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Abstract. Consider the Navier-Stokes equations in the rotational framework

either on R3 or on open sets Ω ⊂ R3 subject to Dirichlet boundary conditions.
This paper discusses recent well-posedness and ill-posedness results for both

situations.

1. Introduction. Well-posedness results for linear and non-linear differential equa-
tions are important aspects in many scientific articles by Jerry Goldstein. He con-
tributed in many ways to this concept, either by investigating abstract Cauchy
problems or by considering concrete partial differential equations in his many pa-
pers and in particular in his fundamental book on Semigroups of Linear Operators
and Applications, see [8], which was published in 1985 by the Oxford University
Press. Of fundamental importance in this approach are generators of semigroups
and the variation of constant formula for inhomogeneous Cauchy problems in Ba-
nach spaces. Mapping properties of the semigroup combined with fixed point ar-
guments are often the central tools for proving local or global existence results for
non-linear evolution equations.

In this paper, we follow this approach and consider the Navier-Stokes equations
with Coriolis force on Ω = R3 or on domains Ω ⊂ R3 subject to Dirichlet boundary
conditions, i.e. we study the equation

∂tu−∆u+∇π + ω e× u+ (u · ∇)u = 0 in (0,∞)× Ω,

div u = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u(0) = u0 in Ω,

(1)

Here ω denotes the speed of rotation and e3 is the unit vector in x3-direction. If
ω = 0, the system (1) reduces to the classical Navier-Stokes system.

2010 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Navier-Stokes equations, Coriolis force, Stokes-Coriolis semigroup,

Dirichlet boundary conditions, mild solutions.

5143

http://dx.doi.org/10.3934/dcds.2013.33.5143


5144 MATTHIAS HIEBER AND SYLVIE MONNIAUX

This equation recently gained quite some attention due to its importance in
applications to geophysical flows; in particular, large-scale atmospheric and oceanic
flows are dominated by rotational effects, see e.g. [21] and [7].

Our main technique to study this equation follows the approach sketched above.
In fact, considering first the linearization of equation (1), we show first that the
so called Stokes-Coriolis operator generates a C0-semigroup T on certain function
spaces. Then, by the method which is nowadays called the Fujita-Kato method,
well-posedness results for equation (1) in the L2-seting will be obtained by consid-
ering the integral equation

u(t) = T (t)u0 +

∫ t

0

T (t− s)Pdiv (u⊗ u)(s)ds.

Here P denotes the Helmholtz projection onto the solinoidal vector fields of L2(R3).
For the classical Navier-Stokes equations, this approach was generalized and pushed
further to various scaling invariant function spaces. For details, we refer e.g. to the
work of Kato [18], Koch and Tataru [19] and Cannone [5].

The first ill-posedness result for the classical Navier-Stokes equations is due to
Bourgain and Pavlović [4] for initial data in the Besov space Ḃ−1

∞,∞(R3). It means
that the solution map sending an initial data to the solution given by the above for-
mula, where T now denotes the classical Stokes semigroup, is now longer continuous
with respect to this Besov-norm.

The above equation (1) was mainly studied so far in the case of Ω = R3. It is a
very remarkable fact that in this case the equation (1) allows a global, mild solution
for arbitrary large data in the L2-setting provided the speed Ω of rotation is fast
enough, see [1], [2], [7] and [6]. More precisely, it was proved by Chemin, Desjardins,
Gallagher and Grenier in [7] that for initial data u0 ∈ L2(R2)3+H1/2(R3)3 satisfying
div u0 = 0, there exists a constant ω0 > 0 such that for every ω ≥ ω0 the equation
(1) admits a unique, global mild solution. The case of periodic intial data was
considered before by Babin, Mahalov and Nicolaenko in the papers [1] and [2].

