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Abstract. Recently, Auscher and Axelsson gave a new approach to non-
smooth boundary value problems with L2 data, that relies on some appropriate

weighted maximal regularity estimates. As part of the development of the cor-

responding Lp theory, we prove here the relevant weighted maximal estimates
in tent spaces T p,2 for p in a certain open range. We also study the case p = ∞.

1. Introduction. Let −L be a densely defined closed linear operator acting on
L2(Rn) and generating a bounded analytic semigroup (e−tL)t≥0. We consider the
maximal regularity operator defined by

MLf(t, x) =

∫ t

0

Le−(t−s)Lf(s, .)(x)ds,

for functions f ∈ Cc(R+ ×Rn). The boundedness of this operator on L2(R+ ×Rn)
was established by de Simon in [16]. The Lp(R+ ×Rn) case, for 1 < p <∞, turned
out, however, to be much more difficult. In [10], Kalton and Lancien proved that
ML could fail to be bounded on Lp as soon as p 6= 2. The necessary and sufficient
assumption for Lp boundedness was then found by Weis [17] to be a vector-valued
strengthening of analyticity, called R-analyticity. As many differential operators
L turn out to generate R-analytic semigroups, the Lp boundedness of ML has
subsequently been successfully used in a variety of PDE situations (see [14] for a
survey).

Recently, maximal regularity was used in a different manner as an important
tool in [2], where a new approach to boundary value problems with L2 data for
divergence form elliptic systems on Lipschitz domains, is developed. More precisely,
in [2], the authors establish and use the boundedness of ML on weighted spaces
L2(R+ × Rn; tβdtdx), for certain values of β ∈ R, under the additional assumption
that L has bounded holomorphic functional calculus on L2(Rn). This additional
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assumption was removed in [3, Theorem 1.3]. Here is the version when specializing
the Hilbert space to be L2(Rn).

Theorem 1.1. With L as above, ML extends to a bounded operator on L2(R+ ×
Rn; tβdtdx) for all β ∈ (−∞, 1).

The use of these weighted spaces is common in the study of boundary value
problems, where they are seen as variants of the tent space T 2,2 which occurs for
β = −1, introduced by Coifman, Meyer and Stein in [6]. For p 6= 2, the corre-
sponding spaces are weighted versions of the tent spaces T p,2, which are defined,
for parameters β ∈ R and m ∈ N, as the completion of Cc(R+ × Rn) with respect
to

‖g‖Tp,2,m(tβdtdy) =

(∫
Rn

(∫ ∞
0

∫
Rn

1
B(x,t

1
m )

(y)

t
n
m

∣∣g(t, y)
∣∣2tβdydt) p2 dx) 1

p

,

the classical case corresponding to β = −1, m = 1, and being denoted simply
by T p,2. The parameter m is used to allow various homogeneities, and thus to
make these spaces relevant in the study of differential operators L of order m. To
develop an analogue of [2] for Lp data, we need, among many other estimates yet
to be proved, boundedness results for the maximal operator ML on these tent
spaces. This is the purpose of this note. Another motivation is well-posedness of
non-autonomous Cauchy problems for operators with varying domains, which will
be presented elsewhere. In the latter case, ML can be seen as a model of the
evolution operators involved. However, asML is an important operator on its own,
we thought interesting to present this special case alone.

In Section 3 we state and prove the adequate boundedness results. The proof
is based on recent results and methods developed in [9], building on ideas from [5]
and [8]. In Section 2 we recall the relevant material from [9].

2. Tools. When dealing with tent spaces, the key estimate needed is a change of
aperture formula, i.e., a comparison between the T p,2 norm and the norm

‖g‖Tp,2α
:=

(∫
Rn

(∫ ∞
0

∫
Rn

1B(x,αt)(y)

tn
∣∣g(t, y)

∣∣2 dydt
t

) p
2

dx

) 1
p

,

for some parameter α > 0. Such a result was first established in [6], building on
similar estimates in [7], and analogues have since been developed in various contexts.
Here we use the following version given in [9, Theorem 4.3].

Theorem 2.1. Let 1 < p < ∞ and α ≥ 1. There exists a constant C > 0 such
that, for all f ∈ T p,2,

‖f‖Tp,2 ≤ ‖f‖Tp,2α
≤ C(1 + logα)αn/τ‖f‖Tp,2 ,

where τ = min(p, 2) and C depends only on n and p.

