boundary. We assume
that n ≥ 4. The critical space where we are looking for solutions is Lp(Ω) with p = n

2 . This
space is critical in the sense that if p > n

2 , then the nonlinearity u2 is a “small” perturbation of
the linear part ∆u and if p < n

2 , then the nonlinearity “wins” and the methods applied here are
not appropriate. Our purpose is to show that the solution u ∈ C ([0, T ];Lp(Ω)) of (4.1) (in an
integral sense defined below) is unique in the space C ([0, T ];L

n
2 (Ω)).

Definition 4.1. We say that u is an integral solution of (4.1) with u0 ∈ L
n
2 (Ω) on [0, τ ] if

u ∈ C ([0, T ];L
n
2 (Ω)) and u satisfies

u(t) = T (t)u0 +
∫ t

0
T (t− s)(u(s)2) ds, t ∈ [0, τ ],

where (T (t))t≥0 is the semigroup generated by the Dirichlet-Laplacian in L
n
4 (Ω), which we

denote by −A.

4.1.1 Existence

Theorem 4.2 (F. Weissler, 1981). Let n ≥ 4. For any initial condition u0 ∈ L
n
2 (Ω), there

exists τ ∈]0, T ] and u ∈ C ([0, τ ];L
n
2 (Ω)) integral solution of (4.1) in [0, τ ]. If ‖u0‖n

2
is small

enough, then τ = T .

Proof. We will show the local existence of an integral solution of (4.1) via a fixed point method.
We reformulate the problem as to find a Banach space ET containing C ([0, T ];L

n
2 (Ω)) such that

a = T (·)u0 ∈ ET and there exists u ∈ ET verifying

u = a+B(u, u),

where B is the bilinear operator defined by

B(u, v)(t) =
∫ t

0
T (t− s)(u(s)v(s)) ds, t ∈ [0, T ].

We need B to be continuous on ET × ET . We choose

ET =
{
u ∈ C ([0, T ];L

n
2 (Ω)); t 7→ t

1
4u(t) ∈ C ([0, T ];L

2n
3 (Ω))

}
,
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and we define the norm in this space to be

‖u‖ET = sup
0<t<T

‖u(t)‖n
2

+ sup
0<t<T

t
1
4 ‖u(t)‖ 2n

3
u ∈ ET .

This space ET endowed with its norm is a Banach space. We remark first that (T (t))t≥0 is a
bounded analytic semigroup in Lp(Ω) for all p ∈]1,∞[, which implies in particular that for all
α ≥ 0, there exists a constant cp,α > 0 such that

‖tαAαT (t)‖p ≤ cp,α, t > 0.

Therefore, it is easy to check that a ∈ ET . We will show next that

B : ET × ET → ET
is continuous. Let u, v ∈ ET . Then we have

t 7→ t
1
2u(t)v(t) ∈ C([0, T ];L

n
3 (Ω)

with norm bounded by ‖u‖ET ‖v‖ET and therefore

‖t
1
2A−

1
2 (u(t)v(t))‖n

2
≤ c‖u‖ET ‖v‖ET

for all t ∈ [0, T ] since W 1,n
3 ⊂ L

n
2 in dimension n by Sobolev embedding. We have then

B(u, v)(t)
(1)
=

∫ t

0
T (t− s)(u(s)v(s)) ds

(2)
=

∫ t

0

√
t− sA

1
2T (t− s)A−

1
2 (
√
s u(s)v(s))

1√
t− s

√
s
ds

which gives the estimate for all t ∈ [0, T ]

‖B(u, v)(t)‖n
2

(1)

≤ c cn
2
, 1
2
‖u‖ET ‖v‖ET

(∫ t

0

1√
t− s

√
s
ds
)

(2)

≤ πc cn
2
, 1
2
‖u‖ET ‖v‖ET .

since ∫ t

0

1√
t− s

√
s
ds =

∫ 1

0

1√
1− σ

√
σ
dσ =

∫ 1
2

− 1
2

2√
1− 4r2

dr = π.

The same arguments are used to estimate t
1
4 ‖B(u, v)(t)‖n

3
. For u, v ∈ ET , we have

‖t
1
2A−

3
4 (u(t)v(t))‖ 2n

3
≤ c‖u‖ET ‖v‖ET

since we have already seen that t
1
2A−

1
2 (u(t)v(t)) ∈ L

n
2 (Ω) and by the Sobolev embedding

W
1
2
,n
2 ⊂ L

2n
3 in dimension n. Therefore, we have

‖t
1
4B(u, v)(t)‖ 2n

3

(1)

≤ c c 2n
3
, 3
4
‖u‖ET ‖v‖ET

(
t

1
4

∫ t

0
(t− s)−

3
4 s−

1
2 ds

)
(2)

≤ c cn
2
, 1
2
‖u‖ET ‖v‖ET

(∫ 1

0
(1− σ)−

3
4σ−

1
2 dσ

)
.

