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Abstract The aim of this paper is to prove the boundedness of a category
of integral operators mapping functions from Besov spaces on the boundary
of a Lipschitz domain Ω ⊆ Rn into functions belonging to weighted Sobolev
spaces in Ω. The model we have in mind is the Poisson integral operator

(PIf)(x) := −
∫

∂Ω

∂ν(y)G(x, y)f(y) dσ(y), x ∈ Ω,

where G(·, ·) is the Green function for the Dirichlet Laplacian in Ω, ∂ν is the
normal derivative, and σ is the surface area on ∂Ω, in the case where Ω ⊆ Rn

is a bounded Lipschitz domain satisfying a uniform exterior ball condition.

1 Introduction

The main result of this paper is the following theorem.

Theorem 1.1. Let Ω be a bounded Lipschitz domain in Rn, n > 2. Denote
by σ the surface measure on ∂Ω, and set
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δ(x) := dist (x, ∂Ω), x ∈ Rn. (1.1)

Consider the integral operator

Qf(x) :=
∫

∂Ω

q(x, y)f(y) dσ(y), x ∈ Ω, (1.2)

satisfying the following conditions:

(1) Q1 =constant in Ω,

(2) there exists N ∈ N0 := N ∪ {0} and ε ∈ [0, 1) such that for each
k ∈ {0, 1, . . . , N}

|∇k+1
x q(x, y)| 6 co δ(x)−k−ε|x− y|−n+ε (1.3)

for all x ∈ Ω and almost every y ∈ ∂Ω, for some constant co = co(Ω, k) > 0.
Assume that

n− 1
n− ε

< p 6 ∞, (n− 1)
(1

p
− 1

)
+

< s < 1− ε. (1.4)

Then for each k ∈ {0, 1, 2, . . . , N} there exists C = C(Ω, p, s, k) > 0 such
that

‖δk+1− 1
p−s|∇k+1Qf |‖Lp(Ω) +

k∑

j=0

‖∇jQf‖Lp(Ω) 6 C‖f‖Bp,p
s (∂Ω) (1.5)

for every f ∈ Bp,p
s (∂Ω).

Above, |∇ku| :=
∑
|β|6k |∂βu| and (a)+ := max{a, 0}. Also, Bp,p

s (∂Ω)
denotes the (diagonal) Besov scale on ∂Ω (cf. Section 2 for more details).

The primary motivation for considering this type of result comes from the
study of the Dirichlet problem

∆u = 0 in Ω, u ∈ Bp,q
s+1/p(Ω), Tru = f ∈ Bp,q

s (∂Ω), (1.6)

where Bp,q
α (Ω) denotes the scale of Besov spaces in Ω and Tr is the boundary

trace operator, via the potential theoretic representation

u(x) = −
∫

∂Ω

∂ν(y)G(x, y)f(y) dσ(y), x ∈ Ω, (1.7)

where ν is the outward unit normal to ∂Ω and G(x, y) is the Green function
for the Dirichlet Laplacian in Ω. In this scenario, the a priori estimate

‖u‖Bp,q
s+1/p

(Ω) 6 C‖f‖Bp,q
s (∂Ω) (1.8)
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is equivalent to the boundedness of the Poisson integral operator

PI : Bp,q
s (∂Ω) −→ Bp,q

s+ 1
p

(Ω) (1.9)

defined as

(PIf)(x) := −
∫

∂Ω

∂ν(y)G(x, y)f(y) dσ(y), x ∈ Ω. (1.10)

In the case where Ω ⊆ Rn is a smooth bounded domain, it is well known that

|∇yG(x, y)| 6 C |x− y|1−n, x, y ∈ Ω, (1.11)

from which it can be deduced that, for every k ∈ N0,

|∇k+1
x ∇yG(x, y)| 6 C

|x− y|−n

min{|x− y|, δ(x)}k
∀x ∈ Ω, ∀ y ∈ Ω. (1.12)

As a consequence, in the case ∂Ω ∈ C∞, the integral operator (1.10) has ker-
nel q(x, y) := −∂ν(y)G(x, y) which satisfies conditions (1)–(2) of Theorem 1.1
and hence

‖δk+1− 1
p−s|∇k+1PI f |‖Lp(Ω) +

k∑

j=0

‖∇jPI f‖Lp(Ω)

6 C‖f‖Bp,p
s (∂Ω) ∀ f ∈ Bp,p

s (∂Ω). (1.13)

In order to pass from the weighted Sobolev space estimate (1.13) to the
Besov estimate implicit in (1.9), we need an auxiliary regularity result which
we now describe. Let L be a homogeneous, elliptic differential operator of
even order with (possibly matrix-valued) constant coefficients. Fix a Lipschitz
domain Ω ⊂ Rn. Denote by Ker L the space of functions u satisfying Lu = 0
in Ω. Then for 0 < p 6 ∞ and s ∈ R denote by Hp

s(Ω; L) the space of
functions u ∈ KerL subject to the size/smoothness condition

‖u‖Hp
s(Ω;L) := ‖δ〈s〉−s|∇〈s〉u|‖Lp(Ω) +

〈s〉−1∑

j=0

‖∇ju‖Lp(Ω) < ∞. (1.14)

Hereinafter, for a given s ∈ R we set

〈s〉 :=





s, s ∈ N0,
[s] + 1, s > 0, s /∈ N,
0, s < 0,

(1.15)

where [·] is the integer-part function, i.e., 〈s〉 is the smallest nonnegative
integer greater than or equal to s. Let F p,q

α (Ω) denote the scale of Triebel–
Lizorkin spaces in Ω (again, cf. Section 2 for definitions).
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Theorem 1.2. Let L be as above, and let Ω be a bounded Lipschitz domain
in Rn. Then for any s ∈ R and p, q ∈ (0,∞),

Hp
s(Ω;L) = F p,q

s (Ω) ∩KerL. (1.16)

Consequently,

F p,q
s (Ω) ∩Ker L = Bp,p

s (Ω) ∩KerL (1.17)

for s ∈ R and p, q ∈ (0,∞). Finally, for p = ∞

H∞k+s(Ω;L) = B∞,∞
k+s (Ω) ∩KerL (1.18)

for any k ∈ N0 and s ∈ (0, 1).

For 1 < p, q < ∞, s > 0, this theorem was proved in [9] for L = ∆ and in [1]
for L = ∆2. The present formulation was stated in [14, 10]. The boundedness
of the operator (1.9) directly follows from Theorem 1.2 and (1.13).

