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ON THE ANALYTICITY OF THE SEMIGROUP GENERATED
BY THE STOKES OPERATOR WITH NEUMANN-TYPE

BOUNDARY CONDITIONS ON LIPSCHITZ SUBDOMAINS
OF RIEMANNIAN MANIFOLDS

MARIUS MITREA AND SYLVIE MONNIAUX

Abstract. We study the analyticity of the semigroup generated by the Stokes

operator equipped with Neumann-type boundary conditions on Lp spaces in
Lipschitz domains. Our strategy is to regularize this operator by considering
the Hodge Laplacian, which has the additional property that it commutes with
the Leray projection.

1. Introduction

This work is concerned with the study of the analyticity of the semigroup asso-
ciated with the linearized, time-dependent Stokes system with Neumann boundary
conditions

∂tu − ∆u + ∇π = f, div u = 0 in Ω × (0, T ),

ν × curl u
∣∣
∂Ω×(0,T )

= 0, ν · u
∣∣
∂Ω×(0,T )

= 0, u
∣∣
t=0

= uo in Ω,
(1.1)

as well as the parabolic Maxwell system equipped with a perfectly conductive wall
condition, i.e.,

∂tu + curl curl u = f, div u = 0 in Ω × (0, T ),

ν × u
∣∣
∂Ω×(0,T )

= 0, u
∣∣
t=0

= uo in Ω.
(1.2)

In (1.1), u and π stand, respectively, for the velocity field and pressure of a fluid
occupying a domain Ω, whereas, in (1.2), u denotes the magnetic field propagating
inside of the domain Ω. In both cases, uo denotes the initial datum, f is a given,
divergence-free field and ν stands for the unit outward normal to ∂Ω. For a discus-
sion of the relationship between the Neumann (or, as they are occasionally called,
“free-boundary”) conditions in (1.1) and the more traditionally used Navier’s slip
boundary conditions to the effect that

(1.3)

{
ν · u = 0 on (0, T ) × ∂Ω

[(∇u + ∇u�)ν]tan = 0 on (0, T ) × ∂Ω,

the interested reader is referred to [21].

Received by the editors June 25, 2007.

2000 Mathematics Subject Classification. Primary 42B30, 46A16; Secondary 46E35, 35J25.
Key words and phrases. Hodge-Laplacian, Lipschitz domains, analytic semigroup.
The first author was supported by the NSF grants DMS - 0400639 and DMS FRG - 0456306.

The second author was supported by a UMC Miller Scholarship grant.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

3125



3126 MARIUS MITREA AND SYLVIE MONNIAUX

Systems such as (1.1) and (1.2) naturally arise in the process of linearizing some
basic nonlinear evolution problems in mathematical physics, such as the Navier-
Stokes equations and certain problems related to the Ginzburg-Landau model for
superconductivity and magneto-hydrodynamics. A more detailed discussion in this
regard can be found in the monographs [7] by T.G. Cowling, [16] by L.D. Landau and
E.M. Lifshitz, [25] by M.E. Taylor and [8] by R. Dautray and J.-L. Lions. The inter-
ested reader may also consult the papers [4], [3] by T. Akiyama, H.Kasai, Y. Shibata
and M. Tsutsumi, [5] by V. Barbu, T.Havarneanu, C. Popa and S.S. Sritharan, [10]
by E.B. Fabes, J.E. Lewis and N.M.Rivière, [24] by M. Sermange and R. Temam,
and [27] by N. Yamaguchi, as well as the literature cited therein.

In a suitable L2 context, the stationary versions of (1.1) and (1.2) have unique (fi-
nite energy) weak solutions. This is most elegantly seen using the so-called {H,V , a}
formalism as in [8] which, among other things, also gives that the associated so-
lution operators generate analytic semigroups in (appropriate subspaces of) L2.
Thus, the natural issue which arises here is whether the same is true in the Lp

context, with p �= 2. This aspect, which is particularly relevant when dealing with
nonlinear versions of (1.1)-(1.2), is intimately connected with resolvent estimates for
the stationary versions of (1.1)-(1.2). More specifically, for λ ∈ C and 1 < p < ∞,
consider the boundary-value problems

λu − ∆u + ∇π = f ∈ Lp(Ω)3 with div f = 0, ν · f
∣∣
∂Ω

= 0,

div u = 0 in Ω,

u, curl u ∈ Lp(Ω)3, π ∈ W 1,p(Ω),

ν × curl u
∣∣
∂Ω

= 0, ν · u
∣∣
∂Ω

= 0,

(1.4)

and

λu − curl curl u = f ∈ Lp(Ω)3, div u = 0 in Ω,

u ∈ Lp(Ω)3, curlu ∈ Lp(Ω)3,

ν × u
∣∣
∂Ω

= 0.

(1.5)

In each case, the resolvent estimates alluded to before read

(1.6) |λ| ‖u‖Lp(Ω)3 ≤ C(Ω, p) ‖f‖Lp(Ω)3 ,

uniformly in λ satisfying |arg (λ)| < θ for some θ > 0.
When the domain Ω has a sufficiently smooth boundary, such estimates are

well-understood. The classical approach utilizes the fact that the boundary-value
problems (1.4)-(1.5) are regular elliptic (cf., e.g., [25]) and the so-called “Agmon
trick” (cf. [1]). See, for example, [17] where it is shown that (1.6) holds for each
p ∈ (1,∞) if ∂Ω ∈ C∞.

The nature of the problem at hand changes dramatically as ∂Ω becomes less
regular. To illustrate this point, let us recall the following negative result from
[9]. For each p > 3 there exists a bounded cone-like domain Ω ⊂ R3 for which
the resolvent estimate (1.6) fails in the case of the Stokes system equipped with a
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Dirichlet boundary condition, i.e. for

λu − ∆u + ∇π = f ∈ Lp(Ω)3 with div f = 0, ν · f
∣∣
∂Ω

= 0,

div u = 0 in Ω, u
∣∣
∂Ω

= 0,

u ∈ W 1,p(Ω)3, π ∈ Lp(Ω).

(1.7)

The sharp nature of the aforementioned counterexample is also underscored by
the following intriguing conjecture made by M.E. Taylor in [26].

Taylor’s conjecture. For a given bounded Lipschitz domain Ω ⊂ R3 there exists
ε = ε(Ω) > 0 such that the Stokes operator associated with (1.7) generates an
analytic semigroup on Lp provided 3/2 − ε < p < 3 + ε.

The range of p’s in the above conjecture is naturally dictated by the mapping
properties of the Leray projection

(1.8) Pp : Lp(Ω)3 −→ {u ∈ Lp(Ω)3 : div u = 0, ν · u = 0}.
When p = 2 this is taken to be the canonical orthogonal projection and is obviously
bounded, but the issue of whether this extends to a bounded operator in the context
of (1.8) for other values of p is considerably more subtle. Indeed, it has been shown
in [11] that for any bounded Lipschitz domain in Rn the operator (1.8) is bounded
precisely for 3/2− ε < p < 3+ ε for some ε = ε(Ω) > 0 and that this result is sharp
in the class of Lipschitz domains.

That any p ∈ (1,∞) will do in the case when the domain Ω has a smooth
boundary has been proved by Y. Giga in his seminal paper [12]. The resolvent
estimates established there also allowed the author to describe the domains of the
fractional powers of the Stokes operator.

In this paper, we are able to prove the analogue of Taylor’s conjecture for the
Stokes system equipped with Neumann-type boundary conditions. Our approach
makes essential use of the recent progress in understanding Poisson-type problems
for the Hodge Laplacian such as

− ∆u = f ∈ Lp(Ω)3,

ν · u
∣∣
∂Ω

= 0, ν × curl u
∣∣
∂Ω

= 0,

u ∈ Lp(Ω)3, div u ∈ W 1,p(Ω), curl u ∈ Lp(Ω)3.

(1.9)

Recently, it has been shown in [20] that, given a three-dimensional Lipschitz domain,
there exist

(1.10) 1 ≤ pΩ < 3
2 < 3 < qΩ ≤ ∞, 1/pΩ + 1/qΩ = 1,

such that (1.9) is well-posed if and only if p ∈ (pΩ, qΩ). Here, the index pΩ can
be further defined in terms of the critical exponents intervening in the (regular)
Dirichlet and Neumann problems for the Laplace-Beltrami operator in Ω (as well
as its complement), when optimal Lp estimates for the associated nontangential
maximal function are sought. One feature of Ω which influences the size of pΩ is
the local oscillations of the unit conormal ν to ∂Ω. In particular, pΩ = 1 (and,
hence, qΩ = ∞) when ν belongs to the Sarason class of functions of vanishing
mean oscillations (which is the case if, e.g., ∂Ω ∈ C1). Furthermore, for a Lipschitz
polyhedron in the Euclidean setting, pΩ can be estimated in terms of the dihedral
angles involved.
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Similar results have been proved earlier in [19] for dimensions greater than three,
albeit for the range p ∈ (pΩ, qΩ) with

(1.11) 1 ≤ pΩ < 2 < qΩ ≤ ∞, 1/pΩ + 1/qΩ = 1.

Here, one should typically regard the indices pΩ, qΩ as small perturbations of 2.
One of our key results states that the Hodge Laplacian, in the context of (1.9),

generates an analytic semigroup in Lp for any p ∈ (pΩ, qΩ). From this and the
fact that the Leray projection commutes with the semigroup generated by the
Hodge Laplacian, it is then possible to prove a similar conclusion for the Stokes
and Maxwell operators acting on Lp (cf. Theorem 7.3 and Theorem 7.4 for precise
statements). Thus, from this perspective, one key feature of our approach is to
embed the Stokes (and Maxwell) system into a more general (and, ultimately, more
manageable) elliptic problem, in a way which allows us to return to the original
system by specializing the type of data allowed in the formulation of the problem.

We carry out this program in the context of differential forms on Lipschitz sub-
domains of a smooth, compact, boundaryless Riemannian manifold M. This is
both notationally convenient and natural from a geometric point of view. It also
allows for a more general setting than previously considered in the literature even
in the case when ∂Ω ∈ C1 (semigroup methods for differential forms in the smooth
context are discussed in, e.g., P.E. Conner’s book [6]). Roughly speaking, at the
level of vector fields (identified with 1-differential forms), our main result reads as
follows (see §7 for a precise statement).

Theorem. Let Ω ⊂ M be a Lipschitz domain, 1 < p < ∞, and let Ap denote the
Stokes operator, i.e. the mapping u 	→ −∆u, for each vector field u ∈ Lp(Ω, Λ1)
satisfying

(1.12) div u = 0 in Ω, curlu ∈ Lp(Ω, Λ1), ν × curl u
∣∣
∂Ω

= 0, ν · u
∣∣
∂Ω

= 0

and for which there exists a scalar function π ∈ W 1,p(Ω) such that

(1.13) f := −∆u + ∇π ∈ Lp(Ω, Λ1) and div f = 0, ν · f
∣∣
∂Ω

= 0.

Then the operator −Ap generates an analytic semigroup
(
e−tAp

)
t>0

on the space{
f ∈ Lp(Ω, Λ1) : div f = 0, ν · f

∣∣
∂Ω

= 0
}

whenever p ∈ (pΩ, qΩ).

Several remarks are in order here. First, it is remarkable that the range of p’s
for which the above result is valid agrees with the range predicted by Taylor’s con-
jecture. Second, the case p = 2 follows directly from standard functional analysis.
Hence, from this perspective, our result can be interpreted as stating that the semi-
group generated by the Stokes operator on L2 extends to an analytic semigroup in
Lp, and the infinitesimal generator of this extension is also identified in the most
desirable fashion. Third, the above theorem is most relevant in the treatment of
the Navier-Stokes initial boundary value problem

∂tu − ∆u + (u · ∇)u + ∇π = f, div u = 0 in Ω × (0, T ),

ν × curl u
∣∣
∂Ω×(0,T )

= 0, ν · u
∣∣
∂Ω×(0,T )

= 0, u
∣∣
t=0

= uo in Ω,
(1.14)

by viewing it as an abstract Cauchy (evolution) problem; cf., e.g., [8], [23], [25]. It
is in this context that the ability to allow p �= 2 plays a particularly significant role.
This line of work has recently been pursued in [21]. Finally, we remark that similar
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results are valid in connection with the parabolic Maxwell system (1.2), as well as
certain nonlinear versions of it.