We can conclude the proof of the existence theorem by applying Picard fixed point theorem as
long as ‖a‖ET ≤ 1

4‖B‖ and this is the case if ‖u0‖n
2

is small enough. The argument must be
adapted a little if ‖u0‖n

2
is not small by adjusting T so that the result remains true.
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4.1.2 Uniqueness

Theorem 4.3 (F. Weissler, 1981). Assume that n ≥ 5. Let u1, u2 ∈ C ([0, T ];L
n
2 (Ω)) be two

integral solutions of (4.1) for the same initial value u0 ∈ L
n
2 (Ω). Then u1 = u2 on [0, T ].

Proof. With the same notations as in the previous proof, u1 and u2 are both solutions of the
equation

u = a+B(u, u).

If we denote by v the difference between u1 and u2, then v must satisfy the equation

v = B(v, u1 + u2),

with u1, u2, v ∈ C ([0, T ];L
n
2 (Ω)) and u1(0) = u2(0) = u0, v(0) = 0. To prove that v = 0 on

a small interval [0, τ ] (which implies then that v = 0 on the whole interval [0, T ]), we need
the following auxiliary lemma, which proof lies below, and this is where we use the maximal
regularity property for the Dirichlet-Laplacian in L

n
2 (Ω).

Lemma 4.4. The bilinear operator

B : Lq(0, T ;L
n
2 (Ω))× C ([0, T ];L

n
2 (Ω))→ Lq(0, T ;L

n
2 (Ω))

is bounded for all q ∈]1,∞[.

Let ε > 0 be fixed. Choose u0,ε ∈ C∞c (Ω) such that

‖u0 − u0,ε‖n
2
< ε.

We decompose B(v, u1 + u2) into three parts :

B(v, u1 + u2) = B(v, u1 + u2 − 2u0) + 2B(v, u0 − u0,ε) + 2B(v, u0,ε).

We can estimate the first two parts thanks to Lemma 4.4. This gives then for any τ ∈]0, T ]

‖B(v, u1 + u2 − 2u0)‖
Lq(0,τ ;L

n
2 (Ω))

≤ C‖v‖
Lq(0,τ ;L

n
2 (Ω))

(
‖u1 − u0‖C([0,τ ];L

n
2 (Ω))

+ ‖u2 − u0‖C([0,τ ];L
n
2 (Ω))

) (4.2)

and
‖B(v, u0 − u0,ε)‖Lq(0,τ ;L

n
2 (Ω))

≤ Cε‖v‖
Lq(0,τ ;L

n
2 (Ω))

. (4.3)

Since ‖ui − u0‖C([0,τ ];L
n
2 (Ω))

→ 0 as τ → 0 for i = 1, 2, it remains to estimate the last part

B(v, u0,ε). Since u0,ε ∈ C∞c (Ω), then vu0 ∈ Lq(0, τ ;L
n
2 (Ω)) and

‖B(v, u0,ε)(t)‖n
2
≤Mt

1− 1
q ‖v‖

Lq(0,τ ;L
n
2 (Ω))

‖u0,ε‖∞.

It is now obvious that ‖B(v, u0,ε)‖Lq(0,τ ;L
n
2 (Ω))

→ 0 as τ → 0. Combining this last result with
the estimates (4.2) and (4.3), we obtain that for ε and τ small enough,

‖B(v, u1 + u2)‖
Lq(0,τ ;L

n
2 (Ω))

≤ 1
2
‖v‖

Lq(0,τ ;L
n
2 (Ω))

.

Since v is solution of v = B(v, u1 + u2) on [0, T ], and then in particular on [0, τ ], this implies
that v = 0 almost everywhere on [0, τ ]. Since moreover v is continuous on [0, τ ], we conclude
that v = 0 (everywhere) on [0, τ ]. These arguments show that {t ∈ [0, T ]; v = 0} is an open set
in [0, T ] and by continuity of v, this set is also closed. Since it is not empty, it is necessarily
equal to the whole interval [0, T ] by connexity.
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Proof of Lemma 4.4. For u ∈ Lq(0, T ;L
n
2 (Ω)) and v ∈ C ([0, T ];L

n
2 (Ω)) the product uv is in

Lq(0, T ;L
n
4 (Ω)). Therefore,

f : t 7→ A−1(u(t)v(t)) ∈ Lq(0, T ;L
n
2 (Ω)).

Since the Dirichlet-Laplacian enjoys the maximal Lq−regularity (see Proposition 3.2) in L
n
2 (Ω),

we have

‖B(u, v)‖
Lq(0,T ;L

n
2 (Ω))

=
∥∥∥t 7→ A

∫ t

0
AT (t− s)f(s) ds

∥∥∥
Lq(0,T ;L

n
2 (Ω))

≤ C‖u‖
Lq(0,T ;L

n
2 (Ω))

‖v‖
C([0,T ];L

n
2 (Ω))

,

the constant C coming from the maximal Lq−regularity property of A in L
n
2 (Ω).