Consider the case of an irregular ∂Ω. In this case, the estimate (1.11) is
not necessarily satisfied. Indeed, if (1.11) holds, then the Green operator

Gv(x) :=
∫

Ω

G(x, y)v(y) dy, x ∈ Ω, (1.19)

behaves itself like a fractional integral operator of order one. Thus, in partic-
ular,

G : Lp(Ω) −→ Lp∗(Ω) (1.20)

would be bounded whenever

1 < p < n and
1
p∗

=
1
p
− 1

n
, (1.21)

by the Hardy–Littlewood–Sobolev fractional integration theorem (cf., for
example, [22]). However, Dahlberg [4] showed that for a Lipschitz domain
Ω ⊆ Rn the operator (1.20) is bounded only if 1 < p < pn + ε (with
ε = ε(Ω) > 0), where

pn :=
3n

n + 3
for n > 3 and p2 :=

4
3
. (1.22)

By means of counterexamples, Dahlberg also showed that this result is sharp.
Thus, as a consequence, the estimate (1.11) cannot hold in a general Lipschitz
domain. Hence extra regularity properties need to be imposed.

Recall that Ω ⊆ Rn satisfies the uniform exterior ball condition (hence-
forth abbreviated as UEBC) if, outside Ω, one call “roll” a ball of a fixed
size along the boundary. It is easy to show that any convex domain satisfies



Singular Integral Operators 183

UEBC. Parenthetically, we also note that a bounded open set Ω has C1,1

boundary if and only if Ω and Rn \Ω satisfy UEBC. However, UEBC alone
does allow the boundary to develop irregularities which are “outwardly di-
rected.” Grüter and Widman [7] showed that if Ω ⊂ Rn is a bounded open
domain satisfying UEBC, then there exists C = C(Ω) > 0 such that the
Green function for the Dirichlet Laplacian satisfies the following estimates
for all x, y ∈ Ω:

(i) G(x, y) 6 C dist (x, ∂Ω)|x− y|1−n;

(ii) G(x, y) 6 C dist (x, ∂Ω) dist (y, ∂Ω)|x− y|−n;

(iii) |∇xG(x, y)| 6 C|x− y|1−n;

(iv) |∇xG(x, y)| 6 C dist (y, ∂Ω)|x− y|−n;

(v) |∇x∇yG(x, y)| 6 C|x− y|−n.

Thus, it is possible to run the above program (based on Theorems 1.1
and 1.2) in order to conclude that for a bounded Lipschitz domain Ω ⊆ Rn

satisfying UEBC the Poisson integral operator (1.9) is bounded whenever

0 < q 6 ∞,
n− 1

n
< p 6 ∞ and (n− 1)

(1
p
− 1

)
+

< s < 1. (1.23)

In addition, a similar result is valid for

PI : Bp,p
s (∂Ω) −→ F p,q

s+ 1
p

(Ω) (1.24)

provided that p, q < ∞ (cf. Theorem 3.4).
The layout of the paper is as follows. Section 2 contains a background

material pertaining to Lipschitz domains; smoothness spaces defined first in
the whole Euclidean space Rn, then in open subsets of Rn and, finally, on
Lipschitz surfaces of codimension one in Rn, as well as basic interpolation
results and Green function estimates. In Section 3, we deduce a number of
estimates depending on the geometric properties of a domain, which are then
used to prove the main result, Theorem 1.1. We mention that a result sim-
ilar to Theorem 1.1 holds for matrix-valued kernels q(·, ·) and vector-valued
functions f (in this case, condition (1) should read: Q maps constant vectors
defined on ∂Ω into constant vectors in Ω). A result similar to Theorem 1.1,
but for a more restrictive class of operators was proved in [19, 14].

2 Preliminaries

Recall that an open, bounded set Ω in Rn is called a bounded Lipschitz
domain if there exists a finite open covering {Oj}16j6N of ∂Ω with the
property that, for every j ∈ {1, ..., N}, Oj ∩ Ω coincides with the portion
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of Oj lying above the graph of a Lipschitz function ϕj : Rn−1 → R (where
Rn−1 × R is a new system of coordinates obtained from the original one
via a rigid motion). As is known, for a Lipschitz domain Ω (bounded or
unbounded), the surface measure dσ is well defined on ∂Ω and there exists
an outward pointing normal vector ν = (ν1, · · · , νn) at almost every point on
∂Ω. In particular, this allows one to define the Lebesgue scale in the usual
fashion, i.e., for 0 < p 6 ∞

Lp(∂Ω) :=
{

f :∂Ω → R : f measurable, and

‖f‖Lp(∂Ω) :=
(∫

∂Ω

|f |p dσ
)1/p

< ∞
}

.

The Besov and Triebel–Lizorkin scales for a Lipschitz domain Ω are defined
by restrictions of the corresponding Besov and Triebel–Lizorkin spaces on Rn,
so we start by briefly reviewing the latter. One convenient point of view is
offered by the classical Littlewood–Paley theory (cf., for example, [20, 23, 24]).
More specifically, let Ξ be the collection of all systems {ζj}∞j=0 of Schwartz
functions with the following properties:

(i) there exist positive constants A, B, C such that

supp (ζ0) ⊂ {x : |x| 6 A};
supp (ζj) ⊂ {x : B2j−1 6 |x| 6 C2j+1} if j ∈ N;

(2.1)

(ii) for every multiindex α there is a positive finite constant Cα such that

sup
x∈Rn

sup
j∈N

2j|α||∂αζj(x)| 6 Cα; (2.2)

(iii)
∞∑

j=0

ζj(x) = 1 for every x ∈ Rn. (2.3)

Fix a family {ζj}∞j=0 ∈ Ξ. Also, let F and S′(Rn) denote the Fourier
transform and the class of tempered distributions in Rn respectively.. Then
the Triebel–Lizorkin space F p,q

s (Rn) is defined for s ∈ R, 0 < p < ∞ and
0 < q 6 ∞ as

F p,q
s (Rn) :=

{
f ∈ S′(Rn) :

‖f‖F p,q
s (Rn) :=

∥∥∥
( ∞∑

j=0

|2sjF−1(ζjFf)|q
)1/q∥∥∥

Lp(Rn)
< ∞

}
(2.4)