One distinctive aspect of our work is that, given the low regularity assumptions
we make on the underlying domain Ω, we are forced to work with certain non-
standard Sobolev-type spaces, which are well-adapted to the differential operators
at hand (such as the exterior derivative operator d and its formal adjoint δ). In
particular, issues such as boundary traces and embeddings become more delicate
than in the standard theory. In this regard, a key ingredient in our approach is an
estimate established in [18], to the effect that

(1.15) ‖u‖
Bp,p#

1/p (Ω,Λ�)
≤ C(p, Ω)

(
‖u‖Lp(Ω,Λ�) + ‖du‖Lp(Ω,Λ�+1) + ‖δu‖Lp(Ω,Λ�−1)

)
is valid for any Lipschitz subdomain Ω of M, any p ∈ (pΩ, qΩ) and any differential
form of degree � ∈ {0, 1, ..., n}, n := dimM, for which the right-hand side of (1.15)
is finite and for which ν ∧ u = 0 or ν ∨ u = 0 on ∂Ω. Also, d stands for the exterior
derivative operator, δ is the formal adjoint of d, Bp,q

s , 1 < p, q < ∞, s ∈ R, stands
for the Besov scale, and p# := max {p, 2}. While the smoothness exponent s = 1/p
obviously improves to s = 1 in the limiting cases � = 0 and � = n, the above
estimate is, generally speaking, sharp in the class of Lipschitz domains.

Another crucial ingredient in our approach is the solution of the Poisson problem
for the Hodge Laplacian, i.e. ∆ = −(dd∗ + d∗d) in the sense of composition of
unbounded operators, with Lp-data in Lipschitz subdomains of M from [18] and
[20]. In particular, this allows us to describe the smoothness properties exhibited
by the elements in the domain of ∆, as well as to show that the Riesz transforms
dδ∆−1, δd∆−1 extend to bounded operators on Lp(Ω, Λ�) whenever p ∈ (pΩ, qΩ).

The organization of the paper is as follows. In Section 2 we collect basic defini-
tions and preliminary results and introduce most of the notational conventions used
throughout this work. The Hodge Laplacian is reviewed in Section 3, along with
the Stokes and Maxwell operators. In Section 4 we dwell on issues of regularity for
differential forms in the domain of the Hodge Laplacian. Here we record several
key results, themselves corollaries of the work in [20] and [19]. Our strategy for de-
termining all p’s for which the Hodge Laplacian generates an analytic semigroup in
Lp is to start with p = 2 (when mere functional analysis will do) and then develop
a bootstrap-type argument which allows us to incrementally increase the value of
the integrability exponent from p to p∗ := np/(n− 1). This portion of our analysis
involves a delicate inductive scheme which is executed in Section 5. Section 6 is
subsequently devoted to proving resolvent estimates for the Hodge Laplacian. Fi-
nally, the main results of the paper are stated and proved in Section 7, which deals
with the issue of analyticity for the semigroup generated by the Hodge Laplacian,
as well as the Stokes and Maxwell operators.

2. Background material

In this section we review a number of basic definitions and collect several known
results which are going to be useful for us in the sequel.

2.1. Geometrical preliminaries. Let M be a smooth, compact, oriented mani-
fold of real dimension n, equipped with a smooth metric tensor, g =

∑
j,k gjkdxj ⊗

dxk. Denote by TM and T ∗M the tangent and cotangent bundles to M, respec-
tively. Occasionally, we shall identify T ∗M ≡ TM canonically, via the metric.
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Set Λ�TM for the �-th exterior power of TM. Sections in this vector bundle
are �-differential forms. The Hermitian structure on TM extends naturally to
T ∗M := Λ1TM and, further, to Λ�TM. We denote by 〈·, ·〉 the corresponding
(pointwise) inner product. The volume form on M, denoted in the sequel by ω, is
the unique unitary, positively oriented differential form of maximal degree on M. In
local coordinates, ω := [det (gjk)]1/2dx1∧dx2∧ ...∧dxn. In the sequel, we denote by
dV the Borelian measure induced by ω on M, i.e., dV = [det (gjk)]1/2dx1dx2...dxn.
Going further, we introduce the Hodge star operator as the unique vector bundle
morphism ∗ : Λ�TM → Λn−�TM such that u ∧ (∗u) = |u|2ω for each u ∈ Λ�TM.
In particular, ω = ∗ 1 and

(2.1) u ∧ (∗v) = 〈u, v〉ω, ∀u ∈ Λ�TM, ∀ v ∈ Λ�TM.

The interior product between a 1-form ν and an �-form u is then defined by

(2.2) ν ∨ u := (−1)�(n+1) ∗ (ν ∧ ∗u).

Let d stand for the (exterior) derivative operator and denote by δ its formal
adjoint (with respect to the metric introduced above). For further reference some
basic properties of these objects are summarized below.

Proposition 2.1. For an arbitrary 1-form ν, �-form u, (n−�)-form v, and (�+1)-
form w, the following are true:

(1) 〈u, ∗v〉 = (−1)�(n−�)〈∗u, v〉 and 〈∗u, ∗v〉 = 〈u, v〉. Also, ∗∗u = (−1)�(n−�) u;
(2) 〈ν ∧ u, w〉 = 〈u, ν ∨ w〉;
(3) ∗(ν ∧ u) = (−1)�ν ∨ (∗u) and ∗(ν ∨ u) = (−1)�+1ν ∧ (∗u);
(4) ∗δ = (−1)�d∗, δ∗ = (−1)�+1 ∗ d, and δ = (−1)n(�+1)+1 ∗ d∗ on �-forms;
(5) −(dδ + δd) = ∆, the Hodge Laplacian on M.

Let Ω be a Lipschitz subdomain of M. That is, ∂Ω can be described in appro-
priate local coordinates by means of graphs of Lipschitz functions. Then the unit
conormal ν ∈ T ∗M is defined a.e., with respect to the surface measure dσ, on ∂Ω.
For any two sufficiently well-behaved differential forms (of compatible degrees) u,
w we then have∫

Ω

〈du, w〉 dV =
∫

Ω

〈u, δw〉 dV +
∫

∂Ω

〈u, ν ∨ w〉 dσ.(2.3)

2.2. Sobolev and Besov spaces of differential forms. The Sobolev (or poten-
tial) class Lp

α(M), 1 < p < ∞, α ∈ R, is obtained by lifting the Euclidean scale
Lp

α(Rn) := {(I −∆)−α/2f : f ∈ Lp(Rn)} to M (via a C∞ partition of unity and a
pull-back). For a Lipschitz subdomain Ω of M, we denote by Lp

α(Ω) the restriction
of elements in Lp

α(M) to Ω, and set Lp
α(Ω, Λ�) = Lp

α(Ω)⊗Λ�TM, i.e. the collection
of �-forms with coefficients in Lp

α(Ω). In particular, Lp(Ω, Λ�) stands for the space
of �-differential forms with p-th power integrable coefficients in Ω.

Let us also note here that if p, p′ ∈ (1,∞) are such that 1/p + 1/p′ = 1, then

(2.4)
(
Lp

s(Ω, Λ�)
)∗

= Lp′

−s(Ω, Λ�), ∀ s ∈ (−1 + 1/p, 1/p).

The Besov spaces Bp,q
s (Ω, Λ�), 1 < p, q < ∞, s ∈ R, can be introduced in a

similar manner; alternatively, this may be obtained from the Sobolev scale via real
interpolation.
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Next, denote by Lp
1(∂Ω) the Sobolev space of functions in Lp(∂Ω) with tangential

gradients in Lp(∂Ω), 1 < p < ∞. Besov spaces on ∂Ω can then be introduced via
real interpolation, i.e.

(2.5) Bp,q
s (∂Ω) := (Lp(∂Ω), Lp

1(∂Ω))s,q , with 0 < s < 1, 1 < p, q < ∞.

Finally, if 1 < p, q < ∞ and 1/p + 1/p′ = 1, 1/q + 1/q′ = 1, we define

(2.6) Bp,q
−s (∂Ω) :=

(
Bp′,q′

s (∂Ω)
)∗

, 0 < s < 1,

and, much as before, set Bp,q
s (∂Ω, Λ�) := Bp,q

s (∂Ω) ⊗ Λ�TM.
Recall (cf. [14], [13]) that the trace operator

(2.7) Tr : Lp
s(Ω, Λ�) −→ Bp,p

s− 1
p

(∂Ω, Λ�)

is well-defined, bounded and onto if 1 < p < ∞ and 1
p < s < 1 + 1

p . Furthermore,
the trace operator has a bounded right inverse

(2.8) Ex : Bp,p

s− 1
p

(∂Ω, Λ�) −→ Lp
s(Ω, Λ�),

and if 1 < p < ∞, 1
p < α < 1 + 1

p , then

(2.9) Ker (Tr) = the closure of C∞
o (Ω, Λ�) in Lp

s(Ω, Λ�).

For 1 < p < ∞, s ∈ R, and � ∈ {0, 1, ..., n} we next introduce

Dp
� (Ω; d) := {u ∈ Lp(Ω, Λ�) : du ∈ Lp(Ω, Λ�+1},(2.10)

Dp
� (Ω; δ) := {u ∈ Lp(Ω, Λ�) : δu ∈ Lp(Ω, Λ�−1)},(2.11)

equipped with the natural graph norms. Throughout the paper, all derivatives are
taken in the sense of distributions.

Inspired by the identity (2.3), if 1 < p < ∞ and u ∈ Dp
� (Ω; δ), we then define

ν ∨ u ∈ Bp,p

− 1
p

(∂Ω, Λ�−1) by

(2.12) 〈ν ∨ u, ϕ〉 := −〈δu, Φ〉 + 〈u, dΦ〉

for any ϕ ∈ Bp′,p′

1
p

(∂Ω, Λ�−1), 1/p + 1/p′ = 1, and any Φ ∈ Lp′

1 (Ω, Λ�−1) with

Tr Φ = ϕ. Note that (2.4), (2.9) imply that the operator

(2.13) ν ∨ · : Dp
� (Ω; δ) −→ Bp,p

− 1
p

(∂Ω, Λ�−1)

is well-defined, linear and bounded for each p ∈ (1,∞), i.e.

(2.14) ‖ν ∨ u‖Bp,p

− 1
p

(∂Ω,Λ�−1) ≤ C
(
‖u‖Lp

s(Ω,Λ�) + ‖δu‖Lp
s(Ω,Λ�−1)

)
.

The range of the operator (2.13) will be denoted by

(2.15) X p
� (∂Ω) :=

{
ν ∨ u : u ∈ Dp

�+1(Ω; δ)
}

↪→ Bp,p

− 1
p

(∂Ω, Λ�),

which we equip with the natural “infimum” norm. It follows that the operator

δ∂ : X p
� (∂Ω) −→ X p

�−1(∂Ω)(2.16)

δ∂f := −ν ∨ δw, if f = ν ∨ w, w ∈ Dp
�+1(Ω; δ)

is well-defined, linear and bounded.
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Other spaces of interest for us here are defined as follows. For 1 < p < ∞, s ∈ R,
and � ∈ {0, 1, ..., n}, consider

(2.17) Dp
� (Ω; δ∨) := {u ∈ Lp(Ω, Λ�) : δu ∈ Lp(Ω, Λ�−1), ν ∨ u = 0},

once again equipped with the natural graph norm.
For further use, we record here a useful variation on the integration by parts

formula (2.3), namely that if 1 < p, p′ < ∞ satisfy 1/p + 1/p′ = 1, then

(2.18) 〈du, v〉 = 〈u, δv〉, ∀u ∈ Dp
� (Ω; d), ∀ v ∈ Dp′

� (Ω; δ∨).