4.2 Uniqueness for the incompressible Navier-Stokes system

The (incompressible) Navier-Stokes system in the whole space Rn reads as follows

∂u
∂t −∆u+∇π + (u · ∇)u = 0 in ]0, T [×Rn

divu = 0 in ]0, T [×Rn

u(0) = u0 in Rn,

(4.4)

where
u : [0, T ]× Rn → Rn and π : [0, T ]× Rn → R

denote the velocity of a fluid and its pressure. The notation (u · ∇)v for u and v vector fields

stands for
n∑
i=1

ui∂iv. We assume that there is no external force. We can reformulate this system

in a functional analysis setting as follows. Let A be the operator with domain W 2,p(Rn; Rn) (for
a p ∈]1,∞[),

Au = P(−∆u) where P = I +∇(−∆)−1div,

P is the Leray projection and is bounded in Lp(Rn; Rn) since the Riesz projections are bounded.
As in the case of the semilinear heat equation, there is a critical space for (NS). In the scale
of Lebesgue spaces, the critical space here is Ln(Rn; Rn), which means that if p > n, then the
nonlinearity (u · ∇)u appears as a “small” perturbation of the linear part P(−∆u) and if p < n,
then the nonlinearity “wins”.

The existence of integral solutions of (4.4) (see Definition 4.5 below) for an initial condition
u0 ∈ Ln(Rn; Rn) has been proved by T. Kato in 1984 in [23]. The proof is similar to the proof
of the existence of solutions for the semilinear heat equation (Theorem 4.2). A good reference
for this problem is the book by P.G. Lemarié-Rieusset [29].

Definition 4.5. We say that u is an integral solution of (4.4) with u0 ∈ Ln(Rn; Rn) with
divu0 = 0 on [0, τ ] if u ∈ C ([0, T ];Ln(Rn; Rn)) and u satisfies

u(t) = et∆u0 − P
∫ t

0
e(t−s)∆∇ ·

(
u(s)⊗ u(s)

)
ds, t ∈ [0, τ ],

where (et∆)t≥0 is the semigroup generated by the Laplacian denoted by ∆.
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Remark 4.6. (i) Since u is a divergence-free vector field, we have

(u · ∇)u =
n∑
i=1

ui∂iu =
n∑
i=1

∂i(uiu) = ∇ · (u⊗ u),

which explains the form of u in Definition 4.5.

(ii) In the previous definition, we want the semigroup (et∆)t≥0 to act on a distribution ∇(u⊗
u) ∈W−1,n

2 . This makes sense since in the case of the whole space Rn, the heat semigroup
acts on all W s,p(Rn,Rn), s ∈ R, p ∈]1,∞[.

Theorem 4.7 (T. Kato, 1984). Let u0 ∈ Ln(Rn; Rn) satisfy divu0 = 0. Then there exists
T > 0 and u ∈ C ([0, T ];Ln(Rn; Rn) integral solution of (4.4). If ‖u0‖n is small enough, then
the solution u is global (i.e. we can take T =∞).

Idea of the proof. The proof follows the line of the proof of Theorem 4.2 by working on the space

ET =
{
u ∈ C ([0, T ];Ln(Rn; Rn); divu = 0 in Rn and

t 7→
√
t∇u(t) ∈ C ([0, T ];Ln(Rn; Mn(R))

}
,

endowed with the norm

‖u‖ET = sup
0<t<T

‖u(t)‖n + sup
0<t<T

√
t‖∇u(t)‖n.

We are looking for u ∈ ET solution of u = a+B(u, u) where B is defined by

B(u, v)(t) = −P
∫ t

0
e(t−s)∆

(1
2
∇ · (u(s)⊗ v(s) + v(s)⊗ u(s))

)
ds, t ∈ [0, T ]. (4.5)

and a(t) = et∆u0, t ∈ [0, T ].

Theorem 4.8 (G. Furioli, P.G. Lemarié-Rieusset, E. Terraneo, 2000). Let u1, u2 be two integral
solutions of (4.4) for the same initial value u0 ∈ Ln(Rn; Rn) satisfying divu0 = 0. Then u1 = u2

on [0, T ].

Proof. This result was first proved by G. Furioli, P.G. Lemarié-Rieusset and E. Terraneo in [18]
(see also the very nice review on the subject by M. Cannone [11]). The proof presented here is
based on [33] and of the same spirit as the proof of Theorem 4.3. The basic idea is to reformulate
the problem of uniqueness as to show that u = u1 − u2 is equal to zero on the interval [0, T ].
The function u satisfies the equation u = B(u, u1 + u2) where B is defined by (4.5) above. As
shown by F. Oru in her PhD-thesis, the bilinear operator