It is a natural question to ask whether, for given and fixed ω > 0, there exists a
unique, global mild solution to (1) provided the norm of the initial data is sufficiently
small with respect to certain norms. In this context it is natural to extend the
classical Fujita-Kato approach for the Navier-Stokes equations to the rotational
setting. This was carried out first by Hieber and Shibata in [15] for the case of initial
data belonging to H1/2(R3). Generalizations of this result to the case of Fourier-
Besov spaces are due to Konieczny and Yoneda [20] and Iwabuchi and Takada [16].
These results will be discussed in some detail for the case Ω = R3 in the following
Section 2. We will further address the question of ill-posedness of (1). Starting
point here is the pioniering paper by Bourgain and Pavlović, [4], who showed ill-
posedness for the classical Navier-Stokes equation, i.e. for the case ω = 0, in the
Besov space Ḃ−1

∞,∞(R3). It was recently shown by Iwabuchi and Takada [16] that
equation (1) is also ill posed in certain Fourier-Besov spaces. All of these results
rely on a good description of the Stokes-Coriolis semigroup.

In Section 4 we consider equation (1) on arbitrary domains Ω ⊂ R3. It was
shown in [13] that the Stokes-Coriolis operator, defined via form methods, generates
a contraction semigroup on a certain subspace H of L2(Ω). Note that H coincides
with L2

σ(Ω) in the case of domains with smooth boundaries.
The above equation was also studied in the setting of nondecaying initial data in

a series of papers by Giga et al, see [10], [12]. More precisely, these authors prove
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local existence of mild solutions to the problem (1) for initial data u0 belonging to
L∞σ,a(R3), a suitable subspace of L∞σ (R3). Global existence results for initial data
which may not decay at infinity were obtained by Giga, Inui, Mahalov and Saal in
[11]. For more details, see Section 4. For extensions of this result we refer to [23].

2. Linear theory for Ω = R3. We start this section by considering the linear
equation on R3, i.e.

ut + ∆u+ ωe3 × u+∇p = 0, x ∈ R3, t > 0

div u = 0, x ∈ R3, t > 0, (2)

u(0, x) = u0(x), x ∈ R3,

and the corresponding resolvent equation in classical Lp spaces. To this end, let
λ ∈ Σφ for some φ ∈ [0, π/2), where Σφ = {z ∈ C\{0}, | arg z| < φ} and let
f ∈ Lpσ(R3)3, the space of all solenoidal vector fields belonging to Lp(R3). Taking
Fourier transforms with respect to x in the resolvent equation

λu− ν∆u+ ωe3 × u+∇p = f, x ∈ R3, (3)

div u = 0, x ∈ R3,

yields

(λ+ |ξ|2)û1 − ωû2 + iξ1p̂ = f̂1

(λ+ |ξ|2)û2 + ωû1 + iξ2p̂ = f̂2 (4)

(λ+ |ξ|2)û3 + iξ3p̂ = f̂3.

It follows that

p̂(ξ) =
ω

|ξ|2
[iξ2û1(ξ)− iξ1û2(ξ)]. (5)

Inserting this expression for the pressure p in the above resolvent equation (4) yields
that its solution is given by p̂ defined as in (5) and by û defined by

û =
ω2

det
If̂ +

ω

det

ξ3
|ξ|
Rf̂,

where I is the identity matrix and

R = R(ξ) =

 0 ξ3
|ξ| − ξ2

|ξ|
− ξ3
|ξ| 0 ξ1

|ξ|
ξ2
|ξ| − ξ1

|ξ| 0


and

det = det (ξ) = ω4 + ω2 ξ
2
3

|ξ|2
.

It follows that the solution û of the time dependent linear problem (2) in Fourier
variables, i.e. of the problem

ût(ξ) + ν|ξ|2Iû(ξ) + ωê3 × u(ξ) + iξp̂(ξ) = 0, ξ ∈ R3, t > 0

iξ · û(ξ) = 0, ξ ∈ R3, t > 0, (6)

û(0, ξ) = û0(ξ), ξ ∈ R3.

is given by
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û(t, ξ) = cos(ω
ξ3
|ξ|
t)e−|ξ|

2tIû0(ξ) + sin(ω
ξ3
|ξ|
t)e−|ξ|

2tR(ξ)û0(ξ), t ≥ 0, ξ ∈ R3.