(with a natural interpretation when q = ∞). The case p = ∞ is somewhat
special, in that a suitable version of (2.4) needs to be used (cf., for example,
[20, p. 9]).
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If s ∈ R and 0 < p, q 6 ∞, then the Besov space Bp,q
s (Rn) can be defined

as

Bp,q
s (Rn) :=

{
f ∈ S′(Rn) :

‖f‖Bp,q
s (Rn) :=

( ∞∑

j=0

‖2sjF−1(ζjFf)‖q
Lp(Rn)

)1/q

< ∞
}

. (2.5)

Different choices of the system {ζj}∞j=0 ∈ Ξ yield the same spaces (2.4)–
(2.5) equipped with equivalent norms. Furthermore, the class of Schwartz
functions in Rn is dense in both Bp,q

s (Rn) and F p,q
s (Rn) provided s ∈ R and

0 < p, q < ∞.
Next, we discuss the adaptation of certain smoothness classes to the situ-

ation where the Euclidean space is replaced with the boundary of a Lipschitz
domain Ω. Consider three parameters p, q, s such that

0 < p, q 6 ∞, (n− 1)
(1

p
− 1

)
+

< s < 1 (2.6)

and assume that Ω ⊂ Rn is the upper-graph of a Lipschitz function
ϕ : Rn−1 → R. We then define Bp,q

s (∂Ω) as the space of locally integrable
functions f on ∂Ω for which the assignment Rn−1 3 x 7→ f(x, ϕ(x)) belongs
to Bp,q

s (Rn−1), the classical Besov space in Rn−1. We equip this space with
the (quasi-) norm

‖f‖Bp,q
s (∂Ω) := ‖f(·, ϕ(·))‖Bp,q

s (Rn−1). (2.7)

As far as Besov spaces with a negative amount of smoothness are concerned,
in the same context as above, we set

f ∈ Bp,q
s−1(∂Ω) ⇐⇒ f(·, ϕ(·))

√
1 + |∇ϕ(·)|2 ∈ Bp,q

s−1(R
n−1), (2.8)

‖f‖Bp,q
s−1(∂Ω) := ‖f(·, ϕ(·))

√
1 + |∇ϕ(·)|2‖Bp,q

s−1(Rn−1). (2.9)

As is known, the case p = q = ∞ corresponds to the usual (inhomogeneous)
Hölder spaces Cs(∂Ω) defined by the requirement

‖f‖Cs(∂Ω) := ‖f‖L∞(∂Ω) + sup
x6=y

x,y∈∂Ω

|f(x)− f(y)|
|x− y|s < +∞, (2.10)

i.e.,

B∞,∞
s (∂Ω) = Cs(∂Ω), s ∈ (0, 1). (2.11)

All the definitions then readily extend to the case of (bounded) Lipschitz
domains in Rn via a standard partition of unity argument. These Besov
spaces have been defined in such a way that a number of basic properties
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from the Euclidean setting carry over to spaces defined on ∂Ω in a rather
direct fashion. We continue by recording an interpolation result which is going
to be useful for us here (for a proof see [14, 10]). To state it, recall that (·, ·)θ,q

and [·, ·]θ stand for the real and complex interpolation brackets.

Proposition 2.1. Suppose that Ω is a bounded Lipschitz domain in Rn.
Assume that 0 < p, q, q0, q1 6 ∞ and

either , (n− 1)
(1

p
− 1

)
+

< s0 6= s1 < 1,

or − 1 + (n− 1)
(1

p
− 1

)
+

< s0 6= s1 < 0.

(2.12)

Then with 0 < θ < 1, s = (1− θ)s0 + θs1

(Bp,q0
s0

(∂Ω), Bp,q1
s1

(∂Ω))θ,q = Bp,q
s (∂Ω). (2.13)

Furthermore, if s0 6= s1 and 0 < pi, qi 6 ∞, i = 0, 1, satisfy min {q0, q1} <
∞ as well as either of the following two conditions:

either (n− 1)
(

1
pi
− 1

)
+

< si < 1, i = 0, 1,

or − 1 + (n− 1)
(

1
pi
− 1

)
+

< si < 0, i = 0, 1,
(2.14)

then
[Bp0,q0

s0
(∂Ω), Bp1,q1

s1
(∂Ω)]θ = Bp,q

s (∂Ω), (2.15)

where 0 < θ < 1, s := (1− θ)s0 + θs1, 1
p := 1−θ

p0
+ θ

p1
and 1

q := 1−θ
q0

+ θ
q1

.

We next discuss atomic decompositions of the diagonal Besov scale on
∂Ω. We call S = Sr = Sr(x) a surface ball provided that x ∈ ∂Ω, 0 < r 6
diam (Ω), and Sr = B(x, r) ∩ ∂Ω. Also, for κ > 0 and Sr(x) surface ball we
write κS := B(x,κr) ∩ ∂Ω. Recall that the tangential gradient is defined
by ∇tanu := ∇u − (∂νu)ν. A function aS ∈ Lip (∂Ω) is called an atom for
Bp,p

s (∂Ω), (n− 1)/n < p 6 1, (n− 1)( 1
p − 1) < s < 1, if

(1) ∃S = Sr, surface ball, such that supp(aS) ⊆ S, (2.16)

(2) ‖∇tanaS‖L∞(∂Ω) 6 rs−n−1
p −1. (2.17)

It is useful to observe that, by Fundamental Theorem of Calculus, (1)& (2)
above also entail

‖aS‖L∞(∂Ω) 6 Crs−n−1
p , (2.18)

where C depends exclusively on the Lipschitz character of Ω. The follow-
ing proposition, extending well-known results from the Euclidean setting,
appeared in [14].

Proposition 2.2. Let Ω ⊂ Rn be a bounded Lipschitz domain. Fix (n −
1)/n < p 6 1 and (n− 1)( 1

p − 1) < s < 1. Then
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‖f‖Bp,p
s (∂Ω) ≈ inf

{(∑

S

|λS |p
)1/p

: f =
∑

S

λSaS ,

aS are Bp,p
s (∂Ω) atoms, {λS}S ∈ `p

}
, (2.19)

uniformly for f ∈ Bp,p
s (∂Ω).

In (2.19), the infimum is taken over all possible representations of f as∑
S λSaS , for countable families of surface balls, and the series is assumed to

converge absolutely in L1
loc(∂Ω).

