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1 Introduction

At the ISAAC meeting in Macau, the first author discussed the harmonic analysis of
first order systems on bounded domains, with particular reference to his current joint
research with the second author concerning the Lp theory of Hodge-Dirac operators
on Lipschitz domains, with implications for the Stokes’ operator on such domains with
Hodge boundary conditions. In this article, we present an overview of this material,
staying with the three dimensional situation. Full definitions and proofs in higher
dimensions can be found in [14]. In other papers with Marius Mitrea, the second
author has pursued applications to the Navier-Stokes equation on Lipschitz domains.
We will not comment further on that here, except to mention that the non-linear
applications depend on having results for the linear Stokes operator in the case p = 3
or possibly p = 3/2 (the dual exponent to 3).

Harmonic analysis =⇒ First order systems

Hodge-Dirac systems

on bounded domains

⇓

Potential Application ⇐= Second order equations

Navier-Stokes equation Hodge-Laplacian;

with Hodge Hodge-Stokes Operator

boundary conditions
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and the Mathematical Institute in Marseille (I2M). Both authors were supported by
the Australian Research Council.

3 Hodge-Dirac operators

Our aim is to investigate the Lp theory of the first order Hodge-Dirac operator

DH = dΩ + δΩ

acting on a bounded domain Ω ⊂ R3 satisfying some kind of Lipschitz condition.

Here dΩ is the exterior derivative acting on differential forms in Lp(Ω,Λ), and δΩ

is the adjoint operator which includes the tangential boundary condition

ν y u|∂Ω = 0

i.e. the normal component of u at the boundary ∂Ω is zero, at least on that part of
the boundary where it is well-defined. This is effectively half a boundary condition
for DH , which is what is expected for a first order system.

Let us now define our terms.

4 Lipschitz domains

Henceforth Ω denotes a bounded connected open subset of R3 , and B denotes the
unit ball in R3 . We say that

• Ω is very weakly Lipschitz if Ω = ∪Nj=1(ρjB) for some natural number N , where
each map ρj : B → ρjB ⊂ R3 is uniformly locally bilipschitz, and

1 =
∑N

j=1 χj on Ω, where each χj : Ω → [0, 1] is a Lipschitz function with
spptΩ(χj) ⊂ ρjB ;

• Ω is strongly Lipschitz if, locally, the boundary ∂Ω of Ω is a portion of the graph
of a Lipschitz function g : R2 → R (with respect to some rotated coordinate
system), with Ω being to one side of the graph;

• Ω is smooth if each such function g is smooth.
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In the above, spptΩ(χj) denotes the closure of {x ∈ Ω ; χj(x) 6= 0} in Ω.

Every strongly Lipschitz domain is weakly Lipschitz (which we shall not discuss
further, but refer the reader to [5]) and every weakly Lipschitz domain is very weakly
Lipschitz. A weakly Lipschitz domain which is not strongly Lipschitz is the well known
two brick domain (consisting of one brick on top of another, pointing in orthogonal
directions), and a very weakly Lipschitz domain which is not weakly Lipschitz is the
unit ball with the half-disk {(x1, x2, x3) ∈ B ; x3 = 0, x1 > 0} removed.

In a strongly Lipschitz domain (and indeed in a weakly Lipschitz domain), there
is a well-defined outward-pointing unit normal ν(y) for almost every y ∈ ∂Ω. In fact
ν ∈ L∞(∂Ω;R3). As can be seen from the above example, the unit normal is not
necessarily defined on the whole boundary of a very weakly Lipschitz domain.

5 Exterior Algebra

• The exterior algebra on R3 with basis e1, e2, e3 is

Λ = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ Λ3 ≈ C⊕ C3 ⊕ C3 ⊕ C
u = u0 + u1 + u2 + u3 where

Λ0 = C
Λ1 = C3 : u1 = u1

1e1 + u1
2e2 + u1

3e3

Λ2 ≈ C3 : u2 = u2
2,3 e2 ∧ e3 + u2

3,1e3 ∧ e1 + u2
1,2 e1 ∧ e2

Λ3 ≈ C : u3 = u3
1,2,3 e1 ∧ e2 ∧ e3 (ek ∧ ej = −ej ∧ ek)

• Lp(Ω,Λ) = Lp(Ω,C)⊕ Lp(Ω,C3)⊕ Lp(Ω,C3)⊕ Lp(Ω,C)

• If a =
∑

j ajej ∈ R3 , u ∈ Λ` , then a ∧ u =
∑

j ajej ∧ u ∈ Λ`+1

• If also v ∈ Λ`+1 then a y v ∈ Λ` and 〈a ∧ u , v〉 = 〈u , a y v〉

• du = ∇ ∧ u =
∑

j ej ∧ ∂ju , δu = −∇ y u = −
∑

j ej y ∂ju

• The exterior product ∧ and the contraction y can be represented by scalar
multiplication, dot products and cross products.

6 The de Rham complex on Ω ⊂ R3

Suppose that Ω denotes a bounded open subset of R3 and 1 < p <∞ .

The exterior derivative dΩ defined on Ω can be expressed as follows:

dΩ : 0→ Lp(Ω,C)
∇Ω−→ Lp(Ω,C3)

curlΩ−→ Lp(Ω,C3)
divΩ−→ Lp(Ω,C)→ 0
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(noting that curl is sometimes written as rot or ∇× , and div as ∇.).
As an operator, dΩ : Dp(dΩ) → Lp(Ω,Λ) is an unbounded operator with domain

Dp(dΩ) = {u ∈ Lp(Ω,Λ) ; dΩu ∈ Lp(Ω,Λ)} .
Note that dΩ

2 = 0 because curlΩ∇Ω = 0 and divΩ curlΩ = 0, or as we can see
directly, dΩ

2u =
∑

j,k ej ∧ ek∂j∂ku = 0 by the skew-symmetry of the wedge product.