2.3. The {H,V , a} formalism. Let V be a reflexive Banach space continuously
and densely embedded into a Hilbert space H so that, in particular,

(2.19) V ↪→ H ↪→ V∗

and assume that

(2.20) a(·, ·) : V × V −→ C

is a sesquilinear, bounded form. Then

(2.21) Ao : V −→ V∗, Aou := a(u, ·) ∈ V∗, ∀u ∈ V ,

is a linear, bounded operator satisfying

(2.22) V∗〈Aou, v〉V = a(u, v), ∀u, v ∈ V .

Assume further that a(·, ·) is symmetric and coercive, in the sense that there exist
C1, C2 > 0 such that

(2.23) Re a(u, u) + C1‖u‖2
H ≥ C2‖u‖2

V , ∀u ∈ V .

Then

(2.24) Ao : V −→ V∗ is bounded and selfadjoint.

Furthermore, Ao is invertible if the constant C1 appearing in (2.23) can be taken
to be zero. Going further, take A to be the part of Ao in H, i.e.

(2.25) A := Ao

∣∣∣
Dom (A)

: H −→ H,

where

(2.26) Dom(A) := {u ∈ V : Aou ∈ H}.
Hence, (2.25)-(2.26) is an unbounded, selfadjoint operator on H. Furthermore,
there exists θ ∈ (0, π/2) such that

(2.27) ‖(λI − A)−1‖ ≤ C

|λ| , θ < |arg(λ)| ≤ π,

i.e., A is sectorial; cf., e.g., [8]. In particular, the operator −A generates an analytic
semigroup on H according to the formula

(2.28) e−zAf :=
1

2πi

∫
Γθ′

e−λz(λI − A)−1f dλ, |arg (z)| < π/2 − θ′,

where θ′ ∈ (θ, π/2) and Γθ′ := {reiθ′
: r > 0}; see, e.g., [8], [23], [25]. Finally,

when A is invertible (which is the case if we can take C1 = 0 in (2.23)), then the
semigroup

(
e−tA

)
t>0

is bounded.
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In closing, we would like to point out that the above formalism (discussed in de-
tail in, e.g., [8]) is closely related to K.O. Friedrichs’ extension method, as described
on p. 325 of [15], and on p. 514 of Vol. I of [25].

3. The Hodge Laplacian and related operators

3.1. The Hodge Laplacian. Recall that the �-th Betti number of Ω, denoted by
b�(Ω), is defined as the dimension of the �-th singular homology group of Ω, viewed
as a topological space, over the reals. It has been proved in [18] that for each
Lipschitz domain Ω ⊂ M there exist two conjugate exponents

(3.1) 1 ≤ pΩ < 2 < qΩ ≤ ∞
such that the space

(3.2) Hp(Ω, Λ�) := {u ∈ Lp(Ω, Λ�) : du = 0, δu = 0, ν ∨ u = 0}
is independent of p if p ∈ (pΩ, qΩ) and has dimension b�(Ω). We shall occasionally
abbreviate H(Ω, Λ�) := H2(Ω, Λ�).

Consequently, the orthogonal projection of L2(Ω, Λ�) onto H(Ω, Λ�) extends
canonically to a bounded operator

(3.3) Pp : Lp(Ω, Λ�) −→ H(Ω, Λ�) ↪→ Lp(Ω, Λ�) if pΩ < p < qΩ,

which has the property that

(3.4) P ∗
p = Pp′ , p, p′ ∈ (pΩ, qΩ), 1/p + 1/p′ = 1.

In order to continue, for each p ∈ (1,∞) and � ∈ {0, 1, ..., n} we set

Vp(Ω, Λ�) := {u ∈ Lp(Ω, Λ�) : du ∈ Lp(Ω, Λ�+1), δu ∈ Lp(Ω, Λ�−1), ν ∨ u = 0}

= Dp(Ω; d) ∩ Dp(Ω; δ∨),(3.5)

once again equipped with the natural graph norm. If p = 2, we introduce the
symmetric, coercive quadratic form

(3.6) Q�(u, v) := 〈du, dv〉 + 〈δu, δv〉, u, v ∈ V2(Ω, Λ�),

and make the following remark.

Proposition 3.1. If b�(Ω) = 0, then there exists C > 0 such that

(3.7) Q�(u, u) ≥ C‖u‖2
L2(Ω,Λ�), ∀u ∈ V2(Ω, Λ�).

Proof. We shall rely on the estimate

(3.8) ‖u‖2
L2

1/2(Ω,Λ�) ≤ C
(
‖u‖2

L2(Ω,Λ�) + Q�(u, u)
)
, ∀u ∈ V2(Ω, Λ�),

which has been established in [18]. Reasoning by contradiction, assume that (3.7)
fails, so that there exists a sequence uj ∈ V2(Ω, Λ�) such that ‖uj‖L2(Ω,Λ�) = 1 for
each j and for which Q�(uj , uj) → 0 as j → ∞. By (3.8) and Rellich’s selection
lemma, there is no loss of generality in assuming that

(3.9) uj → u in L2(Ω, Λ�) for some u with ‖u‖L2(Ω,Λ�) = 1.

Now, Q�(uj , uj) → 0 as j → ∞ forces duj → 0 and δuj → 0 in L2(Ω, Λ�+1) and
L2(Ω, Λ�−1), respectively, as j → ∞ and, hence, du = 0, δu = 0. Furthermore,
by the continuity of the operator (2.13), we also have ν ∨ u = 0. Consequently,
u ∈ H(Ω, Λ�) = {0}, given that b�(Ω) = 0. This contradicts (3.9) and proves the
proposition. �
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Returning to the mainstream discussion, the {H,V , a} formalism discussed in
§2.3 applies to the context when V := V2(Ω, Λ�), H := L2(Ω, Λ�) and a(u, v) :=
Q�(u, v), and yields an unbounded, selfadjoint operator

(3.10) B : L2(Ω, Λ�) −→ L2(Ω, Λ�)

whose domain, Dom(B), consists of all

u ∈ V2(Ω, Λ�) such that there exists C > 0 with the property that

|Q�(u, v)| ≤ C‖v‖L2(Ω,Λ�) for all v ∈ V2(Ω, Λ�)
(3.11)

and for which

(3.12) 〈Bu, v〉 = Q�(u, v), u ∈ Dom (B), v ∈ V2(Ω, Λ�).

If we now regard the exterior derivative as an unbounded operator

d� : L2(Ω, Λ�) −→ L2(Ω, Λ�+1)(3.13)

with domain D2
� (Ω; d) and natural action,

it is not difficult to check that

(3.14) B = d�d
∗
� + d∗�d�

in the sense of composition of unbounded operators. Furthermore, under the as-
sumption that b�(Ω) = 0, this operator is actually invertible on L2(Ω, Λ�). Cf. also
[22] for a related discussion.

The latest description of B has a natural analogue in the Lp context. The
starting point is the observation that the dual of (3.13) is

d∗� : L2(Ω, Λ�+1) −→ L2(Ω, Λ�)(3.15)

Dom (d∗� ) = D2
�+1(Ω; δ∨), d∗�u = δu, ∀u ∈ D2

�+1(Ω; δ∨).

Thus, if 1 < p < ∞, it is natural to consider the unbounded operator

(3.16) Bp : Lp(Ω, Λ�) −→ Lp(Ω, Λ�)

with domain Dom (Bp) consisting of

(3.17) u ∈ Dp
� (Ω; d) ∩ Dp

� (Ω; δ∨) with du ∈ Dp
�+1(Ω; δ∨), δu ∈ Dp

�+1(Ω; d)

by setting

(3.18) Bpu := −∆u = (dδ + δd)u, ∀u ∈ Dom (Bp).

Note that since C∞
o (Ω, Λ�) is contained in Dom (Bp), it follows that Bp is densely

defined.

Proposition 3.2. Let Ω ⊂ M be a Lipschitz domain. Then for each pΩ < p < qΩ

there exists a linear, bounded operator

(3.19) Gp : Lp(Ω, Λ�) −→ Lp(Ω, Λ�),

such that Im (Gp) ⊂ Dom (Bp),

‖Gpu‖Lp(Ω,Λ�) + ‖dGpu‖Lp(Ω,Λ�+1) + ‖δGpu‖Lp(Ω,Λ�−1)

+‖dδGpu‖Lp(Ω,Λ�) + ‖δdGpu‖Lp(Ω,Λ�) ≤ C‖u‖Lp(Ω,Λ�)(3.20)

and, in the sense of composition of unbounded operators,

(3.21) BpGp = GpBp = I − Pp on Lp(Ω, Λ�).
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Furthermore,

(3.22) (Gp)∗ = Gp′ , pΩ < p, p′ < qΩ, 1/p + 1/p′ = 1

and (with the subscript � used to indicate the dependence on the degree),

dGp,� = Gp,�+1d on Dp
� (Ω; d),(3.23)

δGp,� = Gp,�−1δ on Dp
� (Ω; δ).(3.24)

Such a Green operator has been constructed in [20] when n = 3 and in [19] in
the general case. Let us also note here that (3.21) implies

(3.25) Ker (Bp) = Hp(Ω, Λ�) whenever pΩ < p < qΩ,

and that, thanks to (2.18),

(3.26) Im (Bp) ↪→ Ker (Pp) for each p ∈ (pΩ, qΩ).

Proposition 3.3. For each Lipschitz subdomain Ω of M one has

(3.27) (Bp)∗ = Bp′ , pΩ < p, p′ < qΩ, 1/p + 1/p′ = 1.

Proof. The inclusion Bp′ ⊂ (Bp)∗ is immediate from definitions, so it remains to
prove the opposite inclusion. To this end, if u ∈ Dom (B∗

p), then u ∈ Lp(Ω, Λ�) and
there exists w ∈ Lp′

(Ω, Λ�) such that

(3.28) 〈w, v〉 = 〈u, Bpv〉, ∀ v ∈ Dom (Bp).

Choosing v := Ppξ with ξ ∈ Lp(Ω, Λ�) arbitrary forces 〈w, Ppξ〉 = 0 and, ultimately,
Pp′w = 0. Next, pick v := Gpη with η ∈ Lp(Ω, Λ�) arbitrary and write

〈Gp′w, η〉 = 〈w, Gp′η〉 = 〈w, v〉

= 〈u, Bpv〉 = 〈u, BpGpη〉 = 〈u, (I − Pp)η〉

= 〈(I − Pp)u, η〉.(3.29)

Since η is arbitrary, this forces (I − Pp)u = Gp′w and, further, u = Gp′w + Pp′u ∈
Dom (Bp′). In addition, Bp′u = Bp′Gp′w + Bp′Pp′u = (I −Pp′)w = w which shows
that (Bp)∗ ⊂ Bp′ . This finishes the proof of the proposition. �

Going further, we now define the Leray projection operator

(3.30) Pp := δdGp + Pp, pΩ < p < qΩ,

and introduce the spaces

Xp(Ω, Λ�) := {u ∈ Dp
� (Ω; δ∨) : δu = 0},(3.31)

Y p(Ω, Λ�) := {du : u ∈ Dp
�−1(Ω; d)}.(3.32)

As a result of the Hodge decompositions proved in [19], it follows that

(3.33) Lp(Ω, Λ�) = Xp(Ω, Λ�) ⊕ Y p(Ω, Λ�), pΩ < p < qΩ.

For further reference we also note the following.

Lemma 3.4. For each pΩ < p, p′ < qΩ with 1/p + 1/p′ = 1, the natural integral
pairing on Ω allows for the identification

(3.34)
(
Xp(Ω, Λ�)

)∗
≡ Xp′

(Ω, Λ�).



3136 MARIUS MITREA AND SYLVIE MONNIAUX

Proof. The goal is to show that the mapping

(3.35) Φ : Xp′
(Ω, Λ�) � u 	→ 〈u, ·〉 ∈

(
Xp(Ω, Λ�)

)∗

is an isomorphism. To see that it is one-to-one, assume that w ∈ Lp(Ω, Λ�) is
arbitrary and, using (3.33), decompose w = w1 + w2 with w1 ∈ Xp(Ω, Λ�) and
w2 ∈ Y p(Ω, Λ�). Then, if u ∈ Xp′

(Ω, Λ�) is such that Φ(u) = 0, it follows from
(2.18) and (3.31)-(3.32) that 〈u, w〉 = 〈u, w1〉+ 〈u, w2〉 = 0. Since w was arbitrary,
this forces u = 0 and, hence, Φ is one-to-one.

