
On the Navier-Stokes equations in unbounded domains

Sylvie Monniaux

Abstract

Existence of a global mild solution of the Navier-Stokes system in open sets of R3, no
smoothness at the boundary required, for small initial data in a critical space, is proved.

1 Introduction

It has been claimed in a paper by the author [6] that for any open subset of R3, there exists a global
mild solution of the Navier-Stokes system with Dirichlet boundary conditions for small initial data
in a critical space and a local mild solution if no size condition is assumed on the initial data. In the
case of unbounded domains, the proof of existence of global solutions proposed in [6] is not correct.
We want to give here a correct proof and exhibit global mild solutions of the Navier-Stokes system
with Dirichlet boundary conditions

∂tu − ∆u + ∇π + (u · ∇)u = 0 in (0,∞) × Ω,

div u = 0 in (0,∞) × Ω,

u = 0 on (0,∞) × ∂Ω,

u(0) = u0 in Ω,

(1.1)

in an (unbounded) open set Ω ⊂ R3, for initial data u0 in a critical space.
The strategy in this note follows the lines of [6]: we describe a functional setting in which the

(slightly modified) Fujita-Kato scheme applies, such as in their fundamental paper [1] where they
treated the case of smooth bounded domains (global solutions); in the case of (smooth) unbounded
domains, their method applies only to obtain local solutions (in a finite time interval). When Ω = R3,
classical Fourier analysis methods apply, and it can be proved that there exists a global mild solution
of (1.1) if u0 is small in Ḣ

1
2 (R3), the homogeneous Sobolev space (see e.g. [3, Theorem 15.2]). The

case of smooth exterior domains in R3 has been treated by T. Miyakawa [5, Theorem 3.3]. When
Ω ⊂ R3 of class C 3 is unbounded with ∂Ω bounded or unbounded, the existence of a global mild
solution of (1.1) for small initial data u0 in the domain of the fractional power 1

4 of the Stokes
operator has been proved by H. Kozono and T.Ogawa [2, Theorem 1].

2 The linear Dirichlet-Stokes operator

Let Ω be an open set in R3 (bounded or unbounded) and define the vector-valued Hilbert space
H = L2(Ω; R3) by

H =
{
u = (u1, u2, u3);ui ∈ L2(Ω; R3), for all i = 1, 2, 3

}
endowed with the scalar product

⟨u, v⟩ =
∫

Ω

u · v =
3∑

i=1

∫
Ω

ui vi.

Define next
G =

{
∇p; p ∈ L2

loc(Ω; R) with ∇p ∈ L2(Ω; R3)
}
;
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the set G is a closed subspace of H. Let now

H = G⊥ =
{
u ∈ L2(Ω; R3); ⟨u, g⟩ = 0 for all g ∈ G

}
.

Let J : H ↩→ H the canonical injection from H onto H and define a scalar product on H by

(u, v) 7→ ⟨Ju, Jv⟩.

Endowed with this scalar product, H is a Hilbert space and the following Helmholtz decomposition
holds:

H = H
⊥
⊕ G.

We denote by P the orthogonal projection from H onto H: P is equal to the adjoint J ′ of J and
PJ = IdH.

Let now D = C∞
c (Ω; R3). We next define

D =
{
u ∈ D ; div u = 0 in Ω

}
,

closed subspace of D . We denote by J0 the canonical injection J0 : D ↩→ D : it is a restriction of
the canonical injection J . Therefore, its adjoint P1 = J ′

0 : D ′ → D′ is an extension of the Helmholtz
projection P. The following theorem characterizes the elements in ker P1 (see e.g. [9, Proposition 1.1,
p. 14]).

Theorem 2.1 (de Rham). Let T be a distribution in D ′ such that P1T = 0 in D′. Then there exists
a distribution S ∈ C∞

c (Ω; R)′ such that T = ∇S. Conversely, if T = ∇S with S ∈ C∞
c (Ω; R)′, then

P1T = 0 in D′.