Hence the range of dΩ is contained in the null-space of dΩ , i.e. Rp(dΩ) ⊂ N p(dΩ)
where Rp(dΩ) = {v ∈ Lp(Ω,Λ) ; v = dΩu for some u ∈ Dp(dΩ)} and N p(dΩ) = {u ∈
Dp(dΩ) ; dΩu = 0} .

If Ω is very weakly Lipschitz, then Rp(dΩ) = Rp(dΩ) and the codimension of
Rp(dΩ) in N p(dΩ) is finite dimensional. We return to these facts in Section 20.

7 The dual de Rham complex

With Ω and p as above, let q = p′ (i.e. 1
p

+ 1
q

= 1).

The dual of the exterior derivative dΩ : Dq(dΩ)→ Lq(Ω,Λ) :

dΩ : 0→ Lq(Ω,C)
∇Ω−→ Lq(Ω,C3)

curlΩ−→ Lq(Ω,C3)
divΩ−→ Lq(Ω,C)→ 0

is δΩ : Dp(δΩ)→ Lp(Ω,Λ) :

0← Lp(Ω,C)
− divΩ←− Lp(Ω,C3)

curlΩ←− Lp(Ω,C3)
−∇Ω←− Lp(Ω,C)← 0 : δΩ

where the domain Dp(δΩ) is the completion of C∞c (Ω,Λ) in the graph norm ‖u‖p +
‖δΩu‖p .

Again, δΩ
2 = 0, i.e. Rp(δΩ) ⊂ N p(δΩ).

If Ω is very weakly Lipschitz, then Rp(δΩ) = Rp(δΩ), with finite codimension in
N p(δΩ).

If Ω is strongly Lipschitz, then the normal component of u ∈ Dp(δΩ) at the
boundary is zero, i.e.

Dp(δΩ) = {u ∈ Lp(Ω,Λ) ; δΩu ∈ Lp(Ω,Λ), ν y u|∂Ω = 0} .

Remark 7.1. The condition ν y u|∂Ω = 0 is to be understood in the following sense:
for u ∈ Lp(Ω,Λ) such that δΩu ∈ Lp(Ω,Λ) in a strongly Lipschitz domain, the normal
component at the boundary ν y u|∂Ω is defined as a functional on traces of differential
forms v ∈ W 1,p′(Ω,Λ) (where 1

p′
+ 1

p
= 1) by the integration by parts formula:

〈ν y u, v〉∂Ω = 〈u, dv〉Ω − 〈δu, v〉Ω.

Since Tr|∂Ω

(
W 1,p′(Ω,Λ)

)
⊆ Bp′,p′

1/p (∂Ω,Λ), we obtain that ν y u ∈ Bp,p
−1/p(∂Ω,Λ). For

more details, we refer to [16, §2.3].
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Remark 7.2. Some care needs to be taken when consulting references, in that different
authors use different sign conventions for δ and ∆.

Remark 7.3. The definitions and results concerning very weakly Lipschitz domains
in R3 can be adapted to domains in a Riemannian manifold with very little effort.

8 Hypothesis

For the rest of this article, Ω denotes a very weakly Lipschitz domain in R3 .

9 The Hodge-Dirac operator DH = dΩ+δΩ in L2(Ω,Λ)

First we consider the case p = 2. Then the exterior derivative dΩ and adjoint interior
derivative δΩ are unbounded operators in L2(Ω,Λ) which satisfy

• dΩ
2 = 0 , δΩ

2 = 0 , dΩ
∗ = δΩ , δΩ

∗ = dΩ .

In L2(Ω,Λ), define the Hodge-Dirac operator with tangential boundary condition
DH := dΩ + δΩ with D2(DH) = D2(dΩ) ∩ D2(δΩ). It is straightforward to check the
following properties (using the properties of dΩ and δΩ just described):

• The Hodge-Dirac operator DH = dΩ + δΩ is self-adjoint in L2(Ω,Λ);

• N 2(DH) = N 2(dΩ) ∩N 2(δΩ) is finite-dimensional;

• The Hodge decomposition of L2(Ω,Λ) takes the form

L2(Ω,Λ) = N 2(dΩ)
⊥
⊕R2(δΩ)

∪ ∩

L2(Ω,Λ) = R2(dΩ)
⊥
⊕N 2(δΩ) and so

L2(Ω,Λ) = R2(dΩ)
⊥
⊕R2(δΩ)

⊥
⊕N 2(DH) .

• In particular, on restricting to the space of square integrable vector fields,
L2(Ω,Λ1) = L2(Ω,C3), we have

L2(Ω,Λ1) = N 2(curlΩ)
⊥
⊕R2(curlΩ)

∪ ∩

L2(Ω,Λ1) = R2(∇Ω)
⊥
⊕ N 2(divΩ) = H2 and so

L2(Ω,Λ1) = R2(∇Ω)
⊥
⊕R2(curlΩ)

⊥
⊕N 2(DH)

where H2 := N 2(divΩ) ⊂ L2(Ω,Λ1).
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In the case when Ω is strongly Lipschitz, H2 is the space of divergence-free square
integrable vector fields which satisify the tangential boundary condition ν.u|∂Ω = 0.

10 The Hodge-Laplacian −∆H = DH
2

In L2(Ω,Λ), define the Hodge-Laplacian −∆H := DH
2 = dΩδΩ+δΩdΩ with D2(∆H) =

D2(dΩδΩ)∩D2(δΩdΩ). This is called the Hodge-Laplacian with absolute or generalised
boundary conditions. We remark that ∆H has the sign convention ∆Hu = ∂1

2u +
∂2

2u+ ∂3
2u , u ∈ D2(∆H).

