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Abstract

Existence of a global mild solution of the Navier-Stokes system in open sets of R®, no
smoothness at the boundary required, for small initial data in a critical space, is proved.

1 Introduction

It has been claimed in a paper by the author [6] that for any open subset of R3, there exists a global
mild solution of the Navier-Stokes system with Dirichlet boundary conditions for small initial data
in a critical space and a local mild solution if no size condition is assumed on the initial data. In the
case of unbounded domains, the proof of existence of global solutions proposed in [6] is not correct.
We want to give here a correct proof and exhibit global mild solutions of the Navier-Stokes system
with Dirichlet boundary conditions

Ou—Au+Vr+(u-Viu = 0 in (0,00) % Q,
divu = 0 in (0,00) x Q,
(1.1)
u = 0 on (0,00)x 09,
u(0) = wy in

in an (unbounded) open set Q C R?, for initial data ug in a critical space.

The strategy in this note follows the lines of [6]: we describe a functional setting in which the
(slightly modified) Fujita-Kato scheme applies, such as in their fundamental paper [1] where they
treated the case of smooth bounded domains (global solutions); in the case of (smooth) unbounded
domains, their method applies only to obtain local solutions (in a finite time interval). When Q = R3,
classical Fourier analysis methods apply, and it can be proved that there exists a global mild solution
of (1.1) if ug is small in Hz(R3), the homogeneous Sobolev space (see e.g. [3, Theorem 15.2]). The
case of smooth exterior domains in R? has been treated by T.Miyakawa [5, Theorem 3.3]. When
Q C R? of class € is unbounded with 02 bounded or unbounded, the existence of a global mild
solution of (1.1) for small initial data ug in the domain of the fractional power 1 of the Stokes
operator has been proved by H.Kozono and T. Ogawa [2, Theorem 1].

2 The linear Dirichlet-Stokes operator

Let Q be an open set in R?® (bounded or unbounded) and define the vector-valued Hilbert space
H = L*(;R3) by

H= {u = (u1,un,us);u; € L*(4R3), for all i = 1,2,3}

endowed with the scalar product

(u,v)/ﬂu-vg/guwi.

G = {Vp;p € L},.(%R) with Vp € L*(R?) };

Define next



the set G is a closed subspace of H. Let now
H=0"={ue L*(QR?);(u,g) =0 for all g € G}.
Let J : H — H the canonical injection from H onto H and define a scalar product on H by
(u,v) — (Ju, Jv).

Endowed with this scalar product, H is a Hilbert space and the following Helmholtz decomposition
holds:

1
H=H&g.

We denote by P the orthogonal projection from H onto H: P is equal to the adjoint J’ of J and
PJ = Idy.
Let now 2 = €>°(Q; R3). We next define

D= {ue Z;divu =0 in Q},

closed subspace of . We denote by Jy the canonical injection Jy : D — Z: it is a restriction of
the canonical injection J. Therefore, its adjoint Py = Jj : 2’ — D’ is an extension of the Helmholtz
projection P. The following theorem characterizes the elements in ker Py (see e.g. [9, Proposition 1.1,

p. 14)).

Theorem 2.1 (de Rham). Let T be a distribution in 2’ such that PyT = 0 in D’. Then there exists
a distribution S € €° (4 R) such that T = VS. Conversely, if T = VS with S € €2 (S R)’, then
]PlT =0 1n D'.

To apply the framework of forms, we need a form-space V: let us define V by V = H NV, where
V = H}(Q;R3) is the closure of 2 with respect to the scalar product

(u,v) — (u,v)1 = (u,v) + Z(&iu, 0;v).

i=1

The space V is a closed subspace of V; endowed with the scalar product (-, )1, it is a Hilbert space.
Moreover, V is dense in H. Indeed, to prove that V is dense in H, it suffices to prove that its
orthogonal in H is equal to {0}. Let u € H, orthogonal to V; i.e., (u,v) = 0 for all v € V. Since
D C V, this implies also that (u,v) =0 for all v € D and then Ju =T, viewed as a distribution in
9’ satisfies
0= @/<JU, Jo’U>@ = D’ <]P)1T, ’U>D

since P; = Jj. This means that Py7 = 0 on D. By de Rham’s theorem, this implies that there
exists S € €°(Q) such that T = VS. Recall that T = Ju € H, so that V.S € H, and therefore,
T e€G. But HNG = {0} (since they are orthogonal by definition), which implies then that v = 0
(since u € H by assumption and we just proved that Ju € G).