To prove that the mapping (3.35) is onto, let f ∈
(
Xp(Ω, Λ�)

)∗
be arbitrary.

Since Xp(Ω, Λ�) is a closed subspace of Lp(Ω, Λ�), the Hahn-Banach extension
theorem in concert with Riesz’s representation theorem imply that there exists
w ∈ Lp′

(Ω, Λ�) such that f(u) = 〈u, w〉 for each u ∈ Xp(Ω, Λ�). Invoking (3.33),
we once again decompose w = w1 + w2 with w1 ∈ Xp′

(Ω, Λ�) and w2 ∈ Y p′
(Ω, Λ�).

Since, as before, 〈u, w2〉 = 0 whenever u ∈ Xp(Ω, Λ�), we may conclude that
Φ(w1) = f . This proves that Φ is also onto, hence an isomorphism. �

Proposition 3.5. For each p ∈ (pΩ, qΩ), the operator Pp introduced in (3.30) maps

(3.36) Pp : Lp(Ω, Λ�) −→ Xp(Ω, Λ�)

in a bounded, linear fashion, and satisfies

(3.37) P2
p = Pp, (Pp)∗ = Pp′ if 1/p + 1/p′ = 1.

Proof. The first part in the statement of the proposition follows from the fact that
Gp maps Lp(Ω, Λ�) into Dom (Bp). As for (3.36), we first note that thanks to (3.21),

(3.38) I − Pp = dδGp.

Based on this, if u ∈ Lp(Ω, Λ�) and v ∈ Lp′
(Ω, Λ�) with pΩ < p, p′ < qΩ, we obtain

(3.39) 〈Ppu, (I − Pp)v〉 = 〈Pp, dδGp′v〉 = 0,

where in the last step we have used (2.18) and (3.31). Thus, 〈Ppu, v〉 = 〈Ppu, Pp′v〉
and, since the last expression is symmetric in u and v, we may ultimately conclude
that 〈Ppu, v〉 = 〈u, Pp′v〉. Hence, (Pp)∗ = Pp′ . Armed with this, we may now write
〈P2

pu, v〉 = 〈Ppu, Pp′v〉 = 〈Ppu, v〉 so that P2
p = Pp, as desired. �

Lemma 3.6. For each pΩ < p < qΩ,

(3.40) Dom (Bp) ∩ Xp(Ω, Λ�) = {u ∈ Dom (Bp) : Bpu ∈ Xp(Ω, Λ�)}.

Proof. Let u ∈ Dom(Bp) ∩ Xp(Ω, Λ�) be arbitrary. Then Bpu = δdu satisfies
δ(δdu) = 0 and ν∨δdu = −δ∂(ν∨du) = 0. Thus Bpu ∈ Xp(Ω, Λ�), proving the left-
to-right inclusion in (3.40). To prove the opposite one, assume that u ∈ Dom (Bp)
has the property that Bpu ∈ Xp(Ω, Λ�). Then 0 = ν ∨ (δd + dδ)u = ν ∨ dδu and
0 = δ(δd + dδ)u = δ(dδu) = ∆(δu). Since ν ∨ δu = −δ∂(ν ∨ u) = 0, it follows that
δu ∈ Ker (Bp) = Hp

∨(Ω, Λ�), by (3.25). From this we may deduce that w := δu
satisfies dw = 0 and that w ∈ Lq(Ω, Λ�−1) for each pΩ < q < qΩ. Membership of u
to Dom (Bp) also guarantees that ν ∨u = 0. In particular, the integration by parts
formula (2.18) applies and gives that 〈δu, δu〉 = 〈δu, w〉 = 0. In turn, this forces
δu = 0 which, further, entails u ∈ Xp(Ω, Λ�). �
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Lemma 3.7. For each pΩ < p < qΩ,

(3.41) PpBp = BpPp on Dom(Bp).

Proof. We first claim that if u ∈ Dom (Bp), then dδGpu ∈ Dom (Bp). Indeed,

dδGpu ∈ Lp(Ω, Λ�),

d(dδGpu) = 0 ∈ Lp(Ω, Λ�+1),

δ(dδGpu) = −δ∆Gpu = −δ(I − Pp)u = −δu ∈ Lp(Ω, Λ�−1),

(dδ)(dδGpu) = d[δ(dδGpu)] = −dδu ∈ Lp(Ω, Λ�),

(δd)(dδGpu) = 0 ∈ Lp(Ω, Λ�),

(3.42)

and ν ∨ d(dδGpu) = 0,

(3.43) ν ∨ dδGpu = −νδdGpu − ν ∨ u + ν ∨ Ppu = 0 − δ∂(ν ∨ dGpu) − 0 = 0,

justifying the claim. Consequently,

(3.44) Ppu = u − δdGpu ∈ Dom (Bp) if u ∈ Dom (Bp),

or, in other words,

(3.45) Pp : Dom (Bp) −→ Dom (Bp) ∩ Xp(Ω, Λ�).

Furthermore, for every u ∈ Dom (Bp), we may write

BpPpu = −∆(u − dδGpu)

= dδu + δdu + dδ∆Gpu = dδu + δdu + dδ(Pp − I)u

= δdu.(3.46)

On the other hand, for every u ∈ Dom (Bp),

(3.47) PpBpu = δdGpBpu + PpBpu = δd(u − Ppu) + 0 = δdu,

which, in concert with (3.46), proves (3.41). �

Lemma 3.8. If pΩ < p < qΩ, then for each 0 ≤ � ≤ n,

(3.48) d = d Pp,� + Pp,�+1 d on Dp
� (Ω; d),

where Pp,� stands for Pp acting on Lp(Ω, Λ�), etc.

Proof. Since Pp,�+1(du) = 0 and dPp,�u = 0 for every u ∈ Dp
� (Ω; d), based on (3.30),

(3.24) and (3.21) we may write

d Pp,� u = dδGp,�+1(du) = −δdGp,�+1(du) − ∆Gp,�+1(du)

= −Pp,�+1(du) + du, ∀u ∈ Dp
� (Ω; d),(3.49)

from which (3.48) follows. �
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3.2. The Stokes operator. Given a Lipschitz subdomain Ω of M and 1 < p < ∞,
let us now define the Stokes operator

(3.50) Ap : Xp(Ω, Λ�) −→ Xp(Ω, Λ�)

by setting

Dom (Ap) := Dom (Bp) ∩ Xp(Ω, Λ�),

Apu := Bpu = −∆u, ∀u ∈ Dom (Ap).
(3.51)

Lemma 3.9. For each pΩ < p < qΩ,

(3.52) ApPp = PpBp on Dom (Bp).

Proof. By relying on Lemma 3.7 and the fact that Ap = Bp on Dom(Bp) ∩
Xp(Ω, Λ�), on Dom (Bp) we may write

(3.53) ApPp = BpPp = PpBp,

where (3.45) is also used. �
For a (possibly unbounded) operator T we let Spec (T ) denote its spectrum.

Lemma 3.10. For each pΩ < p < qΩ,

(3.54) Spec (Ap) ⊆ Spec (Bp)

and, for each λ /∈ Spec (Bp),

(3.55) (λI − Bp)−1Pp = Pp(λI − Bp)−1 = (λI − Ap)−1Pp

on Lp(Ω, Λ�).

Proof. If λ /∈ Spec (Bp), then (λI − Bp)−1 is invertible on Lp(Ω, Λ�) and, hence,
λI − Ap is one-to-one. Next, if f ∈ Xp(Ω, Λ�) ↪→ Lp(Ω, Λ�) is arbitrary, consider
w := (λI − Bp)−1f ∈ Dom (Bp) ↪→ Lp(Ω, Λ�). If we now set u := Ppw it follows
that u ∈ Dom (Bp) ∩ Xp(Ω, Λ�) = Dom (Ap) and

(3.56) (λI − Ap)−1u = λ Ppw − ApPpw = Pp(λI − Bp)w = Ppf = f,

which proves that λI−Ap is onto as well. Hence, (3.54) holds. Then the commuta-
tion identities in (3.55) are straightforward consequences of this and Lemma 3.8. �
Lemma 3.11. Whenever pΩ < p, p′ < qΩ are such that 1/p + 1/p′ = 1, it follows
that

(3.57) (Ap)∗ = Ap′ .

Proof. With p, p′ as in the statement of the lemma, let u ∈ Dom (A∗
p) ⊂ Xp′

(Ω, Λ�)
and set w := A∗

pu ∈ Xp′
(Ω, Λ�). In particular,

(3.58) 〈w, η〉 = 〈u, Apη〉, ∀ η ∈ Dom (Ap) ⊂ Xp(Ω, Λ�).

Then for every ξ ∈ Dom (Bp) we may write

〈Bpξ, u〉 = 〈Bpξ, Pp′u〉 = 〈PpBpξ, u〉

= 〈Ap(Ppξ), u〉 = 〈Ppξ, w〉 = 〈ξ, Pp′w〉

= 〈ξ, w〉,(3.59)

where we have used (3.58) and the fact that Ppξ ∈ Dom (Ap) whenever ξ ∈
Dom (Bp). As a consequence of (3.59) we have u ∈ Dom (B∗

p) = Dom (Bp′) and,
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moreover, Bp′u = w ∈ Xp′
(Ω, Λ�). All in all, u ∈ Dom (Bp′) ∩ Xp′

(Ω, Λ�) =
Dom (Ap′) and Ap′u = Bp′u = w = A∗

pu. In particular, this shows that (Ap)∗ ⊆
Ap′ .

Conversely, fix an arbitrary u ∈ Dom (Ap′). Hence, u ∈ Xp′
(Ω, Λ�)∩Dom (Bp′),

which then gives

(3.60) 〈Ap′u, w〉 = 〈Bp′u, w〉 = 〈u, Bpw〉 = 〈u, Apw〉
for each w ∈ Xp(Ω, Λ�)∩Dom (Bp) = Dom (Ap). In turn, this allows us to conclude
that u ∈ Dom (A∗

p) and A∗
p = Ap′u and, further, that Ap′ ⊆ A∗

p. The proof of the
lemma is therefore finished. �
Remark. For each pΩ < p < qΩ,

(3.61) KerAp = Ker Bp = Hp(Ω, Λ�),

so both operators are invertible if b�(Ω) = 0.

Proposition 3.12. Let � ∈ {0, 1, ..., n} be fixed and consider the spaces

(3.62) H := X2(Ω, Λ�), V := {u ∈ H : du ∈ L2(Ω, Λ�+1)},
where the latter space is equipped with the natural graph norm. Also, consider the
sesquilinear form

(3.63) a(u, v) := 〈du, dv〉, u, v ∈ V .

Then the operator associated with the triplet {H, V , a} as in §2.3 is precisely A2

(i.e., the Stokes operator introduced in (3.50)-(3.51) for p = 2). In particular, A2

generates an analytic semigroup on X2(Ω, Λ�).

Proof. According to the discussion in §2.3, the domain of the operator A associated
with the triplet {H, V , a} consists of forms u ∈ V for which there exists w ∈ H
such that

(3.64) 〈du, dv〉 = 〈w, v〉, ∀ v ∈ V .

In order to continue, we shall need the fact that the operator

(3.65) P2 : D2
� (Ω; d) −→ V is onto.

Indeed, the fact that P2 maps the space D2
� (Ω; d) into V is clear from Lemma 3.8.

Since

(3.66) P2,� acts as the identity on H,

any v ∈ V = H ∩D2
� (Ω; d) can be written as v = P2v, proving (3.65).

Returning now to the mainstream discussion, the above analysis shows that if
u, w are as in the opening paragraph, then condition (3.64) is equivalent to

(3.67) 〈du, dP2f〉 = 〈w, P2f〉, ∀ f ∈ D2
� (Ω; d).