It is straightforward to check the following properties:

• The Hodge-Laplacian −∆H = dΩδΩ+δΩdΩ is non-negative self-adjoint in L2(Ω,Λ);

• N 2(∆H) = N 2(DH) = N 2(dΩ) ∩N 2(δΩ);

• The Hodge-Laplacian preserves each of the spaces L2(Ω,Λk), 0 ≤ k ≤ 3, and
so splits as a direct sum of its restrictions to these spaces, as can be seen from
the expression −∆H = dΩδΩ + δΩdΩ with:

dΩ : 0
→
← L2(Ω,C)

∇Ω

→
←
− divΩ

L2(Ω,C3)
∪
H2

curlΩ
→
←

curlΩ

L2(Ω,C3)

divΩ

→
←
−∇Ω

L2(Ω,C)
→
← 0 : δΩ

−∆H = − divΩ∇Ω ⊕ (−∇Ω divΩ + curlΩ curlΩ)⊕ (curlΩ curlΩ−∇Ω divΩ)⊕− divΩ∇Ω

(= −∆Neumann) (= −∆Dirichlet)

Indeed it also preserves each component of the Hodge decomposition, in particular
H2 = L2(Ω,Λ1) ∩N 2(δΩ) = N 2(divΩ).

11 The Hodge-Stokes operator SH = −∆H|H2

In H2 , define the Stokes operator with Hodge boundary conditions by SHu = −∆Hu =
curlΩ curlΩ u , u ∈ H2 (i.e. divΩ u = 0) with D2(SH) = {u ∈ L2(Ω,Λ1) ; divΩ u =
0, curlΩ curlΩ u ∈ L2(Ω,Λ1)} . It is straightforward to check the following properties:

• The Hodge-Stokes operator SH = curlΩ curlΩ is non-negative self-adjoint in H2 ;

• N 2(SH) = N 2(DH) ∩ L2(Ω,Λ1) = N 2(curlΩ) ∩N 2(divΩ) is finite-dimensional;

If Ω is strongly Lipschitz and u ∈ D2(SH), then the tangential boundary conditions
ν.u|∂Ω = 0; ν × curlu|∂Ω = 0 hold. See, e.g., [17, §3].
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12 L2 results for DH , ∆H and SH

To summarise, we have the following properties:

• L2(Ω,Λ) = R2(dΩ)
⊥
⊕R2(δΩ)

⊥
⊕N 2(DH);

• Hodge-Dirac operator DH = dΩ + δΩ is self-adjoint in L2(Ω,Λ);

• Hodge-Laplacian −∆H = DH
2 = dΩδΩ + δΩdΩ is non-negative self-adjoint in

L2(Ω,Λ);

• Hodge-Stokes operator SH = −∆H |H2 is non-negative self-adjoint in H2 =
N 2(divΩ).

So DH , ∆H , SH all have resolvent bounds, e.g.

‖(I + itDH)−1u‖2 ≤ ‖u‖2 ∀u ∈ L2(Ω,Λ) , ∀ t ∈ R \ {0}
‖(I − t2∆H)−1u‖2 ≤ ‖u‖2 ∀u ∈ L2(Ω,Λ) , ∀ t > 0

‖(I + t2SH)−1u‖2 ≤ ‖u‖2 ∀u ∈ H2 , ∀ t > 0

and all have functional calculi of self-adjoint operators, in particular

‖DHu‖2 = ‖ sgn(DH)
√
−∆H u‖2 = ‖

√
−∆H u‖2 ∀u ∈ D2(DH) = D2(

√
−∆H) .

13 Lp questions for DH , ∆H and SH , 1 < p <∞

Whether or not the Lp versions of these properties hold, depends on Ω and p . Of
course, we no longer have orthogonality of the Hodge decomposition, and the con-
stants in the resolvent bounds and the functional calculi may depend on p . Allowing
for this, when Ω is smooth, all of the properties hold for all p ∈ (1,∞).

In our situation, namely when Ω is a very weakly Lipschitz domain, we list the
main properties and then discuss their relationship with one another, and conditions
under which they hold.

(Hp) DH has an Lp Hodge decomposition: Lp(Ω,Λ) = Rp(dΩ)⊕Rp(δΩ)⊕N p(DH);

(Rp) DH is bisectorial in Lp , in particular ‖(I+itDH)−1u‖p ≤ C‖u‖p ∀ t ∈ R\{0} ;

(Fp) DH has a bounded H∞(Soµ) functional calculus in Lp(Ω,Λ) for all µ > 0:

‖f(DH)u‖p ≤ Cµ‖f‖∞‖u‖p ∀f ∈ H∞(Soµ), in particular, ‖DHu‖p ≈ ‖
√
−∆H u‖p .

Here Soµ = {z ∈ C; | arg z| < µ or | arg(−z)| < µ} , 0 < µ < π/2.

Let us note that:
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• (Fp) =⇒ (Hp): Exercise.

• (Fp) =⇒ (Rp) =⇒ Hodge-Laplacian is sectorial in Lp(Ω,Λ), in particular ∆H

has the Lp resolvent bounds

‖(I − t2∆H)−1u‖p = ‖(I + itDH)−1(I − itDH)−1u‖p ≤ C2‖u‖p ∀ t > 0 .

• (Fp) =⇒ Hodge-Laplacian has a bounded H∞(Soµ) functional calculus ∀µ > 0

=⇒ maximal regularity results for the parabolic equation (see §14)

∂tF (t, . )−∆HF (t, . ) = h(t, . ) ∈ Lq((0, T );Lp(Ω,Λ)) , t > 0

F (0, . ) = 0 .

14 Background on bisectorial operators and holo-

mophic functional calculus

If the reader maintains attention on the resolvent bounds stated for the Hodge-Dirac
operator, the Hodge-Laplacian and the Hodge-Stokes operator, then this material is
not needed. But we will briefly describe the above-mentioned concepts for those who
are interested.