B : C ([0, T ];Ln(Rn; Rn))× C ([0, T ];Ln(Rn; Rn))→ C ([0, T ];Ln(Rn; Rn))

is not bounded. Had it been continuous, the proof of uniqueness of integral solution of the
Navier-Stokes system would have been straightforward. The idea of [18], in dimension n = 3,
was then to lower the regularity of the space L3(R3; R3) and consider a Besov space E instead
(or, as shown by Y. Meyer in [31], the weak L3 space, namely L3,∞(R3; R3)) to obtain a bounded
bilinear operator B in C ([0, T ];E)× C ([0, T ];E).
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The proof of [33] relies on a slightly different idea : instead of weaken the regularity of
the space in the x−variable, we consider a Lebesgue space Lp in time instead of the space of
continuous functions in time. As in the proof of Theorem 4.3, we write

u = B(u, u1 − u0) +B(u, u2 − u0) + 2B(u, u0 − u0,ε) + 2B(u, u0,ε)

where u0,ε is chosen in C∞c (Rn; Rn) close to u0 in the Ln−norm. To be able to show that u = 0
on a small interval [0, τ ] (τ > 0) with the same method as in the proof of Theorem 4.3, we
only need a result on the same kind as Lemma 4.4, see Lemma 4.9 below. At that point, the
argument goes exactly as before.

Lemma 4.9. The bilinear operator

B : Lp(0, T ;Ln(Rn; Rn))× C ([0, T ];Ln(Rn; Rn))→ Lp(0, T ;Ln(Rn; Rn))

is bounded for all p ∈]1,∞[. More precisely, for all p ∈]1,∞[, there exists a constant cp > 0
such that for all u ∈ Lp(0, T ;Ln(Rn; Rn)) and all v ∈ C ([0, T ];Ln(Rn; Rn)), we have

‖B(u, v)‖Lp(0,T ;Ln(Rn;Rn)) ≤ cp‖u‖Lp(0,T ;Ln(Rn;Rn))‖v‖C ([0,T ];Ln(Rn;Rn)).

Proof. To prove this lemma is exactly where the maximal Lp−regularity property of the Lapla-
cian −∆ comes in. We rewrite B(u, v) as

B(u, v)(t) = P(−∆)
∫ t

0
e−(t−s)(−∆)(−∆)−1f(s) ds

where f = −1
2∇· (u⊗v+v⊗u). The only thing to prove is then that we can estimate (−∆)−1f

in the Lp(Ln) norm with respect to the norm of u in Lp(Ln) and the norm of v in C (Ln). Indeed,
since we know that −∆ has the maximal Lp−regularity property, this would imply the result.
We have by Sobolev embeddings

‖(−∆)−1f‖Lp(Ln) ≤ C‖(−∆)−1f‖
Lp(W 1, n2 )

≤ C‖f‖
Lp(W−1, n2 )

≤ C‖(u⊗ v + v ⊗ u)‖
Lp(L

n
2 )

≤ C‖u‖Lp(Ln)‖v‖C (Ln)

and therefore we have proved Lemma 4.9.
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5 Non-autonomous maximal regularity

In this section, we deal with non-autonomous problems of the form

u′(t) +A(t)u(t) = f(t) t ≥ s
u(s) = us,

(5.1)

s ≥ 0. Compared with the problems studied before, the difference is now that the operator
A itself depends on the time t. The main consequence is that the operators d

dt and A do not
commute anymore. We will present here results without proofs (references for the proofs are
however given).

5.1 Coefficients regular in time

We will here assume that the operators {A(t), t ∈ [0, T ]} defined on a Banach space X are
uniformly (in t ∈ [0, T ]) sectorial for all t ∈ [0, T ] (see Definition 6.9 below : this implies in
particular that −A(t) is the generator of an analytic semigroup in X for all t ∈ [0, T ]) and
satisfy the so-called Acquistapace-Terreni condition : there exist constants c > 0, α ∈ [0, 1[ and
δ ∈]0, 1] such that ∥∥∥A(t)(λI +A(t))−1[A(t)−1 −A(s)−1]

∥∥∥
L (X)

≤ c|t− s|δ

1 + |λ|1−α
, (5.2)

holds for all t, s ∈ [0, T ] and λ ∈ Σθ = {z ∈ C \ {0}; | arg(z)| < π − θ}. This condition implies
in particular Hölder continuity in time of t 7→ A(t)−1. Let us point out that the Acquistapace-
Terreni condition allows however the domains D(A(t)) to depend on t. This condition has
been first used by P. Acquistapace and B. Terreni in [1] (and in a somewhat more abstract
form by R. Labbas and B. Terreni in [26] and [27]) to prove the existence of an evolution
family {U(t, s), t ≥ s ≥ 0} (for all t ≥ s ≥ 0, U(t, s) is a bounded operator in X) so that
u(t) = U(t, s)us, t ≥ s, is the solution of (5.1) with f = 0. The general form of a solution of
(5.1) is then given by the formula

u(t) = U(t, s)us +
∫ t

s
U(t, r)f(r) dr.

Definition 5.1. We say that the family of operators {A(t), t ∈ [0, T ]} has the maximal Lp−re-
gularity property if for all f ∈ Lp(0, T ;X), there exists a unique solution u of (5.1) (with s = 0
and u0 = 0) satisfying u′ ∈ Lp(0, T ;X) and

u(t) ∈ D(A(t)) for a.a. t ∈ [0, T ] and t 7→ A(t)u(t) ∈ Lp(0, T ;X).