Theorem 2.1 is actually a special case of the Banach space valued result obtained
in [9]. Note, however, that it improves the power of α appearing in the inequality
from the n given in [6] to n

τ . This is crucial in what follows, and has been shown
to be optimal in [9].
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Applying this to (t, y) 7→ t
m(β+1)

2 f(tm, y) instead of f , we also have the weighted
result, where

‖g‖Tp,2,mα (tβdtdy) =

(∫
Rn

(∫ ∞
0

∫
Rn

1
B(x,αt

1
m )

(y)

t
n
m

∣∣g(t, y)
∣∣2tβdydt) p2 dx) 1

p

.

Corollary 2.2. Let 1 < p <∞, m ∈ N, α ≥ 1, and β ∈ R. There exists a constant
C > 0 such that, for all f ∈ T p,2,m(tβdtdy),

‖f‖Tp,2,m(tβdtdy) ≤ ‖f‖Tp,2,mα (tβdtdy) ≤ C(1 + logα)αn/τ‖f‖Tp,2,m(tβdtdy),

where τ = min(p, 2) and C depends only on n and p.

To take advantage of this result, one needs to deal with families of operators,
that behave nicely with respect to tent norms. As pointed out in [9], this does not
mean considering R-bounded families (which means R-analytic semigroups when
one considers (tLe−tL)t≥0) as in the Lp(R+ × Rn) case, but tent bounded ones,
i.e. families of operators with the following L2 off-diagonal decay, also known as
Gaffney-Davies estimates.

Definition 2.3. A family of bounded linear operators (Tt)t≥0 ⊂ B(L2(Rn)) is said
to satisfy off-diagonal estimates of order M , with homogeneity m, if, for all Borel
sets E,F ⊂ Rn, all t > 0, and all f ∈ L2(Rn):

‖1ETt1F f‖2 .
(

1 +
dist(E,F )m

t

)−M
‖1F f‖2.

In what follows ‖ · ‖2 denotes the norm in L2(Rn).

As proven, for instance, in [4], many differential operators of order m, such as
(for m = 2) divergence form elliptic operators with bounded measurable complex
coefficients, are such that (tLe−tL)t≥0 satisfies off-diagonal estimates of any order,
with homogeneity m. This condition can, in fact, be seen as a replacement for the
classical gaussian kernel estimates satisfied in the case of more regular coefficients.

3. Results.

Theorem 3.1. Let m ∈ N, β ∈ (−∞, 1), p ∈
(

2n
n+m(1−β) ,∞

)
∩ (1,∞), and τ =

min(p, 2). If (tLe−tL)t≥0 satisfies off-diagonal estimates of order M > n
mτ , with

homogeneity m, then ML extends to a bounded operator on T p,2,m(tβdtdy).

Proof. The proof is very much inspired by similar estimates in [5] and [9]. Let
f ∈ Cc(R+ × Rn). Given (t, x) ∈ R+ × Rn, and j ∈ Z+, we consider

Cj(x, t) =

{
B(x, t) if j = 0,

B(x, 2jt)\B(x, 2j−1t) otherwise.

We write ‖MLf‖Tp,2 ≤
∞∑
k=1

∞∑
j=0

Ik,j +
∞∑
j=0

Jj where

Ik,j =

(∫
Rn

(∫ ∞
0

∫
Rn

1
B(x,t

1
m )

(y)

t
n
m

∣∣∣∫ 2−kt

2−k−1t

Le−(t−s)L(1
Cj(x,4t

1
m )
f(s, .))(y)ds

∣∣∣2tβdydt) p2dx)
1
p

,

Jj =

(∫
Rn

(∫ ∞
0

∫
Rn

1
B(x,t

1
m )

(y)

t
n
m

∣∣∣∫ t

t
2

Le−(t−s)L(1
Cj(x,4s

1
m )
f(s, .))(y)ds

∣∣∣2tβdydt) p2 dx)
1
p

.
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Fixing j ≥ 0, k ≥ 1 we first estimate Ik,j as follows. For fixed x ∈ Rn,

∫ ∞
0

∫
B(x,t

1
m )

∣∣∣∫ 2−kt

2−k−1t

Le−(t−s)L(1
Cj(x,4t

1
m )
f(s, ·))(y) ds

∣∣∣2tβ− n
m dy dt

≤
∫ ∞
0

∫
B(x,t

1
m )

(∫ 2−kt

2−k−1t

∣∣∣(t− s)Le−(t−s)L(1
Cj(x,4t

1
m )
f(s, ·))(y)

∣∣∣ ds

t− s

)2
tβ−

n
m dy dt

.
∫ ∞
0

∫ 2−kt

2−k−1t

2−kt
(∫

B(x,t
1
m )

∣∣(t−s)Le−(t−s)L(1
Cj(x,4t

1
m )
f(s, ·))(y)

∣∣2dy) tβ−nm−2dsdt
.
∫ ∞
0

∫ 2−kt

2−k−1t

2−k
(

1 +
2jmt

t− s

)−2M ∥∥1
B(x,2j+2t

1
m )
f(s, ·)

∥∥2
2
tβ−

n
m−1ds dt

.2−k2−2jmM
∫ ∞
0

(∫ 2k+1s

2ks

tβ−
n
m−1dt

)∥∥1
B(x,2j+

k
m

+3s
1
m )
f(s, ·)

∥∥2
2
ds

.2−k(
n
m+1−β)2−2jmM

∫ ∞
0

∥∥1
B(x,2j+

k
m

+3s
1
m )
f(s, ·)

∥∥2
2
sβ−

n
m ds.