Let 0 ≤ ω < µ < π
2

. Define closed and open sectors and double sectors in the
complex plane by

Sω+ := {z ∈ C : | arg z| ≤ ω} ∪ {0} , Sω− := −Sω+ ,

Soµ+ := {z ∈ C : z 6= 0, | arg z| < µ} , Soµ− := −Soµ+ ,

Sω := Sω+ ∪ Sω− , Soµ := Soµ+ ∪ Soµ− .

Let 0 ≤ ω < π
2

. A closed operator D acting on a closed subspace X p of Lp(Ω,Λ)
is called bisectorial with angle ω if its spectrum σ(D) ⊂ Sω , and for all θ ∈ (ω, π

2
)

there exists Cθ > 0 such that

‖λ(λI −D)−1u‖p ≤ Cθ‖u‖p ∀λ ∈ C \ Sθ ,∀u ∈ X p .

In (Rp), we really mean that DH is bisectorial with angle 0, and present the
particular resolvent bounds for λ = i/t with t real.

Let 0 ≤ ω < π . A closed operator D acting on X p is called sectorial with angle
ω if σ(D) ⊂ Sω+ , and for all θ ∈ (ω, π) there exists Cθ > 0 such that

‖λ(λI −D)−1u‖p ≤ Cθ‖u‖p ∀λ ∈ C \ Sθ+ ,∀u ∈ X p .
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For the Hodge-Laplacian, we really mean sectorial with angle 0, and present the
particular resolvent bounds for λ = −1/t2 with t > 0.

Denote by H∞(Soµ) the space of all bounded holomorphic functions on Soµ , and
by Ψ(Soµ) the subspace of those functions ψ which satisfy |ψ(z)| ≤ C min{|z|α, |z|−α}
for some α > 0. Similarly define H∞(Soµ+) and Ψ(Soµ+).

For D bisectorial with angle ω in X p and ψ ∈ Ψ(Soµ), ω < µ < π
2

(or sectorial
with angle ω and ψ ∈ Ψ(Soµ+), ω < µ < π ) define ψ(D) through the Cauchy integral

ψ(D)u =
1

2πi

ˆ

γ

ψ(z)(zI −D)−1u dz, u ∈ X p ,

where γ denotes the boundary of Sθ (or Sθ+ ) for some θ ∈ (ω, µ), oriented counter-
clockwise. Then D is said to have a bounded holomorphic functional calculus with
angle µ , or a bounded H∞(Soµ) (or H∞(Soµ+)) functional calculus in X p if there exists
C > 0 such that

‖ψ(D)u‖p ≤ Cp‖ψ‖∞‖u‖p ∀u ∈ X p ,∀ψ ∈ Ψ(Soµ) (or Ψ(Soµ+)) .

For such an operator, the functional calculus extends to all f ∈ H∞(Soµ) (or
H∞(Soµ+)) on defining

f(D)u = lim
n→∞

ψn(D)u, u ∈ X p,

where the functions ψn ∈ Ψ(Soµ) are uniformly bounded and tend locally uniformly
to f . (We are implicitly taking f(0) = 0 here.)

We list some properties.

• If D is bisectorial of angle ω < π/2, then D2 is sectorial of angle 2ω < π .

• If D has a bounded H∞(Soµ) functional calculus, then D2 has a bounded
H∞(So2µ+) functional calculus.

• If D is a bisectorial operator with a bounded holomorphic functional calculus
in X p , then ‖ sgn(D)u‖p ≤ Cp‖u‖p for all u ∈ X p where

sgn(z) =


−1 z ∈ Soµ−
0 z = 0

+1 z ∈ Soµ+

and so D has Riesz transform bounds in X p :

‖Du‖p = ‖ sgn(D)
√
D2 u‖p ≤ Cp‖

√
D2 u‖p

‖
√
D2 u‖p = ‖ sgn(D)Du‖p ≤ Cp‖Du‖p , u ∈ D(D) = D(

√
D2) .
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• If S is a sectorial operator with a bounded holomorphic functional calculus of
angle < π/2 in X p , and 1 < q <∞ , 0 < T ≤ ∞ , then the parabolic equation

∂tF (t, . ) + SF (t, . ) = h(t, . ) ∈ Lq((0, T );X p) , t > 0

F (0, . ) = 0

has maximal regularity in the sense that{ˆ T

0

‖F (t, . )‖pq dt
}1/q

+
{ˆ T

0

‖SF (t, . )‖pq dt
}1/q

≤ Cp,q

{ˆ T

0

‖h(t, . )‖pq dt
}1/q

.

For further details on the above material, see [13, 8, 2] or the lecture notes [1, 12].

Solution to Exercise. Show that (Hp) is a consequence of ‖DHu‖p ≈ ‖
√
−∆H u‖p .

We need ‖DHu‖p ≈ ‖dΩu‖p + ‖δΩu‖p , or equivalently ‖dΩu‖p . ‖DHu‖p .

Write u =
∑3

k=0 u
k , uk ∈ Lp(Ω,Λk), then

‖dΩu‖p ≈
3∑
`=0

‖(dΩu)`‖p =
3∑

k=0

‖dΩ(uk)‖p ≤
3∑

k=0

‖DH(uk)‖p ≈
3∑

k=0

‖
√
−∆H(uk)‖p

=
3∑

k=0

‖(
√
−∆H u)k‖p ≈ ‖

√
−∆H u‖p ≈ ‖DHu‖p .

(The bound ‖dΩ(uk)‖p ≤ ‖dΩ(uk) + δΩ(uk)‖p holds because dΩ(uk) ∈ Lp(Ω,Λk+1)
and δΩ(uk) ∈ Lp(Ω,Λk−1).) The idea for this result comes from [3, §5].