5.1.1 Independence with respect to p

As much as in the autonomous case (see Proposition 2.4), under the condition (5.2), the property
of maximal Lp−regularity is independent of p ∈]1,∞[.

Theorem 5.2. Let X be a Banach space. Let A = {A(t), t ∈ [0, T ]} be a family of uni-
formly sectorial operators on X satisfying the Acquistapace-Terreni condition (5.2). Assume
that A enjoys the maximal Lp−regularity property for one p ∈]1,∞[. Then A has the maximal
Lq−regularity property for all q ∈]1,∞[.
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Reference for the proof. The proof of this theorem is due to M. Hieber and S. Monniaux and
can be found in [20], Theorem 3.1. The idea of the proof is to show that the condition (5.2)
implies a Hörmander-type condition for the operator S defined by

Sf(t) =
∫ t

0
A(t)e−(t−s)A(t)f(s) ds, t ∈ [0, T ]

which is the singular part of the operator f 7→ A(·)u(·) for u the solution of (5.1) with s = 0 and
u0 = 0. Therefore, applying Theorem (2.5), since S is bounded in Lp(0, T ;X) for one p ∈]1,∞[,
it is bounded in Lq(0, T ;X) for all q ∈]1,∞[.

5.1.2 The case of Hilbert spaces

Theorem 5.3. Let X = H be a Hilbert space. Let A = {A(t), t ∈ [0, T ]} be a family of
uniformly sectorial operators on H satisfying the Acquistapace-Terreni condition (5.2). Then A
enjoys the maximal Lp−regularity property for all p ∈]1,∞[.

Reference for the proof. The proof is due to M. Hieber and S. Monniaux and can be found in
[20], Theorem 3.2. It appears as a corollary of Theorem 5.4 and Theorem 5.2 below with the
symbol a defined by

a(t, τ) =


A(0)(iτI +A(0))−1, t < 0,
A(t)(iτI +A(t))−1, t ∈ [0, T ],
A(T )(iτI +A(T ))−1, t > T.

Indeed, it suffices to show that a satisfies the conditions of Theorem 5.4 to get the maximal
L2−regularity property of A and it remains to apply Theorem 5.2 to obtain the maximal
Lp−regularity property for all p ∈]1,∞[.

Theorem 5.4. Let H be a Hilbert space and a ∈ L∞(R× R; L (H)) such that ξ 7→ a(x, ξ) has
an analytic extension (with values in L (H)) in Sθ = {±z ∈ C; | arg(z)| < θ} for one θ ∈]0, π2 [
and

sup
z∈Sθ

sup
x∈R
‖a(x, z)‖L (H) <∞.

Let u ∈ S (R;H) and define

Op(a)u(x) =
1√
2π

∫
R
eixξa(x, ξ)F (u)(ξ) dξ, x ∈ R.

Then Op(a) extends to a bounded operator on L2(R;H).

Reference for the proof. The proof of this theorem is due to M. Hieber and S. Monniaux, The-
orem 2.1 in [20]. This can be viewed as a parameter dependent version of the Fourier-multiplier
theorem in Hilbert spaces.
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5.1.3 The case of UMD−spaces

A version of Theorem 5.4 was proved by P. Portal and Ž. Štrkalj in UMD−spaces [37]. This
allows to prove the following result, similar to Theorem 5.3 in the case of UMD−spaces (see
also [40] in the autonomous case). The idea is to replace boundedness of the resolvent in the
case of a Hilbert space with R−boundedness of the resolvent in the case of a Banach space with
the UMD−property.

Definition 5.5. Let X be a Banach space. Let A = {A(t), t ∈ [0, T ]} be a family of uniformly
sectorial operators on X. We say that A is a family of uniformly R−sectorial operators on X
if it satisfies

R
(
{(1 + |λ|)(λI +A)−1;λ ∈ Σθ, t ∈ [0, T ]}

)
<∞,

where the R−bound of a set of bounded operators τ , R(τ), has been defined in Section 2
(Definition 2.12).

Theorem 5.6 (Portal-Štrkalj, 2006). Let X be a UMD−space. Let A = {A(t), t ∈ [0, T ]} be
a family of uniformly R−sectorial operators on X satisfying the Acquistapace-Terreni condition
(5.2). Then A enjoys the maximal Lp−regularity property for all p ∈]1,∞[.

Reference for the proof. The proof of this result can be found in [37], Section 5 (Corollary 14).

5.2 Sufficient conditions

5.2.1 Non commutative Dore-Venni theorem

The first theorem about maximal regularity in the non-autonomous setting was proved by
S. Monniaux and J. Prüss in 1997 ([34]) and is a generalization of the theorem of Dore-Venni
(see Theorem 6.13 below) when the operator A depends on t and satisfies a condition of the
type Acquistapace-Terreni (5.2).