In the second inequality, we use Cauchy-Schwarz inequality for the integral with
respect to t, the fact that t− s ∼ t for s ∈ ∪k≥1[2−k−1t, 2−kt] ⊂ [0, t2 ] and Fubini’s
theorem to exchange the integral in t and the integral in y. The next inequality
follows from the off-diagonal estimate verified by (t − s)Le−(t−s)L and again the
fact that t− s ∼ t. By Corollary 2.2 this gives

Ik,j . (j + k)2−k(
1
2 (

n
m+1−β)− n

mτ )2−j(mM−
n
τ )‖f‖Tp,2,m(tβdtdy),

where τ = min(p, 2). It follows that
∞∑
k=1

∞∑
j=0

Ik,j . ‖f‖Tp,2,m(tβdtdy) since M > n
mτ

and n
m + 1− β > 2n

mτ (Note that for p ≥ 2, this requires β < 1).

We now turn to J0 and remark that J0 ≤
(∫

Rn J0(x)
p
2 dx

) 1
p , where

J0(x) =

∫ ∞
0

∫
Rn

∣∣∣∫ t

t
2

Le−(t−s)L(g(s, ·)(y)ds
∣∣∣2 tβ− n

m dy dt

with g(s, y) = 1
B(x,4s

1
m )

(y)f(s, y). The inside integral can be rewritten as

MLg(t, ·)− e− t2LMLg(
t

2
, ·).

As ML is bounded on L2(R+ × Rn; tβ−
n
m dydt) by Theorem 1.1 and (e−tL)t≥0 is

uniformly bounded on L2(Rn), we get

J0(x) .
∫ ∞
0

∥∥1
B(x,4s

1
m )
f(s, ·)

∥∥2
2
sβ−

n
m ds.



THE MAXIMAL REGULARITY OPERATOR ON TENT SPACES 2217

We finally turn to Jj , for j ≥ 1. For fixed x ∈ Rn,∫ ∞
0

∫
Rn

1
B(x,t

1
m )

(y)
∣∣∣∫ t

t
2

Le−(t−s)L(1
Cj(x,4s

1
m )
f(s, .))(y)ds

∣∣∣2tβ−nm dy dt
≤
∫ ∞
0

∫
Rn

1
B(x,t

1
m )

(y)
(∫ t

t
2

∣∣(t−s)Le−(t−s)L(1
Cj(x,4s

1
m )
f(s, .))(y)

∣∣ ds
t−s

)2
tβ−

n
m dydt

.
∫ ∞
0

∫
Rn

1
B(x,t

1
m )

(y)

∫ t

t
2

∣∣(t−s)Le−(t−s)L(1
Cj(x,4s

1
m )
f(s, .))(y)

∣∣2 ds

(t−s)2
tβ−

n
m+1dydt

.
∫ ∞
0

∫ t

t
2

(t−s)−2
(

1 +
2jmt

t−s

)−2M∥∥1
B(x,2j+2s

1
m )
f(s, .)

∥∥2
2
sβ−

n
m+1dsdt

.2−jm(2M−2)
∫ ∞
0

(∫ 2s

s

s(t−s)−2
(

1+
2jmt

t−s

)−2
dt

)∥∥1
B(x,2j+2s

1
m )
f(s, .)

∥∥2
2
sβ−

n
m ds

.2−2jmM
∫ ∞
0

∥∥1
B(x,2j+2s

1
m )
f(s, .)

∥∥2
2
sβ−

n
m ds,

where we have used Cauchy-Schwarz inequality in the second inequality, the off-
diagonal estimates and the fact that s ≤ t in the third, Fubini’s theorem and the
fact that s ≥ t

2 in the fourth, and the change of variable σ = t
t−s in the last. An

application of Corollary 2.2, then gives

Jj . 2−jmM j2j
n
τ ‖f‖Tp,2,m(tβdtdy) = j2−j(mM−

n
τ )‖f‖Tp,2,m(tβdtdy),

and the proof is concluded by summing the estimates.