Given an arbitrary open subset Ω of Rn, we denote by f |Ω the restriction
of a distribution f in Rn to Ω. For 0 < p, q 6 ∞ and s ∈ R, both Bp,q

s (Rn)
and F p,q

s (Rn) are spaces of (tempered) distributions, hence it is meaningful
to define

Ap,q
s (Ω) := {f distribution in Ω : ∃ g ∈ Ap,q

s (Rn) such that g|Ω = f},
‖f‖Ap,q

s (Ω) := inf {‖g‖Ap,q
s (Rn) : g ∈ Ap,q

s (Rn), g|Ω = f}, f ∈ Ap,q
s (Ω),

(2.20)
where A = B or A = F .

The existence of a universal extension operator for Besov and Triebel–
Lizorkin spaces in an arbitrary Lipschitz domain Ω ⊂ Rn was established by
Rychkov [21]. This allows us transferring a number of properties of the Besov–
Triebel–Lizorkin spaces in the Euclidean space Rn to the setting of a bounded
Lipschitz domain Ω ⊂ Rn. If k is a nonnegative integer and 1 < p < ∞, then

F p,2
k (Ω) = W k,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω), |α| 6 k}, (2.21)

the classical Sobolev spaces in Ω.
A proof of the following proposition can be found in [10].

Proposition 2.3. Suppose Ω is a bounded Lipschitz domain in Rn. Let
α0, α1 ∈ R, α0 6= α1, 0 < q0, q1, q 6 ∞, 0 < θ < 1, α = (1 − θ)α0 + θα1.
Then

(F p,q0
α0

(Ω), F p,q1
α1

(Ω))θ,q = Bp,q
α (Ω), 0 < p < ∞, (2.22)

(Bp,q0
α0

(Ω), Bp,q1
α1

(Ω))θ,q = Bp,q
α (Ω), 0 < p 6 ∞. (2.23)

Furthermore, if α0, α1 ∈ R, 0 < p0, p1 6 ∞, and 0 < q0, q1 6 ∞ are such
that

either max {p0, q0} < ∞, or max {p1, q1} < ∞, (2.24)

then
[F p0,q0

α0
(Ω), F p1,q1

α1
(Ω)]θ = F p,q

α (Ω), (2.25)

where 0 < θ < 1, α = (1− θ)α0 + θα1, 1
p = 1−θ

p0
+ θ

p1
and 1

q = 1−θ
q0

+ θ
q1

.



188 D. Mitrea et al.

On the other hand, if α0, α1 ∈ R, 0 < p0, p1, q0, q1 6 ∞ are such that

min {q0, q1} < ∞, (2.26)

then
[Bp0,q0

α0
(Ω), Bp1,q1

α1
(Ω)]θ = Bp,q

α (Ω), (2.27)

where θ, α, p, q are as above.

Let Ω be a bounded Lipschitz domain in Rn. The Green function for the
Laplacian in Ω is a unique function G : Ω ×Ω → [0, +∞] satisfying

G(·, y) ∈ W 1,2(Ω \Br(y)) ∩
◦

W 1,1(Ω) ∀ y ∈ Ω, ∀ r > 0, (2.28)

(
◦

W 1,1(Ω) denotes the closure in W 1,1(Ω) of smooth compactly supported
functions in Ω), and

∫

Ω

〈∇xG(x, y),∇ϕ(x)〉 dx = ϕ(y) ∀ϕ ∈ C∞c (Ω). (2.29)

Thus,

G(x, y)
∣∣∣
x∈∂Ω

= 0 for every y ∈ Ω,

−∆G(·, y) = δy for each fixed y ∈ Ω,
(2.30)

where the restriction to the boundary is taken in the sense of Sobolev trace
theory and δy is the Dirac distribution in Ω with mass at y (cf., for example,
[7, 11]). As is well known, the Green function is symmetric, i.e.,

G(x, y) = G(y, x) ∀x, y ∈ Ω, (2.31)

so that, by the second line in (2.30),

−∆G(x, ·) = δx for each fixed x ∈ Ω. (2.32)

Definition 2.4. An open set Ω ⊂ Rn satisfies a uniform exterior ball con-
dition (UEBC) if there exists r > 0 with the following property: For every
x ∈ ∂Ω there exists a point y = y(x) ∈ Rn such that

Br(y)
∖{x} ⊆ Rn\Ω and x ∈ ∂Br(y). (2.33)

The largest radius r satisfying the above property will be referred to as the
UEBC constant of Ω.

The relevance of the above concept is apparent from the following result
of Grüter and Widman (which is contained in [7, Theorem 3.3]).

Theorem 2.5. Let Ω ⊂ Rn be open and satisfy a UEBC. Then there exists
C = C(Ω) > 0 such that the Green function for the Laplacian satisfies
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|∇x∇yG(x, y)| 6 C|x− y|−n for all x, y ∈ Ω. (2.34)

We record here a version of the interpolation theorem of E. Stein for ana-
lytic families of operators which will be needed in the sequel. This particular
variant appeared in [2].

Theorem 2.6. Let (A0, A1) be an interpolation pair of complex Banach
spaces. We set X = A0

⋂
A1 and Xθ = [A0, A1]θ for 0 6 θ 6 1. Analo-

gously, let (B0, B1) be another interpolation pair of complex Banach spaces.
We set Y = B0

⋂
B1 and Yθ = [B0, B1]θ for 0 6 θ 6 1.

Let Lz be a family of linear operators defined in X , with values in Y,
indexed by a complex parameter z, with 0 6 <ez 6 1. Assume that l(Lzf) is
continuous and bounded in 0 6 <ez 6 1, and analytic in 0 < <ez < 1 for
every f ∈ X and every continuous linear functional l on Y. Assume further
that for <ez = 0 and f ∈ X

‖Lzf‖Y0 6 c0‖f‖X0 (2.35)

and for <ez = 1 and f ∈ X

‖Lzf‖Y1 6 c1‖f‖X1 . (2.36)

Then for 0 < <ez = θ < 1 there exists c = c(s, q0, q1, c0, c1) such that

‖Lzf‖Yθ
6 c‖f‖Xθ

(2.37)

uniformly for f ∈ X .

3 Geometric Estimates and the Proof of the Main
Result

In the proof of Theorem 1.1, we use a couple of geometric lemmas which we
discuss below (recall the notation in (1.1)).