Now, if f ∈ D2
� (Ω; d) is arbitrary, based on this, (3.66) and (3.49) we may write

〈w, f〉 = 〈P2w, f〉 = 〈w, P2f〉 = 〈du, dP2f〉

= 〈du,−P2,�+1(df) + df〉 = 〈du,−P2,�+1(df)〉 + 〈du, df〉

= 〈−P2,�+1(du), df〉 + 〈du, df〉 = 〈−P2,�+1(du) + du, df〉

= 〈dP2,� u , df〉 = 〈du, df〉.(3.68)

In turn, this is equivalent to demanding that du ∈ D2
�+1(Ω; δ∨) and δdu = w.
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Consequently, the domain of A is precisely the collection of forms
(3.69)

u ∈ L2(Ω, Λ�), δu = 0, ν ∨ u = 0, du ∈ L2(Ω, Λ�+1), δdu ∈ L2(Ω, Λ�),

and Au = δdu = −∆u for each u as in (3.69). That is, A coincides with A2

(introduced in (3.50)-(3.51)), as desired. �

3.3. The Maxwell operator. For an arbitrary Lipschitz subdomain Ω of M and
pΩ < p < qΩ, we introduce the spaces

Zp(Ω, Λ�) := {u ∈ Lp(Ω, Λ�) : du = 0},

W p(Ω, Λ�) := {δu : u ∈ Dp
� (Ω; δ∨)},

(3.70)

and consider the operator

(3.71) Qp := dδGp + Pp : Lp(Ω, Λ�) −→ Lp(Ω, Λ�).

Its main properties are summarized in the lemma below.

Lemma 3.13. For each pΩ < p < qΩ, the following hold:
(i) (Qp)∗ = Qp′ if 1/p + 1/p′ = 1, and (Qp)2 = Qp;
(ii) QpBp = BpQp on Dom (Bp);
(iii) Qp : Lp(Ω, Λ�) → Zp(Ω, Λ�) is onto;
(iv) Qp : Dp

� (Ω; δ∨) → Zp(Ω, Λ�) ∩ Dp
� (Ω; δ∨) is onto;

(v) δ = δQp,� + Qp,�−1δ on Dp
� (Ω; δ∨).

We omit the proof, which can be carried out much as for the case of the Leray
projection Pp.

Next, for each pΩ < p < qΩ, the Maxwell operator is introduced as the part of
Bp in Zp(Ω, Λ�), i.e., as the unbounded operator

(3.72) Cp : Zp(Ω, Λ�) −→ Zp(Ω, Λ�)

for which
Dom (Cp) := Dom (Bp) ∩ Zp(Ω, Λ�),

Cpu := Bpu = −∆u, ∀u ∈ Dom (Cp).
(3.73)

Some of the most basic properties of this operator are summarized below. They
parallel those of the Stokes operator discussed in §3.2 and can be proved in much
the same fashion.

Lemma 3.14. For each pΩ < p < qΩ, the following hold.
(i) CpQp = QpBp on Dom (Bp);
(ii) Spec (Cp) ⊆ Spec (Bp) and, for each λ /∈ Spec (Bp),

(3.74) (λI − Bp)−1Qp = Qp(λI − Bp)−1 = (λI − Cp)−1Qp on Lp(Ω, Λ�);

(iii)
(
Zp(Ω, Λ�)

)∗
= Zp′

(Ω, Λ�) and (Cp)∗ = Cp′ whenever 1/p + 1/p′ = 1;

(iv) KerCp = KerBp = Hp(Ω, Λ�) so that, in particular, the operator (3.72)-
(3.73) is invertible if b�(Ω) = 0.

Finally, we remark that, in the case when p = 2, the Maxwell operator (3.72)-
(3.73) generates an analytic semigroup on Z2(Ω, Λ�). More specifically, we have the
following.
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Proposition 3.15. Fix � ∈ {0, 1, ..., n} and consider the spaces

(3.75) H := Z2(Ω, Λ�), V := {u ∈ H : δu ∈ L2(Ω, Λ�+1), ν ∨ u = 0},

where the latter space is equipped with the natural graph norm. Also, consider the
sesquilinear form

(3.76) a(u, v) := 〈δu, δv〉, u, v ∈ V .

Then the operator associated with the triplet {H, V , a} as in §2.3 is precisely
the Maxwell operator C2. In particular, C2 generates an analytic semigroup on
Z2(Ω, Λ�).

The proof of these results can be carried out much as the proof of Proposi-
tion 3.12, with the help of Lemma 3.14.

4. The regularity of differential forms in Dom (Bp)

We first record a number of useful results from [19], [20]. For each 0 ≤ � ≤ n,
the operator −∆� = −∆ : L2

1(M, Λ�) → L2
−1(M, Λ�) is bounded, nonnegative, and

selfadjoint. Since for λ ∈ R with λ > 0, the operator (λI − ∆�)−1 is positive, self-
adjoint and compact on L2(M, Λ�) it follows that there exists Spec (∆�) ⊆ (−∞, 0],
a discrete set such that

(4.1) z /∈ Spec (∆�) ⇒ (∆� − zI) : L2
1(M, Λ�) −→ L2

−1(M, Λ�) is invertible.

Set

(4.2) U :=
⋃

0≤�≤n

Spec (∆�) ⊂ (−∞, 0],

and for λ /∈ U , let Γλ,� be the Schwartz kernel of ∆−λI on �-forms. In particular, we
denote by Πλ,� the associated (volume) Newtonian potential. Also, once a Lipschitz
domain Ω ⊂ M has been fixed, we define the single layer potential operator on ∂Ω
by

(4.3) Sλ,�f(x) :=
∫

∂Ω

〈Γλ,�(x, y), f(y)〉 dσy, x ∈ Ω,

for any f : ∂Ω → Λ�. Note that (∆ − λI)Sλ,� = 0 in Ω and, as proved in [19], the
operators

Sλ,� : X p
� (∂Ω) −→ Lp

1(Ω, Λ�),(4.4)

dSλ,� : X p
� (∂Ω) −→ Dp

�+1(Ω; δ),(4.5)

are well-defined and bounded. As a consequence, the operator Mλ,� defined by the
equality

(4.6)
(
−1

2I + Mλ,�

)
f = ν ∨ (dSλ,�f), ∀ f ∈ X p

� (∂Ω),

is well-defined and bounded on X p
� (∂Ω) for each p ∈ (1,∞). It has also been shown

in [19] that if 0 ≤ � ≤ n, λ /∈ U and pΩ < p < qΩ,

(4.7) −1
2I + Mλ,� : X p

� (∂Ω) −→ X p
� (∂Ω) is an isomorphism.
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Our final remark is that the spectrum of Bp acting on Lp(Ω, Λ�) is a discrete
subset Spec (B�) of (−∞, 0] which is independent of p ∈ (pΩ, qΩ); cf. [19]. We then
set

(4.8) Uo := U ∪
( ⋃

0≤�≤n

Spec (B�)
)
.

Proposition 4.1. Assume that λ ∈ C \ Uo and that pΩ < p < q < qΩ. Then, if
u ∈ Dom (Bp) is such that (λI − ∆)u ∈ Lq(Ω, Λ�), it follows that u ∈ Dom (Bq).

Proof. Denote by f̃ the extension of f := (λI − ∆)u ∈ Lq(Ω, Λ�) by zero in M\ Ω
and set

(4.9) η :=
[
(∆ − λI)−1f̃

]∣∣∣
Ω
∈ Lq

2(Ω, Λ�).

Then the differential form

w := Sλ,�

[(
−1

2I + Mλ,�

)−1(ν ∨ dη)
]

+dSλ,�−1

{(
−1

2I + Mλ,�−1

)−1
(
ν ∨ η − ν ∨ Sλ,�

[(
−1

2I + Mλ,�

)−1(ν ∨ dη)
])}

satisfies, thanks to (4.4), (4.5), (4.7), and the fact that dδ = −∆ − δd,

(4.10)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(∆ − λI)w = 0 in Ω,

w, dδw, δdw ∈ Lq(Ω, Λ�),

dw ∈ Lq(Ω, Λ�+1), δw ∈ Lq(Ω, Λ�−1),

ν ∨ w = ν ∨ η,

ν ∨ dw = ν ∨ dη.

It follows that w − η ∈ Dom (Bq) ↪→ Dom (Bp) and (λI + Bp)(w − η) = f . Conse-
quently, u = (λI + Bp)−1f = w − η ∈ Dom (Bq), as claimed. �

Our last result in this section can, informally speaking, be regarded as a state-
ment about the Lp-boundedness of the Riesz transforms dδ∆−1, δd∆−1. Alter-
natively, it is a statement about the maximal regularity of −∆ relative to the
decomposition −∆ = δd + dδ.

Proposition 4.2. Assume that Ω is a Lipschitz subdomain of the manifold M. If
pΩ < p < qΩ and u ∈ Dom (Bp), then

(4.11) ‖dδu‖Lp(Ω,Λ�) + ‖δdu‖Lp(Ω,Λ�) ≤ C‖∆u‖Lp(Ω,Λ�)

for some finite C = C(∂Ω, p) > 0.

Proof. Let the index p and the differential form u be as in the statement of the
proposition and set f := ∆u ∈ Lp(Ω, Λ�). Applying Gp to this equality and relying
on (3.21) leads to the conclusion that u = Gpf + Ppu. Hence, dδu = dδGpf and
δdu = δdGpf . Having justified this representation, the estimate (4.11) is a direct
consequence of (3.20). �
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5. Main lemma

For an arbitrary, fixed θ ∈ (0, π), consider the sector

(5.1) Σθ := {z ∈ C : |arg z| < π − θ} ⊂ C

and note that, generally speaking,

(5.2) |λa + b| ≈ |λ|a + b, uniformly for λ ∈ Σθ, a, b ≥ 0.

In what follows, we shall work with the convention that

(5.3) 1 < p < ∞ =⇒ p∗ :=
np

n − 1
.

Besides these conventions, below we collect a number of hypotheses which we
will assume to be valid throughout this section.

Hypotheses. Consider an arbitrary θ ∈ (0, π), and arbitrary λ ∈ Σθ and set

(5.4) t :=
1√
|λ|

= |λ|−1/2.

For a fixed � ∈ {0, 1, ..., n}, consider an arbitrary form

(5.5) f ∈ C∞
0 (Ω, Λ�) ↪→ L2(Ω, Λ�)

and define

(5.6) u := (λI + B2)−1f ∈ Dom (B2) ↪→ L2(Ω, Λ�).

Next, fix an arbitrary point x ∈ Ω, an arbitrary sequence of functions {ηj}j≥0 such
that

η0 ∈ C∞
o (B(x, 2t)), ηj ∈ C∞

o

(
B(x, 2j+1t) \ B(x, 2j−1t)

)
,

0 ≤ ηj ≤ 1, |∇ηj | ≤
1

2j−1t
,

∞∑
j=0

ηj = 1,
(5.7)

and decompose

f =
∞∑

j=0

fj , fj := ηjf ∈ Lp(Ω, Λ�) ↪→ L2(Ω, Λ�),(5.8)

u =
∞∑

j=0

uj , uj := (λI + B2)−1fj ∈ Dom (B2),(5.9)

where the embedding in (5.8) presupposes that p ≥ 2 (see below).
Going further, assume that there exist

(5.10) 2 ≤ p < qΩ

and two finite constants C, c > 0 with the property that

|λ|
[∫

Ω∩B(x,t)

|uj |p dV
]1/p

+ |λ|1/2
[∫

Ω∩B(x,t)

|duj |p dV
]1/p

+|λ|1/2
[∫

Ω∩B(x,t)

|δuj |p dV
]1/p

≤ C e−c 2j
[∫

Ω

|fj |p dV
]1/p

(5.11)
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for each j ≥ 0, and such that[∫
Ω∩B(x,t)

|δduj |p dV
]1/p

+
[∫

Ω∩B(x,t)

|dδuj |p dV
]1/p

≤ C e−c 2j
[∫

Ω

|fj |p dV
]1/p

, ∀ j ≥ 0.(5.12)

It is illuminating to note that the above are in effect high-energy exponential decay
estimates of the support of the inhomogeneous term, fj . The above decomposition
of f into the pieces fj takes into account the natural high-energy scaling (roughly,√
|λ||y − x| if one localizes the problem in y near x), and is inspired by the work

in [2], in connection with Kato’s square-root problem.