This representation combined with Plancherel’s theorem implies the following result.

Proposition 2.1 ([15], Prop. 2.1). The unique solution of equation (2) in L2
σ(R3)

is given by the bounded C0-semigroup T2, which is explicitly given by

T2(t)f := F−1[cos(ω
ξ3
|ξ|
t)e−|ξ|

2tIf̂(ξ) + sin(ω
ξ3
|ξ|
t)e−|ξ|

2tR(ξ)f̂(ξ)],

for t ≥ 0 and f ∈ L2
σ(R3)3.

The above semigroup is called the Stokes-Coriolis semigroup.
Writing

Tp(t)f := F−1[cos(ω
ξ3
|ξ|
t)e−|ξ|

2tIf̂(ξ) + sin(ω
ξ3
|ξ|
t)e−|ξ|

2tR(ξ)f̂(ξ)] (7)

for t ≥ 0, f ∈ Lpσ(R3)3 and 1 < p <∞, we may extend the semigroup T by Mikhlin’s
theorem to a C0-semigroup on Lp(R3)3.

Indeed, set R̂3f(ξ) := ξ3
|ξ| f̂ ξ for ξ 6= 0. Then Mikhlin’s theorem implies the

following result.

Proposition 2.2. Let 1 < p < ∞ and let Tp be defined as in (7). Then Tp is a
C0-semigroup on Lpσ(R3)3 satisfying

‖Tp(t)f‖p ≤Mpω
2t2‖f‖p, t ≥ 1, f ∈ Lpσ(R3)3

for some constant Mp. Moreover, Tp may be represented as

Tp(t) = [cos(ωR3t)I + sin(ωR3t)R]et∆f, t ≥ 0, f ∈ Lpσ(R3)3].

Aiming for global existence results for equation (1), it is interesting to look for
function spaces on which the Stokes-Coriolis semigroup defines a bounded semi-

group. To this end, let Φ ∈ S(R3) such that 0 ≤ Φ̂(ξ) ≤ 1, supp Φ̂ ⊂ {ξ ∈ R3 :
2−1 ≤ |ξ| ≤ 2} and ∑

j∈Z
Φ̂j(ξ) = 1, ξ ∈ R3\{0},

where Φj(x) := 2jnΦ(2jx). Then the Fourier-Besov space FḂsp,q(R3) is defined as

follows: let s ∈ R and 1 ≤ p, q ≤ ∞. Then the space FḂsp,q(R3) is defined by

FḂsp,q(R3) := {f ∈ S(R3) : f̂ ∈ L1
loc(R3) and ‖f‖FḂsp,q(R3) <∞},

where

‖f‖FḂsp,q(R3) := ‖{2sj‖Φ̂j f̂‖p}j∈Z‖lq .

Given the representation of Proposition 2.1 it in now not difficult to verify the
following assertion.

Proposition 2.3 ([16],Lemma 2.1). There exists a constant C > 0 such that

‖T (t)f‖FḂ−1
1,2(R3) ≤ C‖f‖FḂ−1

1,2(R3), ω ≥ 0.
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The following Lp−Lq as well asH
1
2−Lq smoothing properties for the semigroup T

are established by [15] and are essential in their approach for the nonlinear problem
(1).