Lemma 3.1. Let Ω ⊆ Rn be a Lipschitz domain. Then for each point y ∈
∂Ω and parameters α < 1, N < n − α there exists a finite constant C =
C(Ω,N, α) > 0 such that

∫

Ω∩B(y,r)

δ(x)−α

|x− y|N dx 6 Crn−α−N ∀ r > 0. (3.1)

Furthermore, if N > n− 1 and 1 > α > n−N , then
∫

Ω\B(y,r)

δ(x)−α

|x− y|N dx 6 Crn−α−N ∀ r > 0, (3.2)
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for some C = C(Ω, N, α) > 0.

This is the basic geometric result on which our entire subsequent analysis is
based. The proof is straightforward if Ω = Rn

+ and is reduced to this special
case in the case of a general Lipschitz domain by localizing and flattening
the boundary via a bi-Lipschitz map (which does not distort distances by
more than a fixed factor). We omit the details, but parenthetically mention
that Lemma 3.1 continues to hold for a more general class of domains (more
specifically, for domains satisfying an interior corkscrew condition and such
that ∂Ω is Ahlfors regular of dimension n − 1; for definitions, background,
and pertinent references the interested reader is referred to [8, 11]).

Lemma 3.2. Let Ω ⊆ Rn be a Lipschitz domain. Then for any points y, z ∈
∂Ω and parameters c > 1, β < n, M > n − β there exists a finite constant
C = C(Ω, c,N, α) > 0 such that

∫

Γ (z)

δ(x)−β

|x− y|M dx 6 C|y − z|n−β−M , (3.3)

where

Γ (z) := {x ∈ Ω : |x− z| < c δ(x)}. (3.4)

Proof. Once again, it is possible to show that the conclusion in Lemma 3.2
remains valid if Ω ⊆ Rn is a domain satisfying an interior corkscrew condition
and such that ∂Ω is Ahlfors regular of dimension n − 1. We shall, however,
not pursue this avenue here.

To start the proof in earnest, fix c > 1, z, y ∈ ∂Ω and set r := |z − y|. For
j ∈ N introduce

Γj(z) := {x ∈ Γ (z) : 2j−1r < |x− z| < 2jr} (3.5)

and define

Ij :=
∫

Γj(z)

δ(x)−β

|x− y|M dx. (3.6)

Note that for x ∈ Γj(z) we have |x−y| 6 |x−z|+ |z−y| 6 (2j +1)r 6 2j+1r
and δ(x) ≈ |x − z| ≈ 2jr, where the notation a ≈ b means that there exist
c1, c2 > 0 such that c1a 6 b 6 c2a. Keeping these in mind, we can write for
each α ∈ R

Ij 6 C(2jr)α−β

∫

B(y,2j+1r)∩Ω

δ(x)−α

|x− y|M dx ∀ j ∈ N. (3.7)

Now, we choose α < min{1, n−M} and apply Lemma 3.1 to the integral in
(3.7) to further obtain
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Ij 6 C(2jr)α−β(2jr)n−α−M = 2j(n−M−β)rn−M−β ∀ j ∈ N. (3.8)

Next, we note that from our hypothesis n−M−β < 0, so
∞∑

j=1

2j(n−M−β) < ∞
which, in the combination with (3.8), gives that there exists C > 0 such that

∫

Γ (z)\B(z,r/2)

δ(x)−β

|x− y|M dx 6 C|y − z|n−β−M . (3.9)

It remains to estimate
∫

Γ (z)∩B(z,r/2)

δ(x)−β

|x− y|M dx.

Observe that if x ∈ Γ (z) ∩ B(z, r/2), then |x − y| ≈ |z − y| = r. Thus, it
suffices to prove that

∫

Γ (z)∩B(z,r/2)

δ(x)−β dx 6 Crn−β . (3.10)

For each j = 0, 1, 2, . . . we consider

Γ j(z) := {x ∈ Γ (z) : 2−j−1r 6 |x− z| 6 2−jr}. (3.11)

If x ∈ Γ j(z), we have δ(x) ≈ |x− z| ≈ 2−jr. Thus,
∫

Γ j(z)

δ(x)−β dx 6 C(2−jr)−β(2−jr)n ∀ j = 0, 1, 2, . . . . (3.12)

Furthermore,

∫

Γ (z)∩B(z,r/2)

δ(x)−β dx =
∞∑

j=0

∫

Γ j(z)

δ(x)−β dx

6 Crn−β
∞∑

j=0

2j(β−n) 6 Crn−β , (3.13)

as desired, where for the last inequality in (3.13) we used the fact that β−n <
0. This proves (3.10). The proof of Lemma 3.2 is complete. ut

After these preliminaries, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Consider first the case p = 1, in which scenario we
prove that for each k ∈ {0, 1, . . . , N} there exists C = C(Ω, k) > 0 such that

‖δk−s|∇k+1Qf | ‖L1(Ω) 6 C‖f‖B1,1
s (∂Ω) ∀ f ∈ B1,1

s (∂Ω). (3.14)
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Fix f ∈ B1,1
s (∂Ω). By property (1), the operator ∇k+1Q annihilates con-

stants. Hence

(∇k+1Qf)(x)=
∫

∂Ω

∇k+1q(x, y)(f(y)−f(z)) dσ(y) ∀x ∈ Ω, z ∈ ∂Ω. (3.15)

Combining (3.15) with (2), we obtain

|(∇k+1Qf)(x)| 6
∫

∂Ω

δ(x)−k−ε|x− y|−n+ε|f(y)− f(z)| dσ(y) (3.16)

for all x ∈ Ω and z ∈ ∂Ω. Next, fix c > 1 and for each x ∈ Ω define the set

Ex := {z ∈ ∂Ω : |x− z| < cδ(x)}. (3.17)

Now, consider x∗ ∈ ∂Ω such that |x− x∗| = δ(x). Then for every z ∈ Ex we
have |z−x∗| 6 |x−z|+ |x−x∗| < (c+1)δ(x). Moreover, if 0 < θ < c−1, then
for every z ∈ ∂Ω such that |z−x∗| < θδ(x) we have |x−z| 6 |x−x∗|+|x∗−z| <
cδ(x). Thus,

B(x∗, θδ(x)) ∩ ∂Ω ⊆ Ex ⊆ B(x∗, (c + 1)δ(x)) ∩ ∂Ω. (3.18)

From (3.18) it follows that

σ(Ex) ≈ δ(x)n−1 (3.19)