Theorem 5.7. Let X be a UMD−Banach space. Let A = {A(t), t ∈ [0, T ]} be a family of
uniformly sectorial operators with bounded imaginary powers on X satisfying the Acquistapace-
Terreni condition (5.2) such that

sup
t∈[0,T ]

sup
s∈R

{ 1
|s|

ln ‖A(t)is‖L (X)

}
∈
[
0,
π

2

[
.

Then A enjoys the maximal Lp−regularity property for all p ∈]1,∞[.

Reference for the proof. This result is due to S. Monniaux and J. Prüss and its proof, in a
slightly more general setting, can be found in [34], Theorem 1. Remark that in particular, the
bound on {A(t)is, s ∈ R} implies by Theorem 6.13 that every operator A(t) has the property of
maximal Lp−regularity.

5.2.2 Heat-kernel bounds

The result presented here is a generalization of Theorem 3.3 in a non-autonomous setting.
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Theorem 5.8. Let Ω ⊂ Rn and A = {A(t), t ∈ [0, T ]} be a family of unbounded operators de-
fined on L2(Ω) such that −A(t) generates an analytic semigroup in L2(Ω). We assume moreover
that A satisfies the Acquistapace-Terreni condition (5.2) in L2(Ω) and that for all t ∈ [0, T ],
the semigroup (e−sA(t))s≥0 has a kernel pt(s, x, y) with uniform Gaussian upper bounds, or more
precisely,

e−sA(t)f(x) =
∫

Ω
pt(s, x, y)f(y) dy, x ∈ Ω, t ∈ [0, T ], s ≥ 0,

and there exist constants c, b > 0 (independent of t) such that

|pt(s, x, y)| ≤ cg(bs, x, y), x, y ∈ Ω, t ∈ [0, T ], s ≥ 0,

where g was defined in Theorem 3.3. Then A enjoys the maximal Lp−regularity property in
Lq(Ω) for all p, q ∈]1,∞[.

Reference for the proof. This result is due to M. Hieber and S. Monniaux and its proof, though
in a slightly more general setting, can be found in [19], Theorem 1. Remark that in particular,
the Gaussian bound for pt implies by Theorem 3.3 that every operator A(t) has the property of
maximal Lp−regularity.

5.3 Domains constant with time

The case where the domains D(A(t)) of the operators A(t), t ∈ [0, T ] do not depend on t, i.e.
D(A(t)) = D ⊂ X, was investigated by J. Prüss and R. Schnaubelt in [38], H. Amann in [2],
in view of applications to quasi-linear evolution equations in [3], and by W. Arendt, R. Chill,
S. Fornaro and C. Poupaud in [5].

5.3.1 The abstract result

To state the result in its full generality, we need to define the notion of relative continuity.

Definition 5.9. A function A : [0, T ] → L (D,X) is called relatively continuous if for each
t ∈ [0, T ] and all ε > 0 there exist δ > 0 and η ≥ 0 such that for all x ∈ D,

‖A(t)x−A(s)x‖X ≤ ε‖x‖D + η‖x‖X

holds for all s ∈ [0, T ] with |t− s| ≤ δ.

Theorem 5.10. Let A : [0, T ] → L (D,X) be strongly measurable and relatively continuous.
Assume that A(t) has the maximal Lp−regularity property for all t ∈ [0, T ]. Then for each
x ∈ (X,D) 1

p′ ,p
and f ∈ Lp(0, T ;X) there exists a unique solution u of (5.1) satisfying u ∈

Lp(0, T ;D) ∩W 1,p(0, T ;X).

References for the proof. This theorem was first proved by J. Prüss and R. Schnaubelt in the
case where A : [0, T ] → L (D,X) is continuous (Theorem 2.5 of [38] ; see also Theorem 7.1 of
[2]). They proved in particular that the hypotheses of the theorem imply the existence of an
evolution family {U(t, s), 0 ≤ s ≤ t ≤ T}. The condition x ∈ (X,D) 1

p′ ,p
is to compare with

Remark 2.3. The theorem, in its full generality as stated above, is due to W. Arendt, R. Chill,
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S. Fornaro and C. Poupaud (Theorem 2.7 of [5]). They also proved the existence of an evolution
family {U(t, s), 0 ≤ s ≤ t ≤ T} and the solution u of (5.1) is given by

u(t) = U(t, s)us +
∫ t

s
U(t, r)f(r) dr,

for t ∈ [s, T ].

5.3.2 Application to quasi-linear evolution equations

Non-autonomous maximal regularity results seem to be a good starting point to study quasi-
linear evolution equations. This has been thoroughly studied by H. Amann (see e.g. [3]). The
problem is the following : find a solution u of

u′ +A(u)u = F (u) on [0, T ], u(0) = u0, (5.3)

with “reasonable” conditions on u 7→ A(u) and u 7→ F (u). The idea to treat this problem is to
apply a fixed point theorem on the map

v 7→ u, where u′(t) +A(v(t))u(t) = F (v(t)), t ∈ [0, T ], u(0) = u0. (5.4)

The problem is of course to find a suitable Banach space in which one can apply the fixed point
theorem, i.e. for which the solution of (5.4) has the best possible regularity properties, such as
maximal regularity. The situation studied in [3] is the following. Let

Ep = Lp(0, T ;D) ∩W 1,p(0, T ;X)

be the space associated to maximal Lp−regularity for (5.4). The operators A(u) and the function
F satisfy, for all u ∈ Ep,

A(u) ∈ L∞(0, T ; L (D,X)) and F (u) ∈ Lp(0, T ;X).

