Stokes Problems in Irregular Domains with Various Boundary Conditions

Sylvie Monniaux and Zhongwei Shen

Contents

1	Introduction	2
2	Dirichlet Boundary Conditions	4
	2.1 The Linear Dirichlet-Stokes Operator	4
	2.2 The Nonlinear Dirichlet-Navier-Stokes Equations	10
3	Neumann Boundary Conditions.	17
	3.1 The Linear Neumann-Stokes Operator.	17
	3.2 The Nonlinear Neumann-Navier-Stokes Equations	19
4	Hodge Boundary Conditions.	20
	4.1 The Hodge-Laplacian and the Hodge-Stokes Operators	20
	4.2 The Nonlinear Hodge-Navier-Stokes Equations	27
5	Robin Boundary Conditions	29
	5.1 The Robin-Hodge-Laplacian	29
	5.2 The Robin-Hodge-Stokes Operator.	34
	5.3 The Nonlinear Robin-Hodge-Navier-Stokes Equations	38
6	Conclusion.	39
Cro	oss-References	40
Re	ferences	40

S. Monniaux (🖂)

Z. Shen

© Springer International Publishing AG 2016

Y. Giga, A. Novotny (eds.), Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, DOI 10.1007/978-3-319-10151-4_4-1

Aix-Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France e-mail: sylvie.monniaux@univ-amu.fr

University of Kentucky, Lexington, KY, USA e-mail: zshen2@uky.edu

Abstract

Different boundary conditions for the Navier-Stokes equations in bounded Lipschitz domains in \mathbb{R}^3 , such as Dirichlet, Neumann, Hodge, or Robin boundary conditions, are presented here. The situation is a little different from the case of smooth domains. The analysis of the problem involves a good comprehension of the behavior near the boundary. The linear Stokes operator associated to the various boundary conditions is first studied. Then a classical fixed-point theorem is used to show how the properties of the operator lead to local solutions or global solutions for small initial data.

1 Introduction

The aim of this chapter is to describe how to find solutions of the Navier-Stokes equations

$$\begin{cases} \partial_t u - \Delta u + \nabla \pi + (u \cdot \nabla)u = 0 & \text{in } (0, T) \times \Omega, \\ & \text{div } u = 0 & \text{in } (0, T) \times \Omega, \\ & u(0) = u_0 & \text{in } \Omega, \end{cases}$$
(NS)

in a bounded Lipschitz domain $\Omega \subset \mathbb{R}^3$ and a time interval (0, T) $(T \leq \infty)$, for initial data u_0 in a critical space, with one of the following boundary conditions on $\partial \Omega$:

1. Dirichlet boundary conditions:

$$u = 0, \tag{Dbc}$$

also called "no-slip" boundary conditions, which can be also decomposed as a nonpenetration condition $v \cdot u = 0$ and a tangential part $v \times u = 0$ which model the fact that the fluid does not slip at the boundary; this is commonly used for a boundary between a fluid and a rigid surface;

2. Neumann boundary conditions:

$$[\lambda(\nabla u) + (\nabla u)^{\top}]v - \pi v = 0, \quad \lambda \in (-1, 1],$$
(Nbc)

which can be rewritten as $T_{\lambda}(u, \pi)v = 0$ where $T_{\lambda}(u, \pi) := \lambda(\nabla u) + (\nabla u)^{\top} - \pi$ Id; if $\lambda = 0$, (Nbc) becomes $\partial_{\nu}u = \pi v$; if $\lambda = 1$, $T_1(u, \pi)$ is the Cauchy's stress tensor so that (Nbc) can be viewed, for instance, as an absence of stress on the interface separating two media in the case of a free boundary; (Nbc) can be decomposed into its normal and tangential parts and can be rewritten in the following form:

$$(1+\lambda)\nu\cdot\partial_{\nu}u = \pi, \quad \left[\left(\lambda(\nabla u) + (\nabla u)^{\top}\right)\nu\right]_{\mathrm{tan}} = 0; \tag{1}$$