An end-point result holds for p =∞. In this context the appropriate tent space
consists of functions such that |g(t, y)|2 dydtt is a Carleson measure, and is defined
as the completion of the space Cc(R+ × Rn) with respect to

‖g‖2T∞,2 = sup
(x,r)∈Rn×R+

r−n
∫
B(x,r)

∫ r

0

|g(t, y)|2 dydt
t
.

We also consider the weighted version defined by

‖g‖2T∞,2,m(tβdtdy) := sup
(x,r)∈Rn×R+

r−
n
m

∫
B(x,r

1
m )

∫ r

0

|g(t, y)|2tβdydt.

Theorem 3.2. Let m ∈ N, and β ∈ (−∞, 1). If (tLe−tL)t≥0 satisfies off-diagonal
estimates of order M > n

2m , with homogeneity m, then ML extends to a bounded

operator on T∞,2,m(tβdtdy).

Proof. Pick a ball B(z, r
1
m ). Let

I2 =

∫
B(z,r

1
m )

∫ r

0

|(MLf)(t, x)|2tβdxdt.

We want to show that I2 . r
n
m ‖f‖2T∞,2(tβdtdy). We set

I2j =

∫
B(z,r

1
m )

∫ r

0

|(MLfj)(t, x)|2tβdxdt
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where fj(s, x) = f(s, x)1
Cj(z,4r

1
m )

(x)1(0,r)(s) for j ≥ 0. Thus by Minkowsky in-

equality, I ≤
∑
Ij . For I0 we use again Theorem 1.1 which implies that ML is

bounded on L2(R+ × Rn, tβdxdt). Thus

I20 .
∫
B(z,4r

1
m )

∫ r

0

|f(t, x)|2tβdxdt . r
n
m ‖f‖2T∞,2,m(tβdtdy).

Next, for j 6= 0, we proceed as in the proof of Theorem 3.1 to obtain

I2j .
∞∑
k=1

∫ r

0

∫ 2−kt

2−k−1t

2−kt
(

1 +
2jmr

t− s

)−2M
‖fj(s, .)‖2L2tβ−2ds dt

+

∫ r

0

∫ t

t
2

t(t− s)−2
(

1 +
2jmr

t− s

)−2M
‖fj(s, .)‖2L2tβds dt.

Exchanging the order of integration, and using the fact that t ∼ t − s in the first
part and that t ∼ s in the second, we have the following.

I2j .
∞∑
k=1

2−k2−2jmMr−2M
∫ 2−kr

0

∫ 2k+1s

2ks

tβ+2M−1‖fj(s, .)‖2L2dtds

+

∫ r

0

∫ 2s

s

r(t− s)−2
(

1 +
2jmr

t− s

)−2M
‖fj(s, .)‖2L2sβdtds

.
∞∑
k=1

2−k2−2jmM
∫ 2−kr

0

(2ks)β‖fj(s, .)‖2L2ds

+

∫ r

0

∫ ∞
1

(
1 + 2jmσ

)−2M‖fj(s, .)‖2L2sβdσds

. 2−2jmM
∫ r

0

‖fj(s, .)‖2L2sβds,

where we used β < 1. We thus have

I2j . 2−2jmM (2jr
1
m )n‖f‖2T∞,2,m(tβdtdy),

and the condition M > n
2m allows us to sum these estimates.

Remark 3.3. Assuming off-diagonal estimates, instead of kernel estimates, allows
to deal with differential operators L with rough coefficients. The harmonic analytic
objects associated with L then fall outside the Calderón-Zygmund class, and it is
common (see for instance [1]) for their boundedness range to be a proper subset of
(1,∞). Here, our range ( 2n

n+m(1−β) ,∞] includes [2,∞] as β < 1, which is consistent

with [2]. In the case of classical tent spaces, i.e., m = 1 and β = −1, it is the range
(2∗,∞], where 2∗ denotes the Sobolev exponent 2n

n+2 . We do not know, however, if
this range is optimal.

Remark 3.4. Theorem 3.2 is a maximal regularity result for parabolic Carleson
measure norms. This is quite natural from the point of view of non-linear para-
bolic PDE (where maximal regularity is often used), and such norm have, actually,
already been used in the context of Navier-Stokes equations in [11], and, subsequent-
ly, for some geometric non-linear PDE in [12]. Theorem 3.1 is also reminiscent of
Krylov’s Littlewood-Paley estimates [13], and of their recent far-reaching general-
ization in [15]. In fact, the methods and results from [9], on which this paper relies,
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use the same circle of ideas (R-boundedness, Kalton-Weis γ multiplier theorem...)
as [15]. The combination of these ideas into a “conical square function” approach
to stochastic maximal regularity will be the subject of a forthcoming paper.
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