15 Lp Hodge decomposition

It is a consequence of the interpolation properties of the spaces Rp(dΩ) and Rp(δΩ)
(see Remark 20.2) that property (Hp) is stable in p in the following sense.

Theorem 15.1. There exist Hodge exponents pH , pH = pH
′ with 1 ≤ pH < 2 <

pH ≤ ∞ such that the Hodge decomposition (Hp)

Lp(Ω,Λ) = Rp(dΩ)⊕Rp(δΩ)⊕N p(DH)

holds in the Lp norm if and only if pH < p < pH .

This is proved in [14, §4], following a similar proof in [11, §3.2].

It is well known that, when Ω has smooth boundary, then pH = 1 and pH =∞ .
See, e.g., [18, Theorem 2.4.2 and 2.4.14] for the general case of smooth compact
Riemannian manifolds with boundary.
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If Ω is a strongly Lipschitz domain in R3 , then pH < 3/2 < 3 < pH . See, e.g.,
[15, Theorem 1.1]. In [14] we reprove this result, with the new techniques having
the advantage of providing a new result in higher dimensions, namely that pH <
2n/(n + 1) < 2n/(n − 1) < pH when Ω is a bounded strongly Lipschitz domain
in Rn . In fact we show that DH has a bounded holomorphic functional calculus in
Lp(Ω,Λ) for some p < 2n/(n + 1) (and hence, by duality, in Lp

′
(Ω,Λ)), and apply

the Exercise in §13.

16 Lp results for DH , ∆H and SH , pH < p < pH

In [14], we prove that for all p in the Hodge range, the Hodge-Dirac operator has a
bounded holomorphic functional calculus. We do not include a proof here, but say a
little more in §24.

Theorem 16.1. Suppose that Ω is a very weakly Lipschitz domain in R3 , and that
pH < p < pH , i.e. (Hp) Lp(Ω,Λ) = Rp(dΩ)⊕Rp(δΩ)⊕N p(DH). Then

(Rp) The Hodge-Dirac operator DH is bisectorial in Lp(Ω,Λ),
in particular ‖(I + itDH)−1u‖p ≤ C‖u‖p ∀ t ∈ R \ {0}, ∀u ∈ Lp(Ω,Λ) ;

(Fp) DH has a bounded H∞(Soµ) functional calculus in Lp(Ω,Λ) for all µ > 0, in

particular, ‖DHu‖p ≈ ‖
√
−∆H u‖p for all u ∈ Dp(DH) = Dp(

√
−∆H).

Corollary 16.2. (i) The Hodge-Laplacian −∆H = DH
2 = dΩδΩ+δΩdΩ is Lp sectorial

with a bounded holomorphic functional calculus, in particular,
‖(I − t2∆H)−1u‖p ≤ C2‖u‖p ∀ t > 0, ∀u ∈ Lp(Ω,Λ).
(ii) The Hodge-Stokes operator SH = −∆H |Hp is sectorial with a bounded holomorphic
functional calculus in Hp := {u ∈ Lp(Ω,Λ1) ; divΩ u = 0}, in particular,
‖(I + t2SH)−1u‖p ≤ C2‖u‖p ∀ t > 0, ∀u ∈ Hp .

In the case of a bounded strongly Lipschitz domain, it was shown in [17] that −∆H

and SH are Lp sectorial for p in an open interval containing [3
2
, 3] in dimension 3.

To our knowledge, the fact that they have a functional calculus is new, due to [14].

It was proved in [10] that for the same range of p the Riesz transforms dΩ(−∆H)−
1
2

and δΩ(−∆H)−
1
2 are bounded in Lp(Ω,Λ), again in the case of a bounded strongly

Lipschitz domain.

Again: If Ω is a very weakly Lipschitz domain in R3 , and pH < p < pH , then DH ,
∆H , SH all have Lp resolvent bounds,

‖(I + itDH)−1u‖p ≤ C‖u‖p ∀u ∈ Lp(Ω,Λ), ∀ t ∈ R \ {0}
‖(I − t2∆H)−1u‖p ≤ C2‖u‖p ∀u ∈ Lp(Ω,Λ), ∀ t > 0

‖(I + t2SH)−1u‖p ≤ C2‖u‖p ∀u ∈ Hp, ∀ t > 0

and all have corresponding holomorphic functional calculi.
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In fact, DH can NOT have a functional calculus in Lp(Ω,Λ) for p outside the
interval (pH , p

H), as shown in the Exercise in §13.

But SH CAN, and DOES, at least for max{1, pHS} < p ≤ pH where pHS is the
Sobolev exponent below pH i.e. 1

pHS
= 1

pH
+ 1

3
.

Note: (i) Since pH < 2, it is easily computed that pHS < 6/5.

(ii) If Ω is strongly Lipschitz, then pH < 3/2, and so pHS < 1.

17 Lp result for Hodge-Stokes operator SH ,

pHS < p < pH

Theorem 17.1. Suppose Ω is a very weakly Lipschitz domain in R3 , and max{1, pHS} <
p < pH . Then the Hodge-Stokes operator SH = −∆H |Hp is sectorial with a bounded
holomorphic functional calculus in Hp = {u ∈ Lp(Ω,Λ1) ; divΩ u = 0}. In particular,

‖(I + t2SH)−1u‖p ≤ C2‖u‖p , ∀u ∈ Hp, ∀t > 0 .

Corollary 17.2. Suppose Ω is a strongly Lipschitz domain in R3 , and 1 < p < pH .
Then SH is sectorial with a bounded holomorphic functional calculus in Hp .

These results are proved in [14]. Here we will not look further into functional
calculi, but will indicate how to apply the fact that the Hodge-Dirac operator has
Lq resolvent bounds when pH < q < pH , to derive Lp resolvent bounds for the
Hodge-Stokes operator when pHS < p ≤ pH .