It is also assumed that the restriction of (A(u), F (u)) on a subinterval J depends only on the
restriction of u on the interval J (i.e. A and F are Volterra maps).

Theorem 5.11. Under the above assumptions, the problem (5.3) has a unique maximal solution.

Proof. Reference for the proof This result is due to H. Amann, Section 2, [3].
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6 Appendix

We collect here some of the results used in the previous sections, mostly without proofs, but
with references where they can be found.

6.1 Interpolation of operators

Theorem 6.1 (Riesz-Thorin theorem). Let (X,X , µ) and (Y,Y, ν) be two fixed measure spaces.
Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and θ ∈]0, 1[. Let

T : Lp0(X) + Lp1(X)→ Lq0(Y ) + Lq1(Y )

be a linear operator such that there exist two constants c0, c1 > 0 with

‖Tf‖Lqi (Y ) ≤ ci‖f‖Lpi (X), for all f ∈ Lpi(X), i = 0, 1.

Then for all f ∈ Lpθ(X), we have

‖Tf‖Lqθ (Y ) ≤ cθ‖f‖Lpθ (X),

where 1
pθ

= 1−θ
p0

+ θ
p1

, 1
qθ

= 1−θ
q0

+ θ
q1

and cθ = c1−θ
0 cθ1.

References for the proof. A proof for this theorem can be found in [8], Theorem 1.1.1. Another
nice reference is Terence Tao’s lecture on this subject [39], Theorem 3.

Definition 6.2. A sublinear operator T from a measure space (X,X , µ) to a measure space
(Y,Y, ν) maps simple functions f : X → C of finite measure support in X to nonnegative-valued
functions on Y (modulo almost everywhere equivalence) obeying the homogeneity relationship

T (cf) = |c|Tf for all c ∈ C

and the pointwise bound
|T (f + g)| ≤ |Tf |+ |Tg|,

for all simple functions f, g of finite measure support.

Remark 6.3. If S is a linear operator, then T = |S| is sublinear.

Definition 6.4. 1. A linear or sublinear operator from X to Y is said to be of strong type
(p, q) if there exists a constant c > 0 such that

‖Tf‖Lq(Y ) ≤ c‖f‖Lp(X), ∀ f ∈ Lp(X).

2. A linear or sublinear operator from X to Y is said to be of weak type (p, q) if there exists
a constant c > 0 such that

sup
t≥0

[
tν
(
{y ∈ Y ; |Tf(y)| ≥ t}

) 1
q

]
≤ c‖f‖Lp(X), ∀ f ∈ Lp(X).

Theorem 6.5 (Marcinkiewicz interpolation theorem). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and θ ∈]0, 1[
such that q0 6= q1 and pi ≤ qi for i = 0, 1. Let T be a sublinear operator of weak type (p0, q0) and
of weak type (p1, q1). Then T is of strong type (pθ, qθ) where 1

pθ
= 1−θ

p0
+ θ

p1
and 1

qθ
= 1−θ

q0
+ θ

q1
.
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References for the proof. A proof for this theorem can be found in [8], Theorem 1.3.1. Another
nice reference is Terence Tao’s lecture on this subject [39], Theorem 4.

Theorem 6.6 (Mihlin multiplier theorem). In the case where X and Y are both Hilbert spaces,
if M : R \ {0} → L (X,Y ) satisfies for some constant C > 0,

‖M(t)‖L (X,Y ) ≤ C and ‖tM ′(t)‖L (X,Y ) ≤ C for all t ∈ R \ {0}

then M is a Fourier multiplier (see Definition 2.11) in Lp(R;X) for all p ∈]1,∞[.

References for the proof. Section 6.1 of [8].

6.2 Calderón-Zygmund theory

Theorem 6.7 (Calderón-Zygmund decomposition). Let f ∈ L1(Rn) and fix λ > 0. Then the
following decomposition for f holds. We can write f = g +

∑
bk where

(i) |g| ≤ 2nλ almost everywhere ;

(ii) ‖g‖1 +
∑

k ‖bk‖1 ≤ 3‖f‖1 ;

(iii) there exists a family of disjoint cubes (Qk)k∈N of Rn such that

supp bk ⊂ Qk,
∫
bk = 0 and

∑
k

|Qk| ≤
1
λ
‖f‖1.

Proof. Let f ∈ L1(Rn) and fix λ > 0. We may assume ‖f‖1 = 1. We decompose Rn into cubes
of measure 1

λ : Rn =
⋃
m Q̃0,m. Then we have for all m

1
|Q̃0,m|

∫
Q̃0,m

|f | dx ≤ λ‖f‖1 = λ.