Lemma 5.1. Granted the above conventions and assumptions, for each k ∈ N

there exist two finite constants C, c > 0 depending only on θ, p and the Lipschitz
character of Ω such that, for each j ≥ 0,

|λ|
[∫

Ω∩B(x,t)

|uj |p
∗
dV

]1/p∗

+ |λ|1/2
[∫

Ω∩B(x,t)

|duj |p
∗
dV

]1/p∗

+|λ|1/2
[∫

Ω∩B(x,t)

|δuj |p
∗
dV

]1/p∗

≤ C e−c 2j
[∫

Ω

|fj |p
∗
dV

]1/p∗

,(5.13)

and, if in addition to the hypotheses made so far we also have

(5.14) p∗ < qΩ,

then also [∫
Ω∩B(x,t)

|δduj |p
∗
dV

]1/p∗

+
[∫

Ω∩B(x,t)

|dδuj |p
∗
dV

]1/p∗

≤ C e−c 2j
[∫

Ω

|fj |p
∗
dV

]1/p∗

, ∀ j ≥ 0.(5.15)

Proof. To prove this, we shall assume (5.7)-(5.12) and proceed in a series of steps
starting with

Step 1. For each j ≥ 0,

uj ∈ L2(Ω, Λ�), duj ∈ L2(Ω, Λ�+1), δuj ∈ L2(Ω, Λ�−1),

δduj , dδuj ∈ L2(Ω, Λ�), ν ∨ uj = 0, ν ∨ duj = 0,
(5.16)

and

(5.17) λuj − ∆uj = fj in Ω.

These follow from the definition of uj ∈ Dom (B2).

Step 2. For any Lipschitz subdomain D of M there exists 2 < qD ≤ ∞ with
the following significance. For each p ∈ [2, qD) there exists C > 0 which depends
exclusively on p and the Lipschitz character of D such that for any w satisfying

w ∈ Lp(D, Λ�), dw ∈ Lp(D, Λ�+1), δw ∈ Lp(D, Λ�−1)

and such that ν ∨ w = 0 on ∂D,
(5.18)
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it follows that

Rn
(

1
p− 1

p∗

)[∫
D

|w|p
∗
dV

]1/p∗

(5.19)

≤ C

{[∫
D

|w|p dV
]1/p

+ R
[∫

D

|dw|p dV
]1/p

+ R
[∫

D

|δw|p dV
]1/p

}
,

where R := diam (D) and, as before, p∗ := np/(n − 1).

To justify this, we first recall that, under the assumptions (5.18), the estimate

(5.20) ‖w‖Bp,p
1/p(D,Λ�) ≤ C

[
‖w‖Lp(D,Λ�) + ‖dw‖Lp(D,Λ�+1) + ‖δw‖Lp(D,Λ�−1)

]
has been established in [18], for a constant C = C(∂D, diamD) > 0 independent
of w. Now (5.19) follows from this, Sobolev’s embedding theorem to the effect that

(5.21) Bp,p
1/p(Ω) ↪→ Lp∗

(Ω), p∗ =
np

n − 1
,

and rescaling.

Step 3. For each k ∈ N there exist C, c > 0 such that

(5.22) |λ|
[∫

Ω∩B(x,t)

|uj |p
∗
dV

]1/p∗

≤ C e−c 2j

tn
(

1
p∗ − 1

p

)[ ∫
Ω

|fj |p dV
]1/p

and

(5.23) |λ|
[∫

Ω∩B(x,t)

|uj |p
∗
dV

]1/p∗

≤ C e−c 2j
[ ∫

Ω

|fj |p
∗
dV

]1/p∗

for each j ≥ 0.

To prove this, fix a function

(5.24) ζ ∈ C∞
o (B(x, t)) with ζ ≡ 1 on B(x, t/2) and |∇ζ| ≤ C t−1

and use (5.19) in the context when D := Ω ∩ B(x, t) and w := ζuj . That this
applies is guaranteed by the fact that ν ∨ (ζuj) = 0 on ∂[Ω ∩ B(x, t)] and

‖ζuj‖Lp(Ω∩B(x,t),Λ�) ≤ ‖uj‖Lp(Ω∩B(x,t),Λ�),

‖d(ζuj)‖Lp(Ω∩B(x,t),Λ�+1) ≤ C t−1‖uj‖Lp(Ω∩B(x,t),Λ�)

+ ‖duj‖Lp(Ω∩B(x,t),Λ�+1),

‖δ(ζuj)‖Lp(Ω∩B(x,t),Λ�−1) ≤ C t−1‖uj‖Lp(Ω∩B(x,t),Λ�)

+ ‖δuj‖Lp(Ω∩B(x,t),Λ�−1).

(5.25)
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Also, the Lipschitz character of D is controlled by that of Ω and, hence, there is no
loss of generality in assuming that qD = qΩ. Thus, we may write

tn
(

1
p− 1

p∗

)[∫
Ω∩B(x,t/2)

|uj |p
∗
dV

]1/p∗

≤ tn
(

1
p− 1

p∗

)[∫
Ω∩B(x,t)

|ζuj |p
∗
dV

]1/p∗

≤ C
[∫

Ω∩B(x,t)

|ζuj |p dV
]1/p

+ C t
[∫

Ω∩B(x,t)

|d(ζuj)|p dV
]1/p

+C t
[∫

Ω∩B(x,t)

|δ(ζuj)|p dV
]1/p

≤ C
[∫

Ω∩B(x,t)

|uj |p dV
]1/p

+
C

|λ|1/2

[∫
Ω∩B(x,t)

|duj |p dV
]1/p

+
C

|λ|1/2

[∫
Ω∩B(x,t)

|δuj |p dV
]1/p

≤ C e−c 2j

|λ|−1
[∫

Ω

|fj |p dV
]1/p

,(5.26)

where the last step is based on (5.11). This proves (5.22) with t replaced by t/2.
This, however, is easily remedied by carrying out the same program with t replaced
by 2t in (5.7), (5.24) and the definition of D. Going further, Hölder’s inequality
and the support condition on fj give[∫

Ω

|fj |p dV
]1/p

=
[∫

Ω∩B(x,2j+1t)

|fj |p dV
]1/p

≤ C 2jntn
(

1
p− 1

p∗

)[∫
Ω

|fj |p
∗
dV

]1/p∗

.(5.27)

In concert with (5.26), this proves a version of (5.23) with t replaced by t/2 though,
as before, this aspect is easily fixed.

Step 4. For each k ∈ N there exist C, c > 0 such that

|λ|1/2
[∫

Ω∩B(x,t)

|duj |p
∗
dV

]1/p∗

+ |λ|1/2
[∫

Ω∩B(x,t)

|δuj |p
∗
dV

]1/p∗

≤ C e−c 2j

tn
(

1
p∗ − 1

p

)[ ∫
Ω

|fj |p dV
]1/p

(5.28)

and

|λ|1/2
[∫

Ω∩B(x,t)

|duj |p
∗
dV

]1/p∗

+ |λ|1/2
[∫

Ω∩B(x,t)

|δuj |p
∗
dV

]1/p∗

≤ C e−c 2j
[ ∫

Ω

|fj |p
∗
dV

]1/p∗

(5.29)

for each j ≥ 0.

To justify these inequalities, pick a function ζ as in (5.24) and invoke (5.19) for
D := Ω ∩ B(x, t) and w := ζδuj . Note that ν ∨ (ζδuj) = −ζδ∂(ν ∨ uj) = 0 on
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∂[Ω ∩ B(x, t)] and

‖ζδuj‖Lp(Ω∩B(x,t),Λ�−1) ≤ ‖δuj‖Lp(Ω∩B(x,t),Λ�−1),

‖d(ζδuj)‖Lp(Ω∩B(x,t),Λ�) ≤ C t−1‖δuj‖Lp(Ω∩B(x,t),Λ�−1)

+ ‖dδuj‖Lp(Ω∩B(x,t),Λ�),

‖δ(ζδuj)‖Lp(Ω∩B(x,t),Λ�−2) ≤ C t−1‖δuj‖Lp(Ω∩B(x,t),Λ�−1).

(5.30)

As before, we may assume that qD = qΩ. Hence, we may estimate

tn
(

1
p− 1

p∗

)[∫
Ω∩B(x,t/2)

|δuj |p
∗
dV

]1/p∗

≤ tn
(

1
p− 1

p∗

)[∫
Ω∩B(x,t)

|ζδuj |p
∗
dV

]1/p∗

≤ C
[∫

Ω∩B(x,t)

|ζδuj |p dV
]1/p

+ C t
[∫

Ω∩B(x,t)

|d(ζδuj)|p dV
]1/p

+C t
[∫

Ω∩B(x,t)

|δ(ζδuj)|p dV
]1/p

≤ C
[∫

Ω∩B(x,t)

|δuj |p dV
]1/p

+
C

|λ|1/2

[∫
Ω∩B(x,t)

|dδuj |p dV
]1/p

≤ C e−c 2j |λ|−1
[∫

Ω

|fj |p dV
]1/p

,(5.31)

where we have utilized (5.11) and (5.12) in the last step. From this, we readily
obtain

(5.32) |λ|1/2
[∫

Ω∩B(x,t)

|δuj |p
∗
dV

]1/p∗

≤ C e−c 2j

tn
(

1
p∗ − 1

p

)[ ∫
Ω

|fj |p dV
]1/p

and, in a similar manner,

(5.33) |λ|1/2
[∫

Ω∩B(x,t)

|duj |p
∗
dV

]1/p∗

≤ C e−c 2j

tn
(

1
p∗ − 1

p

)[ ∫
Ω

|fj |p dV
]1/p

.

Together, they prove (5.28). Finally, (5.29) follows from this and (5.27).

Step 5. If p∗ < qΩ, then for each k ∈ N there exist C, c > 0 such that[∫
Ω∩B(x,t)

|δduj |p
∗
dV

]1/p∗

+
[∫

Ω∩B(x,t)

|dδuj |p
∗
dV

]1/p∗

≤ C e−c 2j

tn
(

1
p∗ − 1

p

)[ ∫
Ω

|fj |p dV
]1/p

(5.34)

and [∫
Ω∩B(x,t)

|δduj |p
∗
dV

]1/p∗

+
[∫

Ω∩B(x,t)

|dδuj |p
∗
dV

]1/p∗

≤ C e−c 2j
[ ∫

Ω

|fj |p
∗
dV

]1/p∗

(5.35)

for each j ≥ 3.
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Assume that j ≥ 3 and, once again, pick a function ζ as in (5.24). Thus,

(5.36) ν ∨ (ζδduj) = −ζδ∂(ν ∨ duj) = 0 on ∂[Ω ∩ B(x, t)].

Also, since ζfj = 0 for j ≥ 3,

(5.37) ζδduj = −ζ∆uj − ζdδuj = −ζ(λ uj − fj) − ζdδuj = −λ ζuj − ζdδuj

and, hence,

(5.38) d(ζδduj) = −λO(|∇ζ||uj |) − λζduj + O(|∇ζ||dδuj |).