Proposition 2.4. Let 1 ≤ p ≤ 2 ≤ q ≤ ∞. Then for m ∈ N0 there exists a
constant C > 0 such that

‖∇mT (t)f‖q ≤ Ct−
m
2 −

3
2 (1/p−1/q)‖f‖p, t > 0, f ∈ Lp(R3), (8)

‖∆ 1
4T (t)f‖2 ≤ Ct−

1
4−

3
2 (1/p−1/2)‖f‖p, t > 0, f ∈ Lp(R3). (9)

Moreover, there exists a constant C > 0 such that

‖T (t)f‖ 1
2
≤ C‖f‖ 1

2
, t > 0, f ∈ H 1

2 (R3), (10)

‖∇T (t)f‖2 ≤ Ct−
1
4 ‖f‖ 1

2
, t > 0, f ∈ H 1

2 (R3), (11)

and for q > 3 there exists C > 0 such that

‖T (t)f‖q ≤ Ct−
1
2 + 3

2q ‖f‖ 1
2
, t > 0, f ∈ H 1

2 (R3). (12)

3. Linear theory for domains. In this section we define the Stokes and the
Stokes-Coriolis operator by the theory of forms. To this end, let Ω ⊂ R3 be an open
set and let H = L2(Ω;R3) by defined by

H =
{
u = (u1, u2, u3);ui ∈ L2(Ω;R3), for all i = 1, 2, 3

}
,

endowed with the usual scalar product 〈·, ·〉. Observe that the set G defined by

G :=
{
∇p; p ∈ L2

loc(Ω;R) with ∇p ∈ L2(Ω;R3)
}

;

is a closed subspace of H. Set

H := G⊥ =
{
u ∈ L2(Ω;R3); 〈u, g〉 = 0 for all g ∈ G

}
.

Denote by J : H ↪→ H the canonical injection from H onto H and define a scalar
product on H by

(u, v) 7→ 〈Ju, Jv〉.
Endowed with this scalar product, H is a Hilbert space and we have

H = H
⊥
⊕ G.

Finally, denote by P the orthogonal projection from H onto H. Then P is equal to
the adjoint J ′ of J and PJ = IdH.

We are now in the position to apply the theory of forms as follows. Define V by
V := H ∩ V , where V = H1

0 (Ω;R3). Then V is a closed subspace of V a hence a
Hilbert space. It follows from De Rham’s theorem that V is dense in H.

Next, denote by V ′ the dual space of V , i.e. V ′ = H−1(Ω;R3) and let V ′ be the

dual space of V. Let J̃ be the canonical injection V ↪→ V . It is a restriction of the
canonical injection J : H ↪→ H, so that its adjoint P̃ = J̃ ′ : V ′ → V ′ is an extension
of the Helmholtz projection P : H → H.

Given ω ≥ 0, we define sesquilinear forms a and b on V × V by

a(u, v) :=

n∑
j=1

〈∂j J̃u, ∂j J̃v〉 u, v ∈ V, and

b(u, v) := ω〈e× Ju, Jv〉.
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The Stokes operator A in H is then defined to be the operator associated with the
form a, i.e. A is given by

D(A) :=
{
u ∈ V; P̃(−∆Ω

D)J̃u ∈ H
}

Au := P̃(−∆Ω
D)J̃u.

Here, ∆Ω
D denotes the Dirichlet-Laplacian on V .

Remark 3.1. The Stokes operator A has the following properties:

a) A is a self-adjoint operator in H.

b) D(A
1
2 ) = V .

c) −A generates an analytic semigroup of contractions on H of angle π
2 .

d) D(A) =
{
u ∈ V ;∃ p ∈ L2

loc(Ω;R) : −∆J̃u+∇p ∈ H
}

.

Define the Stokes-Coriolis operator AC in H to be the operator associated to the
form a+ b. We then have the following result.

Proposition 3.2 ([13]). The operator −AC generates a semigroup of contractions
(TC(t))t≥0 on H satisfying the properties

a)
(
t 7→ TC(t)

)
∈ L∞(0,∞; L (H)) and

(
t 7→ A

1
2TC(t)

)
∈ L2(0,∞; L (H))

with norms less than or equal to 1;
b)
(
t 7→ A

1
4TC(t)A

1
4

)
∈ L2(0,∞; L (H)) and(

t 7→ A
1
2TC(t)A

1
4

)
∈ L 4

3 (0,∞; L (H)) with norms less than or equal to 1.