(note that for (3.19) to hold we only need ∂Ω to be Ahlfors regular). Next,
we take the integral average over Ex of (3.16) and use (3.19) to conclude
that, for all x ∈ Ω,

|(∇k+1Qf)(x)| 6 Cδ(x)1−n−k−ε

∫

Ex

∫

∂Ω

|f(y)− f(z)|
|x− y|n−ε

dσ(y) dσ(z). (3.20)

Multiplying the left- and right-hand sides of (3.20) by δ(x)k−s and then
integrating over Ω with respect to x, we obtain

∫

Ω

δ(x)k−s|∇k+1
x Qf(x)| dx

6 C

∫

Ω

δ(x)1−n−s−ε

∫

Ex

∫

∂Ω

|x− y|−n+ε|f(y)− f(z)| dσ(y) dσ(z) dx

= C

∫

∂Ω

∫

∂Ω

|f(y)− f(z)|
(∫

Γ (z)

δ(x)1−n−s−ε

|x− y|n−ε
dx

)
dσ(y) dσ(z), (3.21)

where

Γ (z) = {x ∈ Ω : |x− z| < cδ(x)}. (3.22)



Singular Integral Operators 193

At this point, we use Lemma 3.2 with β = −1 + n + s + ε and M = n − ε
(note that since p = 1, we have 0 < s < 1− ε, so β < n and n−M − β < 0
as needed). By Lemma 3.2, the integral over Γ (z) in (3.21) is bounded by
C|x− y|−(n−1+s). The latter used back in (3.21) yields (3.14) since

‖f‖B1,1
s (∂Ω) ≈ ‖f‖L1(∂Ω) +

∫

∂Ω

∫

∂Ω

|f(x)− f(y)|
|x− y|n−1+s

dσ(x) dσ(y). (3.23)

Consider the case p = ∞. The goal is to show that

‖δk+1−s|∇k+1Qf |‖L∞(Ω) 6 C‖f‖B∞,∞
s (∂Ω), 0 6 k 6 N. (3.24)

For this purpose, we assume that x ∈ Ω is arbitrary and again denote by
x∗ ∈ ∂Ω a point such that |x− x∗| = δ(x). Then

δ(x)k+1−s|∇k+1Qf(x)| = δ(x)k+1−s

∣∣∣∣
∫

∂Ω

∇k+1
x q(x, y)(f(y)− f(x∗)) dσ(y)

∣∣∣∣ .

(3.25)
Since f ∈ B∞,∞

s (∂Ω) = Cs(∂Ω), we have

|f(y)− f(x∗)| 6 ‖f‖B∞,∞
s (∂Ω)|y − x∗|s ∀ y ∈ ∂Ω. (3.26)

To proceed, we split the integral in (3.25) into two parts, I1 and I2, corre-
sponding to y ∈ B(x∗, cr) ∩ ∂Ω and y ∈ ∂Ω \ B(x∗, cr) respectively, where
r := |x − x∗| and c = c(∂Ω) > 0 is a suitable constant. Using (3.26) and
(1.3), we obtain

|I1| 6 C‖f‖B∞,∞
s (∂Ω)r

k+1−s

∫

B(x∗,cr)∩∂Ω

|y − x∗|s
rk+ε|x− y|n−ε

dσ(y)

6 C‖f‖B∞,∞
s (∂Ω)r

1−s−ε

∫

B(x∗,cr)∩∂Ω

|x− y|s−n+ε dσ(y)

6 C‖f‖B∞,∞
s (∂Ω)r

1−s−ε

∫

B(x∗,cr)∩∂Ω

rs−n+ε dσ(y)

= C‖f‖B∞,∞
s (∂Ω). (3.27)

If y ∈ B(x∗, cr)∩∂Ω, then |y−x∗| 6 cr 6 c|x− y| and |x− y| > r, which are
used to obtain the second and third inequalities in (3.27) (for the third one
we also recall that s − n + ε < 0). Turning our attention to I2, we observe
that if y ∈ ∂Ω \B(x∗, cr), then |y−x∗| 6 |x−x∗|+ |x− y| 6 2|x− y|, which
yields

|I2| 6 C‖f‖B∞,∞
s (∂Ω)r

k+1−s

∫

∂Ω\B(x∗,cr)

|y − x∗|s
rk+ε|x− y|n−ε

dσ(y)

6 C‖f‖B∞,∞
s (∂Ω)r

1−s−ε

∫

∂Ω\B(x∗,cr)

|y − x∗|s−n+ε dσ(y)
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6 C‖f‖B∞,∞
s (∂Ω)r

1−s−ε

∫ ∞

cr

ρs−2+ε dρ 6 C‖f‖B∞,∞
s (∂Ω). (3.28)

Now, (3.24) follows by combining (3.27) and (3.28). Thus, the case p = ∞ is
complete.

To treat the case 1 < p < ∞, we use what we have proved so far and
Theorem 2.6. More precisely, for s0, s1 ∈ (0, 1) we consider the family of
operators

Lzf := δk+z−[(1−z)s0+zs1]|∇k+1Qf | (3.29)

such that

<ez = 0 ⇒ |L0f | = δk−s0 |∇k+1Qf |,
<ez = 1 ⇒ |L1f | = δk+1−s1 |∇k+1Qf |.

Our results for p = 1 and p = ∞ lead to the conclusion that the operators

L0 : B1,1
s0

(∂Ω) → L1(Ω),
L1 : B∞,∞

s1
(∂Ω) → L∞(Ω)

are well defined and are bounded for any s0, s1 ∈ (0, 1). Pick 0 < s0 < s1 <
1−ε, otherwise arbitrary, so that (2.15) applies. In this scenario, Theorem 2.6
can be used, and we can conclude that for each 0 6 k 6 N the operator

δk+1− 1
p−s|∇k+1Qf | : Bp,p

s (∂Ω) −→ Lp(Ω) (3.30)

is well define, linear and bounded for every s ∈ (0, 1) and p ∈ [1,∞]. This
takes care of the estimate for the “higher order term” on the left-hand side
of (1.5). The “lower order terms” ∇jQ in (1.5) can be handle in a simpler,
more straightforward fashion, so we omit the argument.

It remains to analyze the case where n−1
n−ε < p < 1, in which scenario (by

once again focusing only on the higher order term in the left-hand side of
(1.5)), it suffices to prove that for each k ∈ {0, 1, . . . , N} there exists some
finite constant C > 0 such that

‖δk+1− 1
p−s|∇k+1Qa‖Lp(Ω) 6 C for every Bp,p

s (∂Ω)-atom a. (3.31)

For this purpose, we assume that

supp a ⊆ Sr(x0) for some x0 ∈ ∂Ω and r > 0,

‖∇tana‖L∞(∂Ω) 6 rs−1−(n−1) 1
p .