To apply the framework of forms, we need a form-space V: let us define V by V = H∩ V , where
V = H1

0 (Ω; R3) is the closure of D with respect to the scalar product

(u, v) 7→ ⟨u, v⟩1 = ⟨u, v⟩ +
3∑

i=1

⟨∂iu, ∂iv⟩.

The space V is a closed subspace of V ; endowed with the scalar product ⟨·, ·⟩1, it is a Hilbert space.
Moreover, V is dense in H. Indeed, to prove that V is dense in H, it suffices to prove that its
orthogonal in H is equal to {0}. Let u ∈ H, orthogonal to V; i.e., ⟨u, v⟩ = 0 for all v ∈ V. Since
D ⊂ V, this implies also that ⟨u, v⟩ = 0 for all v ∈ D and then Ju = T , viewed as a distribution in
D ′ satisfies

0 = D′⟨Ju, J0v⟩D = D′⟨P1T, v⟩D
since P1 = J ′

0. This means that P1T = 0 on D. By de Rham’s theorem, this implies that there
exists S ∈ C∞

c (Ω)′ such that T = ∇S. Recall that T = Ju ∈ H, so that ∇S ∈ H, and therefore,
T ∈ G. But H ∩ G = {0} (since they are orthogonal by definition), which implies then that u = 0
(since u ∈ H by assumption and we just proved that Ju ∈ G).

Next, we denote by V ′ the dual space of V : V ′ = H−1(Ω; R3) and by V ′ the dual space of V.
Let J̃ be the canonical injection V ↩→ V : it is a restriction of the canonical injection J : H ↩→ H, so
that its adjoint P̃ = J̃ ′ : V ′ → V ′ is an extension of the Helmholtz projection P : H → H.

On V × V, we define the sesquilinear form

a(u, v) =
n∑

j=1

⟨∂j J̃u, ∂j J̃v⟩ u, v ∈ V.

The Dirichlet-Stokes operator A in H is the associated operator of the form a. It is defined by

D(A) =
{
u ∈ V; P̃(−∆Ω

D)J̃u ∈ H
}

Au = P̃(−∆Ω
D)J̃u
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where ∆Ω
D denotes the Dirichlet-Laplacian on V . From the theory of operators associated to forms on

Hilbert spaces (see e.g., [8]), it is immediate that −A generates an analytic semigroup of contractions
of angle π

2 , (e−tA)t≥0. Since a is symmetric, the operator A is self-adjoint, D(A
1
2 ) = V (by [4,

Corollaire 5.2]). Note also that the operator δ Id + A is invertible for all δ > 0, and the following
estimate holds

∥A(δ Id + A)−1∥L (H) ≤ 2, for all δ > 0. (2.1)

Moreover by de Rham’s theorem, for u ∈ D(A), there exists p ∈ L2
loc(Ω; C) such that

J(Au) = −∆u + ∇p,

so that we can equivalently define D(A) by

D(A) =
{
u ∈ V ;∃ p ∈ L2

loc(Ω; R) : −∆J̃u + ∇p ∈ H
}
.

The relations between the spaces and the operators are summarized in the following diagram:

D � � J0 // D

V

A

��

� � J̃ // V

(−∆Ω
D)

��

H � � J // H
P=J′

oo

V ′ V ′
P̃=J̃′

oo

D′ D ′
P1=J ′

0

oo

The following estimates will be used to treat the nonlinear term and the initial condition in (1.1).

Proposition 2.2. For all α ≥ 0 and all f ∈ D(Aα),∥∥t 7→ AαT (t)f
∥∥

L∞(0,∞;H)
≤ ∥Aαf∥2 and

(∫ ∞

0

∥∥A
1+2α

2 T ( t
2 )f

∥∥2

2
dt

) 1
2 ≤ ∥Aαf∥2. (2.2)

Corollary 2.3. The semigroup (T (t))t≥0 satisfies∥∥t 7→ A
1
2 T (t)

∥∥
L2(0,∞;L (H))

≤ 1√
2

and
∥∥t 7→ A

3
4 T (t)

∥∥
L

4
3 (0,∞;L (H))

≤ 1 (2.3)