In particular,

‖d(ζδduj)‖Lp(Ω,Λ�+1) ≤ C|λ|t−1‖uj‖Lp(Ω,Λ�) + |λ|‖duj‖Lp(Ω,Λ�+1)

+C t−1‖dδuj‖Lp(Ω,Λ�).(5.39)

Since also

‖ζδduj‖Lp(Ω∩B(x,t),Λ�) ≤ ‖δduj‖Lp(Ω∩B(x,t),Λ�),

‖δ(ζδduj)‖Lp(Ω∩B(x,t),Λ�) ≤ C t−1‖δduj‖Lp(Ω∩B(x,t),Λ�),
(5.40)

the estimate (5.19) is applicable to D := Ω ∩ B(x, t) and w := ζδduj (assuming
that qD = qΩ, which can be arranged). As a result, we have

tn
(

1
p− 1

p∗

)[∫
Ω∩B(x,t/2)

|δduj |p
∗
dV

]1/p∗

≤ tn
(

1
p− 1

p∗

)[∫
Ω∩B(x,t)

|ζδduj |p
∗
dV

]1/p∗

≤ C
[∫

Ω∩B(x,t)

|δduj |p dV
]1/p

+ C |λ|
[∫

Ω∩B(x,t)

|uj |p dV
]1/p

+C |λ|1/2
[∫

Ω∩B(x,t)

|duj |p dV
]1/p

+ C
[∫

Ω∩B(x,t)

|dδuj |p dV
]1/p

(5.41)

≤ C e−c 2j
[∫

Ω

|fj |p dV
]1/p

,

where the last step utilizes (5.12) and (5.11). In turn, from (5.41), Hölder’s in-
equality and rescaling we readily obtain

[∫
Ω∩B(x,t)

|δduj |p
∗
dV

]1/p∗

≤ C e−c 2j

tn
(

1
p∗ − 1

p

)[ ∫
Ω

|fj |p dV
]1/p

≤ C e−c 2j
[ ∫

Ω

|fj |p
∗
dV

]1/p∗

.(5.42)

Going further, we write dδuj = −∆uj − δduj = fj − λuj − δduj and, consequently,
dδuj = −λuj −δduj on Ω∩B(x, t) if j ≥ 3. Hence, based on this, (5.42) and (5.22),
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we may estimate[∫
Ω∩B(x,t)

|dδuj |p
∗
dV

]1/p∗

≤ |λ|
[∫

Ω∩B(x,t)

|uj |p
∗
dV

]1/p∗

+
[∫

Ω∩B(x,t)

|δduj |p
∗
dV

]1/p∗

≤ C e−c 2j

tn
(

1
p∗ − 1

p

)[ ∫
Ω

|fj |p dV
]1/p

≤ C e−c 2j
[ ∫

Ω

|fj |p
∗
dV

]1/p∗

.(5.43)

Clearly, (5.42)-(5.43) prove (5.34)-(5.35).

Step 6. Granted (5.4)-(5.12), for each q ∈ (p, p∗] there exists C = C(∂Ω, q) > 0
such that

(5.44) |λ|‖u‖Lq(Ω,Λ�) ≤ C‖f‖Lq(Ω,Λ�)

and

(5.45) |λ|1/2‖du‖Lq(Ω,Λ�+1) + |λ|1/2‖δu‖Lq(Ω,Λ�−1) ≤ C‖f‖Lq(Ω,Λ�).

Given q ∈ (p, p∗], select θ ∈ (0, 1] such that 1/q = (1− θ)/p + θ/p∗. From (5.11)
and (5.23) we then obtain

|λ|‖uj‖Lq(B(x,t)∩Ω,Λ�) ≤
[
|λ|‖uj‖Lp(B(x,t)∩Ω,Λ�)

]1−θ[
|λ|‖uj‖Lp∗ (B(x,t)∩Ω,Λ�)

]θ

≤ C e−c 2j

tn
(

θ
p∗ − θ

p

)
‖fj‖Lp(Ω,Λ�)

= C e−c 2j

tn
(

1
q −

1
p

)
‖fj‖Lp(Ω,Λ�).(5.46)

Now, with −
∫

E
g dV := [measure (E)]−1

∫
E

g dV , and with M denoting the Hardy-
Littlewood maximal operator, Fubini’s Theorem and (5.46) allow us to write

|λ|
[∫

Ω

|u|q dV
]1/q

≤ C
[∫

Ω

(∫
−

Ω∩B(x,t)

|u|q dV
)
dVx

]1/q

= C|λ|
{∫

Ω

[(∫
−

Ω∩B(x,t)

|u|q dV
)1/q]q

dVx

}1/q

≤ C|λ|
{∫

Ω

[ ∞∑
j=0

(∫
−

Ω∩B(x,t)

|uj |q dV
)1/q]q

dVx

}1/q

≤ C
{∫

Ω

[ ∞∑
j=0

C e−c 2j

2jn/p
(∫
−

Ω∩B(x,2jt)

|f |p dV
)1/p]q

dVx

}1/q

≤ C
( ∞∑

j=0

e−c 2j

2jn/p
)
‖M(|f |p)‖1/p

Lq/p(Ω)

≤ C‖f‖Lq(Ω).(5.47)
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This proves (5.44). The estimate (5.45) is then justified in a similar manner, by
relying on (5.11) and (5.29).

Step 7. The estimate (5.35) also holds if 0 ≤ j ≤ 3.

It suffices to show that there exists C = C(∂Ω, p) > 0 such that

(5.48) ‖δduj‖Lp∗ (Ω,Λ�) + ‖dδuj‖Lp∗ (Ω,Λ�) ≤ C ‖fj‖Lp∗ (Ω,Λ�)

for each j ≥ 0. To this end, we first note that the conclusion in Step 6 (with q = p∗)
applied to uj , fj in place of u, f yields

(5.49) |λ|‖uj‖Lp∗ (Ω,Λ�) ≤ C ‖fj‖Lp∗ (Ω,Λ�), ∀ j ≥ 0.

Next, recall that uj ∈ Dom (B2) and (λI − ∆)uj = fj ∈ C∞
0 (Ω, Λ�) ↪→ Lp∗

(Ω, Λ�).
Since our current assumptions imply 2 < p∗ < qΩ, Proposition 4.1 guarantees that
uj ∈ Dom (Bp∗). Consequently, (4.11) and (5.49) allow us to write

‖dδuj‖Lp∗ (Ω,Λ�) + ‖δduj‖Lp∗ (Ω,Λ�) ≤ C‖∆uj‖Lp∗ (Ω,Λ�)

= C‖λuj − fj‖Lp∗ (Ω,Λ�) ≤ C|λ|‖uj‖Lp∗ (Ω,Λ�) + C‖fj‖Lp∗ (Ω,Λ�)

≤ C‖fj‖Lp∗ (Ω,Λ�), ∀ j ≥ 0,(5.50)

for some finite C = C(∂Ω, p) > 0. Thus, (5.48) is proved.

Step 8. Proof of (5.13), (5.15).

Note that (5.13) is a consequence of (5.23) and (5.29). Finally, (5.35) takes care
of the case j ≥ 3 of (5.15), whereas the case 0 ≤ j ≤ 3 is contained in Step 7.

This finishes the proof of Lemma 5.1. �

6. Resolvent estimates

In this section we shall make use of Lemma 5.1 in order to prove resolvent
estimates for the Hodge Laplacian. To state our main result in this regard, recall
the definition of the sector Σθ from (5.1). Also, given a Lipschitz domain Ω ⊂ M,
dimM = n, recall the critical exponents pΩ, qΩ from (3.1), and set

(6.1) q∗Ω :=
nqΩ

n − 1
, (q∗Ω)′ :=

(
1 − 1

q∗Ω

)−1

.

Theorem 6.1. Let Ω ⊂ M be a Lipschitz domain, and fix � ∈ {0, 1, ..., n} and
θ ∈ (0, π). Then for each λ ∈ Σθ and each

(6.2) p ∈ (pΩ, qΩ)

the operator

(6.3) λI + Bp : Dom (Bp) ⊂ Lp(Ω, Λ�) −→ Lp(Ω, Λ�)

has a bounded inverse. In addition, there exists C = C(∂Ω, θ, p) > 0 such that

‖(λI + Bp)−1f‖Lp(Ω,Λ�) ≤ C |λ|−1‖f‖Lp(Ω,Λ�),(6.4)

‖d(λI + Bp)−1f‖Lp(Ω,Λ�−1) + ‖δ(λI + Bp)−1f‖Lp(Ω,Λ�+1)

≤ C |λ|−1/2‖f‖Lp(Ω,Λ�),(6.5)

‖dδ(λI + Bp)−1f‖Lp(Ω,Λ�) + ‖δd(λI + Bp)−1f‖Lp(Ω,Λ�) ≤ C ‖f‖Lp(Ω,Λ�),(6.6)

for any λ ∈ Σθ and any f ∈ Lp(Ω, Λ�).
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Moreover, for each

(6.7) p ∈
(
(q∗Ω)′ , q∗Ω

)
the mapping (λI + B2)−1 : L2(Ω, Λ�) → L2(Ω, Λ�) extends to a bounded, linear
operator from Lp(Ω, Λ�) into itself which continues to satisfy (6.4) and (6.5).

Proof. Consider first the case when p ∈ (2, qΩ). In this scenario, for an arbitrary
λ ∈ Σθ, the fact that the operator (6.3) is one-to-one follows trivially from the
corresponding statement for p = 2 (dealt with in §3). To see that this operator
is also onto, let f ∈ Lp(Ω, Λ�) ↪→ Lp(Ω, Λ�) and consider u := (λI + B2)−1f ∈
Dom (B2). Thanks to Proposition 4.1, we have that u ∈ Dom (Bp) and (λI+Bp)u =
f , which proves that the operator (6.3) is indeed onto.

Turning our attention to (6.4)-(6.5), we note that it suffices to prove these esti-
mates for an arbitrary f ∈ C∞

0 (Ω, Λ�). With the notation and conventions intro-
duced in §5, these are going to be consequences of (5.44) and (5.45), provided we
show that the index q appearing there can be chosen arbitrarily in (2, qΩ). In turn,
by virtue of the inductive bootstrap argument in Lemma 5.1, this latter condition
will hold as soon as we prove that (5.11)-(5.12) are valid for the choice p = 2.

The argument utilizes a Caccioppoli-type inequality along with a trick we have
learned from [2]. More concretely, we start by pairing both sides of (5.17) with ūj

in the L2-sense. After integrating by parts, we eventually obtain

(6.8) λ

∫
Ω

|uj |2 dV +
∫

Ω

|duj |2 dV +
∫

Ω

|δuj |2 dV =
∫

Ω

〈fj , ūj〉 dV.

From this we may further deduce, based on (5.2) and the Cauchy-Schwarz inequal-
ity, that
(6.9)
|λ|‖uj‖L2(Ω,Λ�) + |λ|1/2‖duj‖L2(Ω,Λ�+1) + |λ|1/2‖δuj‖L2(Ω,Λ�−1) ≤ C‖fj‖L2(Ω,Λ�).

Next, with t retaining the same significance as before, i.e. t := |λ|−1/2, pick a new
family of functions {ξj}j≥3 such that

(6.10) ξj ∈ C∞
o (B(x, 2j−2t)), for each j ≥ 3.

Taking the L2-pairing of ξ2
j ūj with both sides of (5.17) and keeping in mind that

ξjηj = 0 for each j ≥ 3 we may write, based on integrations by parts that

λ

∫
Ω

ξ2
j |uj |2 dV +

∫
Ω

ξ2
j |duj |2 dV +

∫
Ω

ξ2
j |δuj |2 dV

=
∫

Ω

O
(
|∇ξj ||uj |

[
|ξj ||duj | + |ξj ||δuj |

])
dV.(6.11)

From this and (5.2) we then obtain that

|λ|
∫

Ω

ξ2
j |uj |2 dV +

∫
Ω

ξ2
j |duj |2 dV +

∫
Ω

ξ2
j |δuj |2 dV

≤ C

∫
Ω

|∇ξj ||uj |
[
|ξj ||duj | + |ξj ||δuj |

]
dV, for j ≥ 3,
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which, via Cauchy-Schwarz’s inequality and a standard trick that allows us to
absorb like-terms with small coefficients in the left-hand side, further gives

|λ|
∫

Ω

ξ2
j |uj |2 dV +

∫
Ω

ξ2
j |duj |2 dV +

∫
Ω

ξ2
j |δuj |2 dV(6.12)

≤ C

∫
Ω

|∇ξj |2|uj |2 dV, for each j ≥ 3.