The proofs depend on the theory of regularized Poincaré and Bogovskĭı potential
operators as developed in [16] and [7] for the case when Ω is starlike or strongly
Lipschitz. Here we start with the special case of the unit ball B ⊂ R3 , and then
derive what we need for very weakly Lipschitz domains.

18 Potential operator on the unit ball

Let

• B = B(0, 1), the unit ball in R3 , centred at the origin;

• θ ∈ C∞c (1
2
B,R) with

´
θ = 1;

• RB : Lp(B,Λ) → W 1,p(B,Λ), the regularized Poincaré potential operator de-
fined by RBu =

∑3
k=1 RBu

k ,

RBu
k(x) =

ˆ
B

θ(a)(x− a) y
ˆ 1

0

tk−1uk(a+ t(x− a)) dt da (k = 1, 2, 3) ,

u =
∑3

k=0 u
k ∈ Lp(B,Λ) = ⊕3

k=0L
p(B,Λk).

12



dB : 0 →←

u0

∈
Lp(B,C)

∇B−→←−
RB

u1

∈
Lp(B,C3)

curlB−→←−
RB

u2

∈
Lp(B,C3)

divB−→←−
RB

u3

∈
Lp(B,C) →← 0

Then RB : Lp(B,Λ) → W 1,p(B,Λ) is bounded, RB : Lp(B,Λ) → Lp(B,Λ) is com-
pact, and

dBRBu+RBdBu+
(ˆ

θu0
)

1 = u ∀ u ∈ Lp(B,Λ)

(where 1 denotes the constant function 1 ∈ Lp(Ω,Λ0)). We write this as

dBRBu+RBdBu+KBu = u

where KBu = (
´
θu0)1 and note that KB : Lp(B,Λ) → L∞(B,Λ0) is bounded, and

KB : Lp(B,Λ) → Lp(B,Λ0) is compact. The operator KB compensates for the fact
that the above sequence for dB misses out on being exact, due to the gradient map
∇B having a one dimensional null-space consisting of constant functions in Lp(B,Λ0).

Moreover, if 1 < p = qS < q < ∞ , where p = qS is the Sobolev exponent below
q , i.e.

1
p

= 1
q

+ 1
3

then the potential map RB : Lp(B,Λ)→ Lq(B,Λ) is bounded.

19 Potential operator on bilipschitz transforma-

tion of the unit ball

Suppose ρ : B → ρB ⊂ R3 is a uniformly locally bilipschitz transformation. Then
the pull-back ρ∗ : Lp(ρB,Λ)→ Lp(B,Λ) is bounded, and

dρB = (ρ∗)−1dBρ
∗;

recall that (ρ∗u)(x) = (ρ
x
)∗u(ρ(x)) where ρ

x
is the Jacobian matrix of ρ at x .

Define RρB : Lp(ρB,Λ)→ Lq(ρB,Λ) and KρB : Lp(ρB,Λ)→ L∞(ρB,Λ) by

RρB = (ρ∗)−1RBρ
∗ and KρB = (ρ∗)−1KBρ

∗

so that
dρBRρBu+RρBdρBu+KρBu = u .

dρB : 0 →← Lp(ρB,C)
∇ρB→←
RρB

Lp(ρB,C3)
curlρB→←
RρB

Lp(ρB,C3)
divρB→←
RρB

Lp(ρB,C) →← 0

The operators RρB and KρB have the same boundedness and compactness prop-
erties as RB and KB .

13



20 Potential operators on very weakly Lipschitz do-

mains

• 1 < p < q <∞ ( 1
p

= 1
q

+ 1
3
) .

• Ω is very weakly Lipschitz, i.e. Ω = ∪Nj=1(ρjB) where each ρj : B → ρjB ⊂ R3

is uniformly locally bilipschitz, and

• 1 =
∑N

j=1 χj on Ω, where each χj : Ω → [0, 1] is a Lipschitz function with
spptΩ(χj) ⊂ ρjB .

• Define RΩ =
∑N

j=1 χjRρjB and KΩu =
∑N

j=1(χjKρjBu− (∇χj) ∧RρjBu) .

dΩ : 0 →←

u0

∈
Lp(Ω,C)

∇Ω−→←−
RΩ

u1

∈
Lp(Ω,C3)

curlΩ−→←−
RΩ

u2

∈
Lp(Ω,C3)

divΩ−→←−
RΩ

u3

∈
Lp(Ω,C) →← 0

It is straightforward to apply the properties mentioned in the previous two sections
to prove the following result.

Theorem 20.1. The exterior derivative dΩ has a potential map RΩ : Lp(Ω,Λ) →
Lq(Ω,Λ) satisfying

dΩRΩu+RΩdΩu+KΩu = u ∀u ∈ Lp(Ω,Λ) ,

where KΩ : Lp(Ω,Λ) → Lq(Ω,Λ). Moreover KΩ and RΩ are compact operators in
Lp(Ω,Λ).

Remark 20.2. Although we will not use this fact in the coming sections, we remark
than RΩ can be modified in such a way that dΩRΩu = u for all u ∈ Rp(dΩ).

Using this modification, we have that dΩRΩ : Lp(Ω,Λ) → Rp(dΩ) is a bounded
projection for all p, 1 < p <∞, and as a corollary, the spaces Rp(dΩ) (1 < p <∞)
are closed subspaces of Lp(Ω,Λ) which interpolate by the complex method.

In this case, RΩ is a true potential operator. For example, if u1 is a gradient vector
field, then w0 = RΩu

1 ∈ Lq(Ω,C) is its potential, because ∇Ωw0 = dΩRΩu
1 = u1 .