3. Hodge boundary conditions:

$$v \cdot u = 0, \quad v \times \operatorname{curl} u = 0,$$
 (Hbc)

also called "absolute" boundary conditions (see [53, Section 9] or "perfect wall" condition (see [1]); they have been studied in, e.g., [4] and [24]; they are related to the more traditionally used "Navier's slip" boundary condition:

$$\nu \cdot u = 0, \quad \left[\left(\nabla u \right)^{\top} + \left(\nabla u \right) \nu \right]_{\text{tan}} = 0.$$
 (2)

See discussion below (see also a detailed discussion in [35, Section 2]). 4. Robin boundary conditions:

$$v \cdot u = 0, \quad v \times \operatorname{curl} u = \alpha \, u, \quad \alpha > 0;$$
 (Rbc)

since $v \cdot u = 0$, *u* is a tangential vector field at the boundary, so it makes sense to compare it to the tangential part of the vorticity: it describes the fact that the fluid slips with a friction proportional to the vorticity. Remark that (Hbc) is recovered if $\alpha = 0$ and (Dbc) if $\alpha = \infty$.

In the boundary conditions above, v(x) denotes the unit exterior normal vector at a point $x \in \partial \Omega$ (defined almost everywhere when $\partial \Omega$ is a Lipschitz boundary).

As explained in [35, Section 2 and Section 6], the Hodge boundary conditions (Hbc) are close to the Navier's slip boundary conditions (2). Indeed, if Ω is assumed to be smooth enough, say of class \mathscr{C}^2 , under the condition $\nu \cdot u = 0$, the following holds:

$$\left[\left(\nabla u \right)^{\top} + \left(\nabla u \right) v \right]_{\tan} = -v \times \operatorname{curl} u + 2 \mathcal{W} u$$

where W is the Weingarten map (also called the shape operator, see [45, Chapter 5]) on $\partial\Omega$ acting on tangential fields (see also [17, Section 3]). In particular, the term Wu is a zero-order term, depending linearly on the velocity field *u* and is equal to 0 on flat portions of the boundary.

The strategy in this chapter to solve the Navier-Stokes equations with one of the boundary conditions described above is to find a functional setting in which the Fujita-Kato scheme applies, such as in their fundamental paper [20]. In all situations, the idea is to study the linear problem to prove enough regularizing properties of the Stokes semigroup so that the nonlinear problem can be treated via a fixed-point method. For the last two types of boundary conditions (Hbc) and (Rbc), the Navier-Stokes system is rewritten as follows:

$$\begin{cases} \partial_t u - \Delta u + \nabla \pi - u \times \operatorname{curl} u = 0 & \text{in } (0, T) \times \Omega, \\ \operatorname{div} u = 0 & \operatorname{in } (0, T) \times \Omega, \\ u(0) = u_0 & \operatorname{in } \Omega. \end{cases}$$
(NS')

This is motivated by the form of the boundary conditions and the fact that, for a smooth enough vector field u,

$$(u \cdot \nabla)u = \frac{1}{2}\nabla |u|^2 - u \times \operatorname{curl} u,$$

so that (NS) becomes (NS') with the pressure π replaced by the so-called dynamical pressure $\pi + \frac{1}{2}|u|^2$ (see, e.g., [24] or [4]).

In this chapter, $\Omega \subset \mathbb{R}^3$ is a bounded, simply connected, Lipschitz domain. The chapter is organized as follows. In Sect. 2, the Dirichlet-Stokes operator is defined in the L^2 setting and then in the L^p theory. Existence of a local solution of the system $\{(NS), (Dbc)\}$ for initial values in a critical space in the L^2 -Stokes scale is then shown. In Sect. 3, the previous proofs are adapted in the case of Neumann boundary conditions, i.e., for the system $\{(NS), (Nbc)\}$. In Sect. 4, the system $\{(NS'), (Hbc)\}$ is studied for initial conditions in the critical space $\{u \in L^3(\Omega; \mathbb{R}^3); \text{div } u = 0 \text{ in } \Omega, v \cdot u = 0 \text{ on } \partial\Omega\}$, whereas in Sect. 5, the system $\{(NS'), (Rbc)\}$ is considered in a \mathscr{C}^4 domain.

2 Dirichlet Boundary Conditions

For a more complete exposition of the results in this section, as well as an extension to more general domains, the reader can refer to [34, 41] and [51]. The case where Ω is smooth was solved by Fujita and Kato in [20]. In [15], the case of bounded Lipschitz domains Ω was studied for initial data not in a critical space.