4. Global existence results for the non-linear equation in Ω = R3. We start
this section with a global existence result for data being small in the H1/2-norm.
More precisely, we have the following result.

Theorem 4.1 ([15], Theorem 3.1). There exists ε > 0, independent of ω, such

that for any u0 ∈ H
1
2
σ (R3) with ‖u0‖ 1

2
≤ ε, the equation (1) admits a unique, mild

solution u ∈ C0([0,∞), H
1
2
σ (R3))3 satisfying limt→0+ ‖u(·, t)− u0‖1/2 = 0.

The proof of the above theorem is based on the Fujita-Kato argument applied to
the integral equation

u(t) = T (t)u0 −
∫ t

0

T (t− s)P [(u(s) · ∇)u(s)] ds, (13)

where P denotes the Helmholtz projection. In order to do so, one has to estimate
the bilinear form associated with the second term on the right hand side above in
certain function spaces. For details, see [15].

The above result was recently generalized to the setting to Fourier-Besov spaces
by Konieczny and Yoneda [20] and Iwabuchi and Takada [16]. In fact, their results
read as follows.

Theorem 4.2 ([20], Theorem 2.2). Let 3 < p ≤ ∞. Then there exists a constant

δ > 0, independent of ω, such that for all u0 ∈ FḂ2−3/p
p,∞ (R3) with div u0 = 0 and

‖u0‖FḂ2−3/p
p,∞ (R3)

≤ δ, the equation (1) admits a unique, global mild solution

u ∈ Cw([0,∞);FḂ2−3/p
p,∞ ) ∩ L∞(0,∞;FḂ2−3/p

p,∞ ).
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Moreover, if u0 is small in X0 = FḂB−1
1,1(R3) ∩ FḂ0

1,1(R3), then there exists a

unique global solution u to (1) such that

u ∈ C([0,∞);FḂ−1
1,1) ∩ L2(0,∞;X0).

Theorem 4.3 ([16], Theorem 1.2). For all α ∈ (0, 1), there exist constants C, δ > 0,

independent of ω, such that for all u0 ∈ FḂ−1
1,2(R3) with div u0 = 0 and ‖u0‖FḂ−1

1,2(R3)

≤ δ, the equation (1) admits a unique, global mild solution u ∈ Xα, where

Xα = {u ∈ C([0,∞);FḂ−1
1,2(R3)) : ‖u‖Xα ≤ 2Cδ,div u = 0}

and ‖u‖Xα is defined as

‖u‖Xα := sup
t>0
‖u(t)‖FḂ−1

1,2
+ ‖u‖Zα + ‖u‖Z−α ,

where ‖u‖Z±α = {
∑
j∈Z(2αj‖Φ̂j û‖

L
2

1+α (0,∞;L1(R3))
)2}1/2.

Remark 4.4. Note that due to the embedding

Ḣ1/2(R3) ↪→ FḂ−1
1,2(R3)

the above Theorem 4.3 generalizes in particular the corresponding Theorem 4.1.

Given Theorem 4.3, it is natural to ask whether equation (1) is well posed in

larger function spaces as FḂ−1
1,2(R3). The following result is hence very interesting.

Theorem 4.5 ([16], Theorem 1.5). For q ∈ (2,∞], the equation (1) is ill posed in

FḂ−1
1,q (R3) in the sense that the solution map from the initial data to the solution

is not continuous.

The proof of Theorem 4.5 is based on an ill-posedness approach for nonlinear
Schrödinger equations, due to Bejenaru and Tao; see [3].

Observe that the above result is true even also in the case ω = 0. It is interesting
to compare Theorem 4.5 with the ill posedness result for the Navier-Stokes equations
in the Besov space Ḃ−1

∞,∞(R3), due to Bourgain and Pavlović [4]. In fact, since

FḂ−1
1,q (R3) ↪→ Ḃ−1

∞,q(R3) for all q ∈ [1,∞], the above Theorem 4.5 generalizes the

Bourgain-Pavlović result to the case Ḃ−1
∞,q(R3) for q ∈ (2,∞].