(3.32)

Next, we proceed with the rescaling ã(x) := rτa(x) for x ∈ ∂Ω, with τ ∈ R
to be specified soon. Since s < 1, we have 1 − p(2 − s) < 1 − p, so we can
pick θ ∈ (1 − p(2 − s), 1 − p). Fix such a θ and select τ := n−θ

p − n. Then
−1 + s + 1−θ

p ∈ (s, 1) and ã is a B1,1

−1+s+ 1−θ
p

(∂Ω)-atom. In particular, there
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exists C = C(Ω, p, s, θ) > 0 such that

‖ã‖B1,1

−1+s+ 1−θ
p

(∂Ω) 6 C, (3.33)

and, based on what we proved for p = 1,

‖δk+1−s− 1−θ
p |∇k+1Qã‖L1(Ω) 6 C‖ã‖B1,1

−1+s+ 1−θ
p

(∂Ω) 6 C. (3.34)

Applying the Hölder inequality, we can write
∫

B(x0,2r)∩Ω

(
δ(x)k+1− 1

p−s|∇k+1Qa(x)|
)p

dx

= r−τp

∫

B(x0,2r)∩Ω

δ(x)kp+p−1−sp|∇k+1Qã(x)|p dx

6 r−τp

(∫

B(x0,2r)∩Ω

δ(x)k+1−s− 1
p + θ

p |∇k+1Qã(x)| dx

)p

×
(∫

B(x0,2r)∩Ω

δ(x)−
θ

1−p dx

)1−p

. (3.35)

Since θ < 1− p, it follows that − θ
1−p > −1 so that

∫

B(x0,2r)∩Ω

δ(x)−
θ

1−p dx 6 Crn−1

∫ cr

0

t−
θ

1−p dt = Crn− θ
1−p . (3.36)

Thus, combining (3.35), (3.36), and (3.34), we obtain
∫

B(x0,2r)∩Ω

(
δ(x)k+1− 1

p−s|∇k+1Qa(x)|
)p

dx

6 C

(∫

B(x0,2r)∩Ω

δ(x)k+1−s− 1
p + θ

p |∇k+1Qã(x)| dx

)p

6 C. (3.37)

Next, we turn our attention to the contribution away from the support of the
atom. For notational simplicity, we assume that x0 = 0 (which can always be
arranged via a translation). Taking into account ‖a‖L∞(∂Ω) 6 Crs−(n−1) 1

p

(cf. (2.18)) and recalling (2) again, we have

|∇k+1Qa(x)| 6 C

∫

B(0,r)∩∂Ω

|a(y)|
δ(x)k+ε|x− y|n−ε

dσ(y)

6 C
rs+(n−1)(1− 1

p )

δ(x)k+ε|x|n−ε
if x ∈ Ω \B(0, 2r). (3.38)



196 D. Mitrea et al.

At this point, we use (3.38) and (3.2) from Lemma 3.1 with α = 1−p+sp+εp
and N = np− εp to conclude that

∫

Ω\B(0,2r)

δ(x)(k+1− 1
p−s)p|∇k+1Qa(x)|p dx 6 C. (3.39)

Now, the estimate (3.31) follows from (3.37) and (3.39), completing the
proof of the case n−1

n−ε < p < 1. This completes the proof of the estimate (1.5)
for the full range of indices s and p. ut

We now discuss a setting where the kernel of the Poisson integral operator
satisfies the estimate (1.3).

Theorem 3.3. Let Ω ⊆ Rn be a Lipschitz domain satisfying a UEBC. Then
for every k ∈ N0 there exists a finite constant C = C(Ω, k) > 0 such that
G(·, ·), the Green function for the Laplacian in Ω, satisfies

|∇k+1
x ∇yG(x, y)| 6 C

|x− y|−n

min{|x− y|, δ(x)}k
∀x ∈ Ω, ∀ y ∈ Ω \ E, (3.40)

for some set E ⊆ ∂Ω with σ(E) = 0, where δ(x) = dist (x, ∂Ω) for all x ∈ Ω.

Proof. We first claim that it suffices to prove (3.40) for every x, y ∈ Ω. Indeed,
assume that the latter has been proved. Then, keeping x ∈ Ω, by the Fatou
theorem proved in [3] for bounded harmonic functions in Lipschitz domains,
it follows that there exists Ex ⊆ ∂Ω with σ(Ex) = 0 such that (3.40) holds
for every y ∈ Ω \ Ex. Fixing a countable dense subset D of Ω and setting
E :=

⋃
x∈D

Ex, we see that σ(E) = 0 and (3.40) holds for every x ∈ D and

y ∈ Ω \ E. Keeping now y ∈ Ω \ E fixed, by density then (3.40) holds for
every x ∈ Ω.

The case k = 0 is contained in Theorem 2.5. Thus, it remains to prove the
estimate in (3.40) for every x, y ∈ Ω and k > 1.

Step I. Proof of the statement for k = 1. Here, we distinguish two cases:
x, y ∈ Ω with δ(x) 6 |x− y| and x, y ∈ Ω with δ(x) > |x− y|.

Case (a). x, y ∈ Ω with δ(x) 6 |x−y|. In this scenario, min{|x−y|, δ(x)} =
δ(x). So, we need to show that

|∇2
x∇yG(x, y)| 6 Cδ(x)−1|x− y|−n. (3.41)

Consider D := B(x, δ(x)/2) ⊆ Ω so that y 6∈ D and, if we set d :=
dist (y, ∂D), then d = |x− y| − 1

2δ(x) > 1
2 |x− y|. Thus,

1
2
|x− y| 6 d 6 |x− y|. (3.42)

Note that ∇x∇yG(·, y) is harmonic in D and, by Theorem 2.5, we have
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|∇x∇yG(x, y)| 6 C|x− y|−n for all x, y ∈ Ω. (3.43)

Hence |∇x∇yG(x, y)| 6 Cd−n if x, y are as in case (a). The latter, combined
with interior estimates for the harmonic function ∇x∇yG(·, y) in D, implies

|∇2
x∇yG(x, y)| 6 Cδ(x)−1 sup

x∈D
|∇x∇yG(x, y)|

6 Cδ(x)−1d−n 6 Cδ(x)−1|x− y|−n, (3.44)

where for the last inequality in (3.44) we used (3.42). This completes the
proof of (3.41).