2.1 The Linear Dirichlet-Stokes Operator

2.1.1 The *L*² Theory

The following remarks about L^2 vector fields on Ω will be used throughout this chapter.

Remark 1. For $\Omega \subset \mathbb{R}^3$ a bounded Lipschitz domain, let $u \in L^2(\Omega; \mathbb{R}^3)$ such that div $u \in L^2(\Omega; \mathbb{R})$. Then $v \cdot u$ can be defined on $\partial\Omega$ in the following weak sense in $H^{-\frac{1}{2}}(\partial\Omega; \mathbb{R})$: for $\phi \in H^1(\Omega; \mathbb{R})$,

$$\langle u, \nabla \phi \rangle_{\Omega} + \langle \operatorname{div} u, \phi \rangle_{\Omega} = \langle v \cdot u, \phi \rangle_{\partial \Omega}, \tag{3}$$

where $\varphi = \text{Tr}_{|_{\partial\Omega}}\phi$, the right-hand side of (3) depends only on φ on $\partial\Omega$ and not on the choice of ϕ , its extension to Ω . The notation $\langle \cdot, \cdot \rangle_E$ stands for the L^2 -scalar product on E.

The following Hodge decomposition holds on vector fields: $L^2(\Omega; \mathbb{R}^3)$ is equal to the orthogonal direct sum $H_D \stackrel{\perp}{\oplus} G$, where

$$H_D = \left\{ u \in L^2(\Omega; \mathbb{R}^3); \operatorname{div} u = 0 \text{ in } \Omega, v \cdot u = 0 \text{ on } \partial \Omega \right\}$$
(4)

and $G = \nabla H^1(\Omega; \mathbb{R})$. This follows from the following theorem due to Georges de Rham [12, Chap. IV §22, Theorem 17']; see also [55, Chap.I §1.4, Proposition 1.1].

Theorem 1 (de Rham). Let T be a distribution in $\mathscr{C}_c^{\infty}(\Omega; \mathbb{R}^3)'$ such that $\langle T, \phi \rangle = 0$ for all $\phi \in \mathscr{C}_c^{\infty}(\Omega; \mathbb{R}^3)$ with div $\phi = 0$ in Ω . Then there exists a distribution $S \in \mathscr{C}_c^{\infty}(\Omega; \mathbb{R})'$ such that $T = \nabla S$. Conversely, if $T = \nabla S$ with $S \in \mathscr{C}_c^{\infty}(\Omega; \mathbb{R})'$, then $\langle T, \phi \rangle = 0$ for all $\phi \in \mathscr{C}_c^{\infty}(\Omega; \mathbb{R}^3)$ with div $\phi = 0$ in Ω .

Remark 2. In the case of a bounded Lipschitz domain $\Omega \subset \mathbb{R}^3$, the space H_D coincides with the closure in $L^2(\Omega; \mathbb{R}^3)$ of the space of vector fields $u \in \mathscr{C}^{\infty}_c(\Omega; \mathbb{R}^3)$ with div u = 0 in Ω .

Denote by $J : H_D \hookrightarrow L^2(\Omega; \mathbb{R}^3)$ the canonical embedding and $\mathbb{P} : L^2(\Omega; \mathbb{R}^3) \to H_D$ the orthogonal projection, called either *Leray* or *Helmholtz* projection. It is clear that $\mathbb{P}J = \mathrm{Id}_{H_D}$. Define now the space $V_D = H_0^1(\Omega; \mathbb{R}^3) \cap H_D$: it is a closed subspace of $H_0^1(\Omega; \mathbb{R}^3)$. The embedding J restricted to V_D maps V_D to $H_0^1(\Omega; \mathbb{R}^3)$: denote it by $J_0 : V_D \hookrightarrow H_0^1(\Omega; \mathbb{R}^3)$. Its adjoint $J'_0 = \mathbb{P}_1 : H^{-1}(\Omega; \mathbb{R}^3) \to V'_D$ is then an extension of the orthogonal projection \mathbb{P} . The space H_D is endowed with the norm $u \mapsto ||u||_2$ and V_D with the norm $u \mapsto ||\nabla u||_2$.