Remark 20.3. With a modified RΩ as in Remark 20.2, define Zp = KΩ(N p(dΩ)).
Then N p(dΩ) = Rp(dΩ) ⊕ Zp with decomposition u = dΩRΩu + KΩu for all u ∈
N p(dΩ). So the spaces in the decomposition are closed, and Zp is finite dimen-
sional, on account of the compactness of KΩ . Thus Rp(dΩ) has finite codimension
in N p(dΩ), as claimed in Section 6.

In the following section TΩ could be similarly modified to give u = δΩTΩu for all
u ∈ Rp(δΩ).
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21 Dual potential operators

• 1 < p < q <∞ ( 1
p

= 1
q

+ 1
3
) ;

• TΩ : Lp(Ω,Λ)→ Lq(Ω,Λ) is dual to RΩ : Lq
′
(Ω,Λ)→ Lp

′
(Ω,Λ) ;

• LΩ : Lp(Ω,Λ)→ Lq(Ω,Λ) is dual to KΩ : Lq
′
(Ω,Λ)→ Lp

′
(Ω,Λ) .

Then, dual to the equation dΩRΩu+RΩdΩu+KΩu = u , is :

u = δΩTΩu+ TΩδΩu+ LΩu

so that TΩ is a potential operator for δΩ , called the Bogovskĭı operator :

0 ←→ Lp(Ω,C)
−∇Ω←−−→
TΩ

Lp(Ω,C3)
curlΩ←−−→
TΩ

Lp(Ω,C3)
− divΩ←−−→
TΩ

Lp(Ω,C) ←→ 0 : δΩ

22 Lp results for ∆H on N p(δΩ), pHS
< p < pH

Suppose that Ω is a very weakly Lipschitz domain. We have stated in Theorem 16.1
that when pH < q < pH , the Hodge-Dirac operator DH = dΩ + δΩ is bisectorial with
a bounded holomorphic funtional calculus in Lq(Ω,Λ). Our aim now is to extend this
result as follows.

Theorem 22.1. Suppose that

• pH < q < pH ;

• max{1, qS} ≤ p ≤ q where qS is the lower Sobolev exponent of q , i.e. 1
qS

= 1
q
+ 1

3
.

Then the Hodge-Laplacian −∆H is sectorial with a bounded holomorphic functional
calculus in N p(δΩ) = {u ∈ Lp(Ω,Λ) ; δΩu = 0}. In particular,

‖(I − t2∆H)−1u‖p ≤ C2‖u‖p , ∀u ∈ N p(δΩ), ∀t > 0 . (1)

Similar resolvent bounds also holds on N (dΩ) and hence on R(δΩ) and on R(dΩ).

On restricting to Lp(Ω,Λ1), we obtain Theorem 17.1 as a corollary.

For the results on functional calculi, we refer the reader to [14]. We do not fully
prove the resolvent bounds either, but give the spirit of the method by outlining the
estimates in the case when p = qS .
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23 Lp resolvent bounds for ∆H on N p(δΩ), p = qS ,

pH < q < pH

• Ω is very weakly Lipschitz and pH < q < pH , p = qS > 1.

• The idea is to modify the techniques of Blunck-Kunstmann [6], but there is still
quite a bit to do, because we are working on the subspace N p(δΩ). We will
not consider the functional calculus here, but will outline a proof of resolvent
bounds.

• The easy part: When t ≥ 1, and δΩu = 0, then

‖(I − t2∆H)−1u‖p . ‖(I − t2∆H)−1u‖q (because Ω is bounded)

= ‖(I − t2∆H)−1(δΩTΩ + LΩ)u‖q
≤ t‖δΩ(I − t2∆H)−1TΩu‖q + ‖(I − t2∆H)−1LΩu‖q
. ‖tDH(I + t2DH

2)−1TΩu‖q + ‖(I + t2DH
2)−1LΩu‖q

. ‖TΩu‖q + ‖LΩu‖q

. ‖u‖p

(using Hodge decomposition in Lq(Ω,Λ) in line 4, and resolvent bounds for DH

in Lq(Ω,Λ) in line 5).

• Henceforth take 0 < t < 1.

• Cover Ω: Let Qt

j
(j ∈ J ) be the cubes in R3 with side-length t and corners at

points in tZ3 , which intersect Ω. Let Qt
j = 4Qt

j
∩ Ω. Then Ω = ∪Qt

j . Write

1 =
∑

j∈J η
2
j on Ω, where ηj ∈ C1

c (4Qt

j
, [0, 1]) and ‖∇ηj‖∞ ≤ 1/t . The “cubes”

Qt
j have finite overlap, in fact

∑
j∈J 1Qt

j
≤ 64. (Here 1Qt

j
denotes the function

with value 1 on Qt
j and zero elsewhere on Q .)

• Lq off-diagonal bounds in dist(Qt
j, Q

t
k) = inf{|x − y|;x ∈ Qt

j, y ∈ Qt
k} are a

consequence of the Lq resolvent bounds. See [14, §5], or adapt the L2 proofs
in [4]. We need the following two bounds.

For each N ∈ N , there exists CN such that, when sppt(f) ∈ Qt
k , then

‖1Qt
j
(I − t2∆H)−1f‖q ≤ CN

(
t

t+dist(Qt
j ,Q

t
k)

)N
‖f‖q and

t‖1Qt
j
(I − t2∆H)−1δΩf‖q ≤ CN

(
t

t+dist(Qt
j ,Q

t
k)

)N
‖f‖q .
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• Decompose u ∈ N p(δΩ) (using δΩ(ηkf)− ηkδΩf = (∇ηk) y f ):

u =
∑
k∈J

ηk
2u =

∑
k∈J

ηk I ηku

=
∑
k∈J

(ηk δΩTΩ ηku+ ηk TΩ δΩ ηku+ ηk LΩ ηku)

=
∑
k∈J

(δΩ(ηkTΩ ηku)− (∇ηk) y TΩ ηku+ ηkTΩ(∇ηk) y u+ ηkLΩ ηku)

=
∑
k∈J

(δΩ wk + 1
t
vk) where

wk = ηkTΩ ηku and

vk = −(t∇ηk) y TΩ ηku+ ηkTΩ(t∇ηk) y u+ t ηkLΩ ηku .