We then decompose each cube Q̃0,m into cubes of measure 1
2nλ . We denote by (Q1,m)m all cubes

for which
1

|Q1,m|

∫
Q1,m

|f | dx > λ.

The other cubes are denoted by Q̃1,m. We repeat this operation with these cubes Q̃1,m and
obtain cubes (Q2,m)m of measure 1

4nλ for which

1
|Q2,m|

∫
Q2,m

|f | dx > λ,

the remaining cubes beeing denoted by Q̃2,m. After a countable number of steps, we obtain a
family of cubes (Qj,m)j,m∈N renamed as (Qk)k∈N. We now define bk as bk = (f −mQk(f))χQk
with the notation

mQ(f) =
1
|Q|

∫
Q
f dx.

We denote by g the quantity
g = f −

∑
k

bk.
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It remains to show that g and the bk’s satisfy the conditions (i), (ii) and (iii) of the theorem.
First, if x ∈ Rn \

⋃
kQk, then for all j ∈ N, there exists m ∈ N such that x ∈ Q̃j,m. By

construction, we have

λ ≥ 1
|Q̃j,m|

∫
Q̃j,m

|f | −−−→
j→∞

|f(x)|

if x is a Lebesgue point of f . If x ∈ Qk for one k ∈ N, then

|g(x)| = |mQk(f)| ≤ |Q̃k|
|Qk|

λ = 2nλ.

All together, this gives (i) since the set of non Lebesgue points of f is of measure zero. Again
by construction, we have

supp bk ⊂ Qk and
∫
Qk

bk = 0.

Moreover, we have 1
|Qk|

∫
Qk
|f | > λ. Therefore |Qk| < 1

λ

∫
Qk
|f |. Since the cubes Qk are disjoint,

this gives ∑
k

|Qk| ≤
∑
k

1
λ

∫
Qk

|f | ≤ 1
λ

∫
Rn
|f | = 1

λ
‖f‖1.

This proves (iii). Finally, we have ‖g‖1 ≤ ‖f‖1 and ‖bk‖1 ≤ 2
∫
Qk
|f | for all k ∈ N, and this

gives (ii).

Remark 6.8. The Calderón-Zygmund decomposition works also in a measurable space (E,µ, d)
of homogeneous type where µ is a σ−finite measure and d is a quasi-metric, i.e. there exists a
constant c > 0 such that for any ball B = {y; d(x, y) < r}, if we write 2B the ball with the same
center and 2 times the radius of B, it holds µ(2B) ≤ cµ(B).

6.3 Bounded imaginary powers

Definition 6.9. A (linear) operator A on a Banach space X is sectorial if it is closed, densely
defined, has empty kernel, dense range R(A) and verifies

sup
t>0
‖t(tI +A)−1‖L (X) <∞.

Let x ∈ D(A) ∩R(A). Then one can define for z ∈ C, |<e(z)| < 1

Azx =
sinπz
π

(x
z
− 1

1 + z
A−1x+

∫ 1

0
tz+1(tI +A)−1A−1x dt

+
∫ ∞

1
tz−1(tI +A)−1Axdt

)
.

We are now in position to give the definition of operators with bounded imaginary powers.

Definition 6.10. A sectorial operator on a Banach space X has bounded imaginary powers if
the closure of the operator (Ais, D(A) ∩ R(A)) defines a bounded operator on X for all s ∈ R
and if sup

|s|≤1
‖Ais‖L (X) <∞.

36



Remark 6.11. If A admits bounded imaginary powers, then (Ais)s∈R forms a strongly continuous
group on X.

Remark 6.12. Conversely, it has been proved in [32] that a given strongly continuous group with
type strictly less than π on a UMD−Banach space can be represented as the imaginary powers
of a sectorial operator, called its analytic generator.

In the class of UMD−spaces, a positive result for operators having bounded imaginary
powers has been proved by G. Dore and A. Venni.

Theorem 6.13 (Dore-Venni, 1987). Let X be a Banach space in the UMD−class. Let A be
an operator with bounded imaginary powers (see Definition 6.10) for which the type of the group
(Ais)s∈R is strictly less than π

2 . Then A has the maximal Lp−regularity property.

Idea of the proof. The idea is to show that A+B with domain D(A)∩D(B) is invertible, where

D(A) = L2(0,∞;D(A)), (Au)(t) = Au(t), t > 0

and
D(B) = H1

0 (0,∞;X), Bu = u′.

The operator A has bounded imaginary powers with angle strictly less than π
2 and the operator

B has bounded imaginary powers with angle π
2 . We define then, for c ∈]0, 1[,

S =
1
2i

∫ c+i∞

c−i∞

A−zBz−1

sinπz
dz.

The purpose is to show that BS is bounded and that S = (A+B)−1, and this is done by letting
c→ 0+ and taking into account that the Hilbert transform is bounded in L2(R;X).
Another (shorter) proof uses the result presented in Remark 6.12 by showing that the group
(A−isBis)s∈R has a sectorial analytic generator.
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Robin boundary conditions, 15

sectorial operator, 28, 35
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