Case (b). x, y ∈ Ω with δ(x) > |x− y|.
Now, we have min{|x− y|, δ(x)} = |x− y|, and we seek to prove that

|∇2
x∇yG(x, y)| 6 C|x− y|−n−1. (3.45)

Consider the harmonic function ∇x∇yG(·, y) in B(x, 1
2 |x − y|) which, by

Theorem 2.5, is bounded by C|x−y|−n in this ball. This and interior estimates
further imply that, under the current assumptions on x and y,

|∇2
x∇yG(x, y)| 6 C|x− y|−1|x− y|−n = C|x− y|−n−1. (3.46)

This completes the proof of (3.45) and, consequently, the proof of Step I.

Step II. Proof of the fact that if (3.40) holds for some k ∈ N0 when
x, y ∈ Ω, then (3.40) also holds for k + 1 when x, y ∈ Ω.

Case (a). x, y ∈ Ω with δ(x) 6 |x− y|. Under the current assumptions on
x and y, it follows that for every z ∈ B(x, 1

2δ(x)) we have |z − y| > 1
2δ(x)

and δ(z) > 1
2δ(x), so that min{δ(z), |z − y|} > 1

2δ(x). Also, |z − y| > |x −
y| − |z − x| > |x − y| − 1

2δ(x) > 1
2 |x − y|. Hence, by invoking the induction

hypothesis, we obtain

|∇k
x∇yG(z, y)| 6 C

|z − y|−n

min{δ(z), |z − y|}k

6 Cδ(x)−k|x− y|−n ∀ z ∈ B
(
x,

1
2
δ(x)

)
. (3.47)

Thus, if we now use interior estimates for the harmonic function ∇k
x∇yG(·, y)

in B(x, 1
2δ(x)) combined with (3.47), we arrive at

|∇k+1
x ∇yG(x, y)| 6 Cδ(x)−1δ(x)−k|x− y|−n

=
C|x− y|−n

min{δ(x), |x− y|}k+1
. (3.48)

This concludes the proof of case (a) in step II.
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Case (b). x, y ∈ Ω with δ(x) > |x − y|. Under the current assumptions
on x and y, it follows that for every z ∈ B(x, 1

2 |x − y|) we have δ(z) >
1
2 |x − y| and |z − y| > |x − y| − |z − x| > |x − y| − 1

2 |x − y| > 1
2 |x − y|, so

that min{δ(z), |z − y|} > 1
2 |x − y|. The latter, together with the induction

hypothesis, implies that

|∇k
x∇yG(z, y)| 6 C

|z − y|−n

min{δ(z), |z − y|}k

6 C|x− y|−n−k ∀ z ∈ B(x,
1
2
|x− y|). (3.49)

Employing interior estimates for the harmonic function∇k
x∇yG(·, y) this time

in B(x, 1
2 |x− y|), and then recalling (3.49), we write

|∇k+1
x ∇yG(x, y)| 6 C|x− y|−n−k−1 = C

|x− y|−n

min{δ(x), |z − y|}k+1
. (3.50)

This completes the proof of case (b) in step II.
Combining steps I and II, we obtian the desired result. ut
It should be remarked that, with a little more effort, the conclusion in the

above theorem can be seen to hold in any nontangentially accessible domain
Ω ⊆ Rn (in the sense of D. Jerison and C. Kenig) with an Ahlfors regular
boundary, and which satisfies a UEBC.

We conclude this section with an application to the mapping prop-
erties of the Poisson integral operator on Besov–Triebel–Lizorkin spaces,
which has obvious implications for the solvability of the Dirichlet prob-
lem for the Laplacian in this context (the interested reader is referred to
[5, 6, 9, 12, 15, 16, 17, 18, 13, 14] and the references therein).

Theorem 3.4. Let Ω be a bounded Lipschitz domain in Rn with outward
unit normal ν and surface measure σ on ∂Ω. Let G(·, ·) denote the Green
function for the Laplacian in Ω. Define

(PIf)(y) := −
∫

∂Ω

∂ν(x)G(x, y)f(x) dσ(x), y ∈ Ω. (3.51)

Then, if Ω satisfies a UEBC, it follows that the operators

(i) PI : Bp,q
s (∂Ω) → Bp,q

s+ 1
p

(Ω)

(ii) PI : Bp,p
s (∂Ω) → F p,q

s+ 1
p

(Ω)

are bounded whenever 0 < p, q 6 ∞ and (n − 1)( 1
p − 1)+ < s < 1, with the

additional condition that p, q 6= ∞ in the case of Triebel–Lizorkin spaces.

Proof. By Theorem 3.3 (with the roles of x and y reversed), we know that
for every k ∈ N0 there exists C > 0 and E ⊆ ∂Ω with σ(E) = 0 such that
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∣∣∇k+1
y

[
∂ν(x)G(x, y)

]∣∣ 6 C

δ(y)k|x− y|n ∀ y ∈ Ω, ∀x ∈ ∂Ω \ E. (3.52)

Furthermore, it is not difficult to check that

PI(1) = 1 in Ω and ∆ ◦ PI = 0 in Ω. (3.53)

As a consequence, we can apply Theorem 1.1 in order to conclude that if
n−1

n < p 6 ∞ and (n− 1)( 1
p − 1)+ < s < 1, then for every k ∈ N there exists

C > 0 such that

‖δk+1− 1
p−s|∇k+1PIf‖Lp(Ω) +

k∑

j=0

‖∇jPIf‖Lp(Ω) 6 C‖f‖Bp,p
s (∂Ω) (3.54)

for all f ∈ Bp,p
s (∂Ω). Next, we recall from Theorem 1.2 that if 0 < p, q 6 ∞

and α ∈ R, then (recall (1.15))

∆u = 0 in Ω, δ〈α〉−α|∇〈α〉u| ∈ Lp(Ω) =⇒ u ∈ F p,q
α (Ω) ∩Bp,p

α (Ω) (3.55)

with the extra assumption that p, q < ∞ in the case of the Triebel–Lizorkin
spaces. Now, if we chose α := s+ 1

p and k := 〈α〉− 1, then (3.53), (3.54), and
(3.55) imply that the operator in (ii) is bounded. The boundedness of the op-
erator in (i) now follows from this and real interpolation (cf. Propositions 2.1
and 2.3). ut
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