• On using the Lp − Lq bounds on TΩ and LΩ , we obtain

‖wk‖q . ‖ηku‖p . ‖1Qt
k
u‖p with sppt(wk) ⊂ Qt

k and

‖vk‖q . (1 + t)‖1Qt
k
u‖p . ‖1Qt

k
u‖p with sppt(vk) ⊂ Qt

k .
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Here now is the resolvent estimate. Suppose δΩ u = 0. Then

‖(I − t2∆H)−1u‖p ≤

[∑
j∈J

ˆ
Qt

j

|(I − t2∆H)−1u|p
] 1

p

=

[∑
j∈J

(‖1Qt
j
(I − t2∆H)−1u‖p)p

] 1
p

≤

[∑
j∈J

(‖1Qt
j
(I − t2∆H)−1u‖q|Qt

j|
1
3 )p

] 1
p

(1
p

= 1
q

+ 1
3
)

.

[∑
j∈J

(
∑
k∈J

‖1Qt
j
(I − t2∆H)−1(δΩwk + 1

t
vk)‖qt)p

] 1
p

.

[∑
j∈J

(
∑
k∈J

(
t

t+dist(Qt
j ,Q

t
k)

)4
(‖wk‖q + ‖vk‖q))p

] 1
p

(*)

.

[∑
j∈J

(
∑
k∈J

(
t

t+dist(Qt
j ,Q

t
k)

)4‖1Qt
k
u‖p)p

] 1
p

.
(

sup
j

∑
k∈J

(
t

t+dist(Qt
j ,Q

t
k)

)4
)[∑

k∈J

‖1Qt
k
u‖pp

] 1
p

(**)

.
[∑
k∈J

‖1Qt
k
u‖pp

] 1
p

=
[∑
k∈J

ˆ
Qt

k

|u|p
] 1

p
(***)

=
(ˆ

Ω

∑
k∈J

1Qt
k
|u|p
) 1

p
. ‖u‖p (****)

as claimed.

• In (*) we used the off-diagonal bounds with N = 4 ;

• In (**) we used the Schur estimate in `p(J), with Aj,k =
(

t
t+dist(Qt

j ,Q
t
k)

)4
and

βk = ‖1Qt
k
u‖p :

[∑
j

|
∑
k

Aj,kβk|p
]1
p ≤

(
sup
j

∑
k

|Aj,k|
) 1

p′
(
sup
k

∑
j

|Aj,k|
) 1

p
(∑

k

|βk|p
) 1

p

=
(
sup
j

∑
k

|Aj,k|
)(∑

k

|βk|p
) 1

p when Aj,k = Ak,j ;
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• In (***) we used that, given Qt
j ,∑

k

(
t

t+dist(Qt
j ,Q

t
k)

)4
. C0 +

∞∑
M=0

∑
{k;2M t≤dist(Qt

j ,Q
t
k)<2(M+1)t}

1
24M

. C0 +
∞∑

M=0

23M 1
24M = C0 +

∞∑
M=0

1
2M
≤ C ;

• In (****) we used the finite overlap of the cubes.

This completes the proof of (1) in the case when p = qS . The proof of Lp

sectoriality when qS ≤ p < q requires minor modification. To show that SH has a
bounded holomorphic functional calculus requires further work, using a Calderón–
Zygmund decomposition of Ω. For this, the reader is referred to [14].

24 Remarks on obtaining resolvent bounds in the

Hodge range

In the previous section we applied Theorem 16.1. But suppose we just start with the
L2 resolvent bounds. Then a similar procedure to that described above, can be used
to obtain resolvent bounds for DH on N p(δΩ) when 6/5 = 2S ≤ p ≤ 2 Moreover,
use of the potential operators RΩ will lead to resolvent bounds on N p(dΩ), also
when 6/5 ≤ p ≤ 2. Now, if p is also in the Hodge range, we then obtain resolvent
bounds on all of Lp(Ω,Λ), i.e. we obtain resolvent bounds for DH on Lp(Ω,Λ) when
max{6/5, pH} < p ≤ 2. Repeating this procedure once more if necessary, we obtain
resolvent bounds on Lp(Ω,Λ) for pH < p ≤ 2 (as (6/5)S < 1). A duality argument
then gives resolvent bounds when 2 ≤ p < pH . In this way, the statement (Rp) can
be proved when pH < p < pH , as stated in Theorem 16.1. See [14] for details.

We remark that such an iteration method has been used previously in [9] in the
study of more general first order systems on Rn . A similar iteration procedure has
been used also in [17] and [10].

25 Parabolic equations

As mentioned in §14, operators with a bounded holomorphic functional calculus on
a closed subspace X p of Lp(Ω,Λ), also satisfy maximal regularity. So, on taking
X p = Hp , we obtain:

Theorem 25.1. Suppose that Ω is a very weakly Lipschitz domain in R3 , that
max{1, pHS} < p < pH , and that 1 < q <∞, 0 < T ≤ ∞. Suppose also that

∂tF (t, . ) + SHF (t, . ) = h(t, . ) ∈ Lq((0, T );Hp) , t > 0

F (0, . ) = 0 .
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Then{ˆ T

0

‖F (t, . )‖pq dt
}1/q

+
{ˆ T

0

‖SF (t, . )‖pq dt
}1/q

≤ Cp,q

{ˆ T

0

‖h(t, . )‖pq dt
}1/q

.
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