Next, we denote by V' the dual space of V: V' = H=}(£;R3) and by V' the dual space of V.
Let J be the canonical injection V < V: it is a restriction of the canonical injection J : H — H, so
that its adjoint P = J' : V/ — V' is an extension of the Helmholtz projection P : H — H.

On V x V, we define the sesquilinear form

a(u,v) = Z(ajju,ajjv) u,v € V.

j=1
The Dirichlet-Stokes operator A in H is the associated operator of the form a. It is defined by

D(A) = {ueV;P(-A$)JuecH}
Au = P(—A%)Ju



where A% denotes the Dirichlet-Laplacian on V. From the theory of operators associated to forms on
Hilbert spaces (see e.g., [8]), it is immediate that — A generates an analytic semigroup of contractions
of angle 7, (e7t);>0. Since a is symmetric, the operator A is self-adjoint, D(A%) =V (by [4,
Corollaire 5.2]). Note also that the operator 6Id + A is invertible for all § > 0, and the following
estimate holds

|A(SId + A) Y| pp) <2, forall > 0. (2.1)

Moreover by de Rham’s theorem, for u € D(A), there exists p € L (€2; C) such that
J(Au) = —Au + Vp,
so that we can equivalently define D(A) by
D(A)={ueV;3pe L} (KR): —AJu+Vpe H}.

The relations between the spaces and the operators are summarized in the following diagram:

DCL>@

N

! < /
1% = Vv

D/ < !
IF’1:J6 @

The following estimates will be used to treat the nonlinear term and the initial condition in (1.1).

Proposition 2.2. For all a > 0 and all f € D(A®),

142

[t = AT | o 0,070y < A% F N2 and (/O A== () fp )" < lAacsle (22)

Corollary 2.3. The semigroup (T'(t))i>0 satisfies

[t — AZT(t and ||t — ATT(t) <1 (2.3)

1
)||L2(0,oo;$(H)) < V2 L3 (0,00:.2(H)) =

Proof of Proposition 2.2. The property (2.2) comes from the energy equality. Assume first that
f € D(A%*) N D(A) and define u(t) = T(t)f. Then u(0) = f and u is solution of u'(s) + Au(s) = 0:
taking the scalar product in H of this equation with A%2%u(s), we have

(u'(s5), A>*u(s)) + (Au(s), A**u(s)) =0, s>0. (2.4)
Since the operator A is self-adjoint, integrating (2.4) between 0 and ¢, we obtain
t
A3 +2 [ 1A u(s) s = AT, forall ¢ >0 (25)
0

Since D(A2*) N D(A) is dense in D(A%), (2.5) holds for all f € D(A%). Therefore, we have

1
142

sup [4°T(O)fl2 < |47 and ([ 14" T(9) 11 ds)” < 47y M. (20)
t>0 0

which gives (2.2). O



Proof of Corollary 2.3. The first part of (2.3) is contained in (2.2) for « = 0. Moreover, by (2.2) for
a = 0, we have

|t — T(t 1

)HLDO(O,OO;Z(H)) =
and
1
[t= A>T ()| 120 morerey) < 1 (2.7)

Interpolating between these two estimates, we obtain that
|t A3T(5)

||L4(o,oo;5f(n)) <1 (2.8)

Now, with the two estimates (2.7) and (2.8), the proof of the second part of (2.3) is immediate.