In order to describe the situation for nondecaying initial data u0 denote first
by M the space of finite C3-valued Radon measures on R3 and by FM its Fourier
transform. Equipped with the norm ‖f‖FM := ‖F−1f‖M , the space FM becomes
a Banach space, where F−1 denotes the inverse Fourier transform. Furthermore,
denote by F3 the class of all sum-closed frequency sets in R3; for details see [11].
Moreover, sum-closed frequency set with distance δ > 0 from zero are denoted by
Fδ. For Fδ ∈ F3 define the space

FMσ,δ := {f ∈ FM : div f = 0, supp f̂ ⊂ Fδ}.
The following result is due to Giga, Inui, Maholov and Saal.

Theorem 4.6 ([11],Thm.1.2). Let δ > 0, ω ∈ R, Fδ ∈ F3 and u0 ∈ FMσ,δ. If

‖u0‖FM <
δ

K

for a certain K > 0, then there exists a global, mild solution u ∈ BC([0,∞), FMσ,δ)
to equation (1) satisfying ‖u(t) − u0‖FM → 0 for t → 0 and ‖u(t)‖FM ≤
2e−δ

2t‖u0‖FM for t ≥ 0.
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5. Global existence results for the non-linear equation in domains. We
define the space E by

E =
{
u ∈ L4(0,∞; Ḣ1

0 (Ω;R3)); div u = 0 in (0,∞)× Ω
}
, (14)

endowed with the norm

‖u‖E = ‖∇u‖L4(0,∞;L2(Ω;R3)).

We reduce the problem of finding mild solutions for (1) by solving the equation

u′(t) +Au(t) +Bu(t) = −P̃
(
(J̃u · ∇)J̃u

)
u(0) = u0, u ∈ E ,

(15)

for which a mild solution u is given by u = α + φ(u, u), where, for t > 0, α(t) =
TC(t)u0, and

φ(u, v)(t) =

∫ t

0

TC(t− s)
(
− 1

2 P̃
(
(J̃u(s) · ∇)J̃v(s) + (J̃v(s) · ∇)J̃u(s)

))
ds. (16)

The strategy for finding u ∈ E satisfying u = α+φ(u, u) is to apply the contration
principle in a suitable “good” space E , for which α ∈ E and φ(u, u) ∈ E .

Proposition 5.1. The application φ : E × E → E is bilinear, continuous and
symmetric.

Denote by M the norm of the above mapping φ, i.e.

M = sup
{
‖φ(u, v)‖E ;u, v ∈ E , ‖u‖E , ‖v‖E ≤ 1

}
.

Observe that M is independent on ω.
We define now the space X where we will consider the initial values u0 for (1)

by

X :=
{
f ∈ H; t 7→ ∇TC(t)f ∈ L4(0,∞;L2(Ω;R3)

}
, (17)

endowed with its norm

‖f‖X =
(∫ ∞

0

‖∇TC(t)f‖42 dt
) 1

4

.

Then the following result holds.

Theorem 5.2 ([13]). Let Ω ⊂ R3 be an open set. Then, for all u0 ∈ X with
‖u0‖X < 1

4M , there exists a unique u ∈ E satisfying ‖u‖E < 1
2M and such that u is

the solution of u = α+φ(u, u), where α and φ are defined as in (16). Moreover, in

this case, t 7→ A
1
4 (u(t)− α(t)) belongs to L∞(0,∞;H).

Remark 5.3. We remark that Theorem 5.2 generalizes in particular Theorem 4.1,
since in the case Ω = R3, it is not difficult to verify that

‖A 1
4α‖C ([0,∞);H) ≤ ‖A

1
4u0‖H = ‖u0‖ 1

2
and,

X =
˙

D(A
1
4 ) = Ḣ

1
2
σ and ‖f‖X = ‖A 1

4 f‖H = ‖f‖ 1
2
, f ∈ X.
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