In particular, ∫
Ω

ξ2
j |duj |2 dV +

∫
Ω

ξ2
j |δuj |2 dV ≤ C

∫
Ω

|∇ξj |2|uj |2 dV and(6.13)

|λ|
∫

Ω

ξ2
j |uj |2 dV ≤ C

∫
Ω

|∇ξj |2|uj |2 dV, ∀ j ≥ 3.(6.14)

Much as in [2], we now replace the cutoff function ξj in (6.14) by eαjξj −1 (which
once again obeys (6.10)), where

(6.15) αj :=

√
|λ|

2C‖∇ξj‖L∞
, j ≥ 3.

In a first stage, this yields

(6.16)
∫

Ω

|uj |2|eαjξj − 1|2 dV ≤ 1
4

∫
Ω

|uj |2|eαjξj |2 dV, ∀ j ≥ 3,

then, further,

(6.17)
∫

Ω

|uj |2|eαjξj |2 dV ≤ 4
∫

Ω

|uj |2 dV, ∀ j ≥ 3,

in view of the generic, elementary implication ‖f − g‖ ≤ 1
2‖f‖ ⇒ ‖f‖ ≤ 2‖g‖. If

we now assume that the original cutoff functions {ξj}j also satisfy

(6.18) ξj ≡ 1 on B(x, 2j−3t), 0 ≤ ξj ≤ 1, |∇ξj | ≤
C

2jt
, for each j ≥ 3,

it follows from (6.15) that αj ≥ c 2j , and from (6.17) that

(6.19) |eαj |2
∫

Ω∩B(x,2j−3t)

|uj |2 dV ≤ 4
∫

Ω

|uj |2 dV, ∀ j ≥ 3.

In concert with (5.11), the above analysis shows that there exist C, c > 0 such that

|λ|
∫

Ω∩B(x,2j−3t)

|uj |2 dV ≤ C |λ| e−c 2j

∫
Ω

|uj |2 dV,

≤ C
e−c 2j

|λ|

∫
Ω

|fj |2 dV, ∀ j ≥ 3.(6.20)

All in all, from (6.9) with 0 ≤ j ≤ 3 and (6.20) with j > 3, we obtain

(6.21) |λ|
∫

Ω∩B(x,t)

|uj |2 dV ≤ C
e−c 2j

|λ|

∫
Ω

|fj |2 dV, ∀ j ≥ 0.

Furthermore, (6.13), (6.9), (6.18) and (6.20) also imply that, for some C, c > 0,

(6.22)
∫

Ω

[
|duj |2 + |δuj |2

]
dV ≤ C

e−c 2j

|λ|

∫
Ω

|fj |2 dV, ∀ j ≥ 0.
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There remains to prove the p = 2 version of (5.12), a task to which we now turn.
In fact, we aim at showing that

(6.23)
∫

B(x,t/2)∩Ω

{
|dδuj |2 + |δduj |2

}
dV ≤ C e−c 2j

∫
Ω

|fj |2 dV, ∀ j ≥ 0,

which corresponds to (5.12) written for p = 2 and t/2 in place of t (the latter
condition being just a minor technicality, easily addressed via rescaling). In turn,
if ζ is as in (5.24), (6.23) will be a simple consequence of the estimate

(6.24)
∫

B(x,t)∩Ω

{
|d(ζδuj)|2 + |δ(ζduj)|2

}
dV ≤ C e−c 2j

∫
Ω

|fj |2 dV,

which, so we claim, is valid for each j ≥ 0. In order to justify (6.24), we shall first
establish the estimate

(6.25)
∫

B(x,t)∩Ω

|ζ∆uj |2 dV ≤ C e−c 2j

∫
Ω

|fj |2 dV, ∀ j ≥ 0.

To prove this, we first note that since ∆uj = λuj − fj in Ω for every j, then

(6.26) ‖∆uj‖L2(Ω,Λ�) ≤ |λ|‖uj‖L2(Ω,Λ�) + ‖fj‖L2(Ω,Λ�) ≤ C‖fj‖L2(Ω,Λ�),

by (6.9). As this implies (6.25) for small j’s, we can assume for the remainder of
the proof that j ≥ 3. In particular, fj ≡ 0 on B(x, t). Next, multiply by ζ both
sides of the equality ∆uj = λuj − fj to get ζ∆uj = λζuj and write∫

B(x,t)∩Ω

|ζ∆uj |2 dV = |λ|2
∫

B(x,t)∩Ω

|ζuj |2 dV

≤ |λ|2
∫

B(x,t)∩Ω

|uj |2 dV ≤ C e−c 2j

∫
Ω

|fj |2 dV,(6.27)

where in the last step we have used (6.20). This finishes the proof of (6.25).
To continue, write

(6.28) −ζ∆uj = d(ζδuj) + δ(ζduj) + O
(
|∇ζ|

[
|duj | + |δuj |

])
so that ∫

B(x,t)∩Ω

|d(ζδuj) + δ(ζduj)|2 dV

=
∫

B(x,t)∩Ω

|ζ∆uj |2 dV +
∫

B(x,t)∩Ω

O
(
|∇ζ|2

[
|duj |2 + |δuj |2

])
dV

≤ C e−c 2j

∫
Ω

|fj |2 dV + |λ|
∫

B(x,t)∩Ω

[
|duj |2 + |δuj |2

]
dV

≤ C e−c 2j

∫
Ω

|fj |2 dV(6.29)

by (6.25), (5.24) and (6.22). On the other hand,

(6.30) |d(ζδuj)|2 + |δ(ζduj)|2 = |d(ζδuj) + δ(ζduj)|2 − 2 Re 〈d(ζδuj) , δ(ζduj)〉
and, via an integration by parts,

(6.31)
∫

B(x,t)∩Ω

〈d(ζδuj) , δ(ζduj)〉 dV = 0
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since d2 = 0 and ν∨(ζduj) = ζ(ν∨duj) = 0 on ∂[Ω∩B(x, t)]. Thus, all in all, (6.24)
is a consequence of (6.30), (6.29) and (6.31), and this finishes the proof of (5.12)
when p = 2. In turn, as explained earlier, this concludes the proof of (6.4)-(6.5) in
the case when 2 < p < qΩ.

As regards the estimate (6.6), we may invoke Proposition 4.2, (6.4) and the fact
that ∆(λI + Bp)−1f = λ(λI + Bp)−1f + f in order to justify it in the case when
2 < p < qΩ. Now, the case when pΩ < p < 2 follows from what we have proved
so far and duality; cf. Proposition 3.3. Since the case p = 2 is implicit in the
above analysis, this finishes the proof of (6.4)-(6.6). Finally, the last claim in the
statement of the theorem is a consequence of what we have proved up to this point
and Lemma 5.1. This completes the proof of Theorem 6.1. �

7. Analytic semigroups

We start with the case of the Hodge Laplacian, for which we have:

Theorem 7.1. If Ω ⊂ M is a Lipschitz domain and 0 ≤ � ≤ n, then the operator
−Bp generates an analytic semigroup in Lp(Ω, Λ�) for each p ∈ (pΩ, qΩ). More
specifically, for each θ ∈ (0, π/2) there exists an analytic map

(7.1) Tp : Σθ −→ L
(
Lp(Ω, Λ�), Lp(Ω, Λ�)

)
such that the following hold:

lim
z→0

z∈Σθ

Tp(z)f = f in Lp(Ω, Λ�), ∀ f ∈ Lp(Ω, Λ�),(7.2)

Tp(z1 + z2) = Tp(z1)Tp(z2), ∀ z1, z2 ∈ Σθ,(7.3)

Dom(Bp) =
{

u ∈ Lp(Ω, Λ�) : lim
t→0+

Tp(t)u − u

t
exists in Lp(Ω, Λ�)

}
,(7.4)

−Bpu = lim
t→0+

Tp(t)u − u

t
for each u ∈ Dom (Bp).(7.5)

Furthermore, whenever p ∈
(
(q∗Ω)′, q∗Ω

)
, the semigroup (7.1) further extends to a

mapping T̃p : Σθ −→ L
(
Lp(Ω, Λ�), Lp(Ω, Λ�)

)
which continues to satisfy (7.3). For

this range of p’s, this extension satisfies

(7.6) (T̃p)∗ = T̃p′ , 1/p + 1/p′ = 1.

Proof. The first part follows from Theorem 6.1 and the standard theory; cf., e.g.,
Theorem 5.2 on p. 61 of [23] and the comments preceding it. The second part is a
consequence of this and the last claim in the statement of Theorem 6.1. �

As is customary, we shall set

(7.7) e−tBp := Tp(t), t > 0.

Corollary 7.2. Under the hypotheses of Theorem 7.1, for each t > 0 and p ∈
(pΩ, qΩ) one has

(7.8) Pp e−tBp = e−tBp Pp, Qp e−tBp = e−tBp Qp.

Proof. This is an immediate consequence of Theorem 7.1, Lemma 3.7 and (ii) in
Lemma 3.13. �
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Theorem 7.3. For a Lipschitz domain Ω ⊂ M, 0 ≤ � ≤ n, and 1 < p < ∞, let Ap

denote the Stokes operator as introduced in §3.2. Then −Ap generates an analytic

semigroup
(
e−tAp

)
t>0

on the space Xp(Ω, Λ�) provided p ∈ (pΩ, qΩ).

Furthermore, for each t > 0,

(7.9)
(
e−tAp

)∗
= e−tAp′ , 1/p + 1/p′ = 1,

and

(7.10) Pp e−tBp = e−tAp Pp on Lp(Ω, Λ�),

whenever p ∈ (pΩ, qΩ).

Proof. Fix some θ ∈ (0, π/2) and assume that p ∈ (pΩ, qΩ). Using Lemma 3.10 and
Theorem 6.1, for each f ∈ Xp(Ω, Λ�) we may then write

‖(λI + Ap)−1f‖Lp(Ω,Λ�) = ‖(λI + Ap)−1Ppf‖Lp(Ω,Λ�)

= ‖Pp(λI + Bp)−1f‖Lp(Ω,Λ�)

≤ C|λ|−1‖f‖Lp(Ω,Λ�),(7.11)

uniformly for λ ∈ Σθ. Consequently, −Ap generates an analytic semigroup on
Xp(Ω, Λ�) whenever p ∈ (pΩ, qΩ).

Finally, (7.9) and (7.10) follow readily from this, Lemma 3.8 and Lemma 3.14,
completing the proof of the theorem. �

In a similar fashion, one can prove the following.

Theorem 7.4. If Ω ⊂ M is a Lipschitz domain, 0 ≤ � ≤ n, 1 < p < ∞, and
if Cp denotes the Maxwell operator, then −Cp generates an analytic semigroup(
e−tCp

)
t>0

on the space Zp(Ω, Λ�) whenever p ∈ (pΩ, qΩ). Moreover, for each
t > 0,

(7.12)
(
e−tCp

)∗
= e−tCp′ , 1/p + 1/p′ = 1,

and

(7.13) Qp e−tBp = e−tCp Qp on Lp(Ω, Λ�),

for each p ∈ (pΩ, qΩ).

Theorem 7.5. Fix 0 ≤ � ≤ n and suppose that Ω ⊂ M is a Lipschitz domain
for which b� = 0. Then for each p ∈ (pΩ, qΩ), the analytic semigroups generated
by the operators −Ap, −Bp and −Cp, respectively, on Xp(Ω, Λ�), Lp(Ω, Λ�) and
Zp(Ω, Λ�) are bounded.

Proof. This follows from Theorems 7.1, 7.3 and 7.4, given that under the current
topological assumptions the operators Ap, Bp and Cp are invertible. �

In closing, we would like to point out that, as an obvious corollary of what we
have proved so far, similar results are valid for the Hodge duals of the operators
Ap, Bp and Cp (i.e., for ∗Ap∗, ∗Bp∗ and ∗Cp∗). For example, corresponding to
the Hodge dual of Bp, −∆, defined as an unbounded operator on Lp(Ω, Λ�) with
domain

{u ∈ Dp
� (Ω; d)∩Dp

� (Ω; δ) : du ∈ Dp
�+1(Ω; δ), δu ∈ Dp

�−1(Ω; d), ν∧u = 0, ν∧δu = 0},
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generates an analytic semigroup whenever pΩ < p < qΩ. We leave the details for
the remaining operators to the interested reader.
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