Indeed, the equality A%T(t) = A%T(%)AiT(%) holds for all ¢ > 0 by the semigroup property, and
forall f € L? and g € L*, the product fg belongs to L3 and Hng% < |Ifll2/lgll4 (since 1+1 =3). O

3 The Dirichlet-Navier-Stokes system

We define the space & by

& = %([0,00); D(A3)) N L*(0, 00; Hy (4 R?)), (3.1)

where D(A%) denotes the homogeneous D(A%)—space, i.e., the completion of D(A%) with respect
to the (semi-)norm f — ||A% f|l2, and %, denotes the space of bounded continuous functions. We
define the following norm on &
[ulle = [[A%ul| Lo (0,00:0) + VUl L2(0,00;L2 (2R3))-
We reduce the problem of finding mild solutions of (1.1) by solving
u'(t) + Au(t) = —Pi((Jou- V)Jou)

w(0) = w, u€dé, (3.2)

for which a mild solution is given by the Duhamel formula: u = a + ¢(u, u), where, for ¢ > 0,

a(t) =T(t)uy and
o(u,v)(t) = /O T(t—s)(—%Pl((Jou(s)-V)Jov(s)+(Jov(s)-V)Jou(s)))ds. (3.3)

The strategy to find u € & satisfying u = a + ¢(u,u) is to apply a fixed point theorem. We have
then to make sure that & is a “good” space for the problem, i.e., « € & and ¢(u,u) € &. The fact
that « is continuous in time comes from the strong continuity of the Stokes semigroup and the fact
that A3 commutes with the Stokes semigroup on D(A%T). Moreover, a € & by (2.2) for o = 1 and
interpolation, and the following estimate holds

_1 1
lalle < (1+279) A7 f]2 (3.4)
Proposition 3.1. The application ¢ : & x & — & is bilinear, continuous and symmetric. We denote

by M its norm:
M = sup{|[[¢(u, v)|ls;u,v € &, ||ulls, [Jv]le < 1}.



Proof. The fact that ¢ is bilinear and symmetric is immediate, once we have proved that it is
well-defined. For u,v € &, let

F(t) = =3Py ((Jou(t) - V) Jou(t) + (Jou(t) - V) Jou(t)), t € (0,00). (3.5)
By the definition of & and Sobolev embeddings, it is easy to see that
(Jou(t) - V)Jov(t) + (Jov(t) - V) Jou(t) € L* (% R?).
By (2.1), for all Ay > 0,
[ 1d + A) T F(@)], < 20 [Vul®)]|]| Vo)

where C' is the norm of the continuous embedding H{ (Q) < L%(Q), which gives that t — (A, Id +
A)~7 f(t) belongs to L2(0,00; H) with the following estimate

1

([ vt + 4yt )" <2 uleol (36)

Therefore, we have, choosing A\, = 1+(+s)27

t 1
|4t p(u,0)(B)]: < 20 / JAYT(t — 5) (g 1 + A) ¥ L2 [ Vu(s) o] Vo(s) 2 ds. (3.7)
and
t 1
[Vé(u,v)(t)]2 < 20/0 [AZT(t - ) (1= 1d + A) * [ 2 | Vuls) 2 Vo (s)l|2 ds. (3-8)

Let ki (t) = | A% (1 Id +A) T (t) || (s and ka(t) = || A% (1 Id +A) T T(t)|| () by Corollary 2.3

and the fact that ¢ — (Hltg)i belongs to L*(0,0), the function k; belongs to L?(0,00) and the

function ky belongs to L3 (0,00). Moreover, for u,v € &, the function ¢ : t — ||[Vu(t)||2]|Vo(t)]
belongs to L?(0,c0). Therefore, by Young’s inequality (since % + % —1= % and % + % —1= %),

t—kyxp(t) = /Ot k1(t — s)e(s)ds € L*(0,00)
and .
Fis iy % o(t) = /0 kst — )p(s) ds € L*(0, 00),
which proves, together with (3.7) and (3.8), that ¢(u,v) € & and
[o(u, v)lle < M |[ullsllv]e-

The bilinear symmetric form ¢ is then continuous from & x & to &: the fact that ¢ — A3 ¢(u,v)(t)
is continuous from [0, 00) to H follows directly from the strong continuity of the Stokes semigroup
and the representation of Aiﬁ(u,v) as a convolution. Note that the constant M does not depend
on the size nor on the regularity of 2. O

We conclude by applying Picard’s fixed point theorem (see e.g. [3, Theorem 13.2] or [7, Theo-
rem A.1]) to obtain the following existence result for the system (1.1).

Theorem 3.2. Let Q C R3 be an open set. Then for all ug € D(AT) with ||ATug|ly < 117 there

exists a unique u € & with ||ulle < ﬁ solution of u = a + ¢(u,u), where o and ¢ were defined in
(3.3).
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