Proof of Proposition 2.2. The property (2.2) comes from the energy equality. Assume first that
f ∈ D(A2α) ∩D(A) and define u(t) = T (t)f . Then u(0) = f and u is solution of u′(s) + Au(s) = 0:
taking the scalar product in H of this equation with A2αu(s), we have

⟨u′(s), A2αu(s)⟩ + ⟨Au(s), A2αu(s)⟩ = 0, s ≥ 0. (2.4)

Since the operator A is self-adjoint, integrating (2.4) between 0 and t, we obtain

∥Aαu(t)∥2
2 + 2

∫ t

0

∥A
1+2α

2 u(s)∥2
2 ds = ∥Aαf∥2

2, for all t > 0. (2.5)

Since D(A2α) ∩ D(A) is dense in D(Aα), (2.5) holds for all f ∈ D(Aα). Therefore, we have

sup
t≥0

∥AαT (t)f∥2 ≤ ∥Aαf∥2 and
(∫ ∞

0

∥A
1+2α

2 T
(

s
2

)
f∥2

2 ds
) 1

2 ≤ ∥Aαf∥2, f ∈ H, (2.6)

which gives (2.2).
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Proof of Corollary 2.3. The first part of (2.3) is contained in (2.2) for α = 0. Moreover, by (2.2) for
α = 0, we have ∥∥t 7→ T (t)

∥∥
L∞(0,∞;L (H))

≤ 1

and ∥∥t 7→ A
1
2 T

(
t
2

)∥∥
L2(0,∞;L (H))

≤ 1. (2.7)

Interpolating between these two estimates, we obtain that∥∥t 7→ A
1
4 T

(
t
2

)∥∥
L4(0,∞;L (H))

≤ 1. (2.8)

Now, with the two estimates (2.7) and (2.8), the proof of the second part of (2.3) is immediate.
Indeed, the equality A

3
4 T (t) = A

1
2 T

(
t
2

)
A

1
4 T

(
t
2

)
holds for all t > 0 by the semigroup property, and

for all f ∈ L2 and g ∈ L4, the product fg belongs to L
4
3 and ∥fg∥ 4

3
≤ ∥f∥2∥g∥4 (since 1

2+ 1
4 = 3

4 ).

3 The Dirichlet-Navier-Stokes system

We define the space E by

E = Cb

(
[0,∞); ˙

D(A
1
4 )

)
∩ L4

(
0,∞; Ḣ1

0 (Ω; R3)
)
, (3.1)

where ˙
D(A

1
4 ) denotes the homogeneous D(A

1
4 )-space, i.e., the completion of D(A

1
4 ) with respect

to the (semi-)norm f 7→ ∥A 1
4 f∥2, and Cb denotes the space of bounded continuous functions. We

define the following norm on E

∥u∥E = ∥A 1
4 u∥L∞(0,∞;H) + ∥∇u∥L4(0,∞;L2(Ω;R3)).

We reduce the problem of finding mild solutions of (1.1) by solving

u′(t) + Au(t) = −P1

(
(J0u · ∇)J0u

)
u(0) = u0, u ∈ E ,

(3.2)

for which a mild solution is given by the Duhamel formula: u = α + ϕ(u, u), where, for t > 0,

α(t) = T (t)u0 and

ϕ(u, v)(t) =
∫ t

0

T (t − s)
(
− 1

2P1

(
(J0u(s) · ∇)J0v(s) + (J0v(s) · ∇)J0u(s)

))
ds. (3.3)

The strategy to find u ∈ E satisfying u = α + ϕ(u, u) is to apply a fixed point theorem. We have
then to make sure that E is a “good” space for the problem, i.e., α ∈ E and ϕ(u, u) ∈ E . The fact
that α is continuous in time comes from the strong continuity of the Stokes semigroup and the fact
that A

1
4 commutes with the Stokes semigroup on ˙

D(A
1
4 ). Moreover, α ∈ E by (2.2) for α = 1

4 and
interpolation, and the following estimate holds

∥α∥E ≤ (1 + 2−
1
4 ) ∥A 1

4 f∥2 (3.4)

Proposition 3.1. The application ϕ : E ×E → E is bilinear, continuous and symmetric. We denote
by M its norm:

M = sup
{
∥ϕ(u, v)∥E ; u, v ∈ E , ∥u∥E , ∥v∥E ≤ 1

}
.
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Proof. The fact that ϕ is bilinear and symmetric is immediate, once we have proved that it is
well-defined. For u, v ∈ E , let

f(t) = −1
2P1

(
(J0u(t) · ∇)J0v(t) + (J0v(t) · ∇)J0u(t)

)
, t ∈ (0,∞). (3.5)

By the definition of E and Sobolev embeddings, it is easy to see that

(J0u(t) · ∇)J0v(t) + (J0v(t) · ∇)J0u(t) ∈ L
3
2 (Ω; R3).

By (2.1), for all λt > 0, ∥∥(λt Id + A)−
1
4 f(t)

∥∥
2
≤ 2 C ∥∇u(t)∥2∥∇v(t)∥2

where C is the norm of the continuous embedding Ḣ1
0 (Ω) ↩→ L6(Ω), which gives that t 7→ (λt Id +

A)−
1
4 f(t) belongs to L2(0,∞;H) with the following estimate(∫ ∞

0

∥∥(λt Id + A)−
1
4 f(t)

∥∥2

2
dt

) 1
2 ≤ 2C ∥u∥E ∥v∥E (3.6)

Therefore, we have, choosing λs = 1
1+(t−s)2 ,

∥A 1
4 ϕ(u, v)(t)∥2 ≤ 2C

∫ t

0

∥A 1
4 T (t − s)

(
1

1+(t−s)2 Id + A
) 1

4 ∥L (H)∥∇u(s)∥2∥∇v(s)∥2 ds. (3.7)

and

∥∇ϕ(u, v)(t)∥2 ≤ 2C

∫ t

0

∥A 1
2 T (t − s)

(
1

1+(t−s)2 Id + A
) 1

4 ∥L (H)∥∇u(s)∥2∥∇v(s)∥2 ds. (3.8)

Let k1(t) = ∥A 1
4 ( 1

1+t2 Id +A)
1
4 T (t)∥L (H) and k2(t) = ∥A 1

2 ( 1
1+t2 Id +A)

1
4 T (t)∥L (H): by Corollary 2.3

and the fact that t 7→
(

1
1+t2

) 1
4 belongs to L4(0,∞), the function k1 belongs to L2(0,∞) and the

function k2 belongs to L
4
3 (0,∞). Moreover, for u, v ∈ E , the function φ : t 7→ ∥∇u(t)∥2∥∇v(t)∥2

belongs to L2(0,∞). Therefore, by Young’s inequality (since 1
2 + 1

2 − 1 = 1
∞ and 3

4 + 1
2 − 1 = 1

4 ),

t 7→ k1 ⋆ φ(t) =
∫ t

0

k1(t − s)φ(s) ds ∈ L∞(0,∞)

and

t 7→ k2 ⋆ φ(t) =
∫ t

0

k2(t − s)φ(s) ds ∈ L4(0,∞),

which proves, together with (3.7) and (3.8), that ϕ(u, v) ∈ E and

∥ϕ(u, v)∥E ≤ M ∥u∥E ∥v∥E .

The bilinear symmetric form ϕ is then continuous from E × E to E : the fact that t 7→ A
1
4 ϕ(u, v)(t)

is continuous from [0,∞) to H follows directly from the strong continuity of the Stokes semigroup
and the representation of A

1
4 ϕ(u, v) as a convolution. Note that the constant M does not depend

on the size nor on the regularity of Ω.

We conclude by applying Picard’s fixed point theorem (see e.g. [3, Theorem 13.2] or [7, Theo-
rem A.1]) to obtain the following existence result for the system (1.1).

Theorem 3.2. Let Ω ⊂ R3 be an open set. Then for all u0 ∈ ˙
D(A

1
4 ) with ∥A 1

4 u0∥2 < 1
4M , there

exists a unique u ∈ E with ∥u∥E < 1
2M solution of u = α + ϕ(u, u), where α and ϕ were defined in

(3.3).
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