The definition of the Dirichlet-Stokes operator then follows.

Definition 1. The Dirichlet-Stokes operator is defined as being the associated operator of the bilinear form:

$$a: V_D \times V_D \to \mathbb{R}, \quad a(u,v) = \sum_{i=1}^3 \langle \partial_i J_0 u, \partial_i J_0 v \rangle.$$

Proposition 1. The Dirichlet-Stokes operator A_D is the part in H_D of the bounded operator $A_{0,D} : V_D \to V'_D$ defined by $A_{0,D}u : V_D \to \mathbb{R}$, $(A_{0,D}u)(v) = a(u, v)$, and satisfies

$$\mathsf{D}(A_D) = \left\{ u \in V_D; \mathbb{P}_1(-\Delta_D^\Omega) J_0 u \in H_D \right\},\$$
$$A_D u = \mathbb{P}_1(-\Delta_D^\Omega) J_0 u \quad u \in \mathsf{D}(A_D),$$

where Δ_D^{Ω} denotes the weak vector-valued Dirichlet-Laplacian in $L^2(\Omega; \mathbb{R}^3)$. The operator A_D is self-adjoint, invertible, $-A_D$ generates an analytic semigroup of contractions on H_D , $\mathsf{D}(A_D^{\frac{1}{2}}) = V_D$, and for all $u \in \mathsf{D}(A_D)$, there exists $\pi \in L^2(\Omega; \mathbb{R})$ such that

$$JA_D u = -\Delta J_0 u + \nabla \pi \tag{5}$$

and $D(A_D)$ admits the following description:

$$\mathsf{D}(A_D) = \{ u \in V_D; \exists \pi \in L^2(\Omega; \mathbb{R}) : -\Delta J_0 u + \nabla \pi \in H_D \}.$$

Proof. By definition, for $u \in D(A_D)$ and for all $v \in V_D$,

$$\begin{split} \langle A_D u, v \rangle &= a(u, v) = \sum_{j=1}^n \langle \partial_j J_0 u, \partial_j J_0 v \rangle \\ &= -\sum_{j=1}^n {}_{H^{-1}} \langle \partial_j^2 J_0 u, J_0 v \rangle_{H^1_0} = {}_{H^{-1}} \langle (-\Delta) J_0 u, J_0 v \rangle_{H^1_0} \\ &= {}_{V'_D} \langle \mathbb{P}_1(-\Delta) J_0 u, v \rangle_{V_D}. \end{split}$$

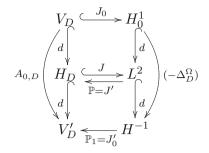
The third equality comes from the definition of weak derivatives in L^2 ; the fourth equality comes from the fact that $\sum_{j=1}^{n} \partial_j^2 = \Delta$. The last equality is due to the fact that $J'_0 = \mathbb{P}_1$. Therefore, $A_D u$ and $\mathbb{P}_1(-\Delta)J_0 u$ are two linear forms which coincide on V_D ; they are then equal, which proves that $A_{0,D} = \mathbb{P}_1(-\Delta)J_0 : V_D \to V'_D$. Moreover, the fact that $u \in D(A_D)$ implies that $A_D u$ is a linear form on H_D , so that the linear form $\mathbb{P}_1(-\Delta)J_0 u$, originally defined on V_D , extends to a linear form on H_D (since V_D is dense in H_D by de Rham's theorem). The fact that A_D is self-adjoint and $-A_D$ generates an analytic semigroup of contractions comes from the properties of the form a: a is bilinear, symmetric, sectorial of angle 0, and coercive on $V_D \times V_D$. The property that $D(A_D^{\frac{1}{2}}) = V_D$ is due to the fact that A_D is self-adjoint, applying a result by J.L. Lions [29, Théorème 5.3].

To prove the last assertions of this proposition, let $u \in D(A_D)$. Then $A_D u \in H_D$ and $\mathbb{P}_1 J(A_D u) = \mathbb{P} J(A_D u) = u$. Moreover, if $u \in D(A_D)$, u belongs, in particular, to V_D . Therefore, $J_0 u \in H_0^1(\Omega; \mathbb{R}^3)$ and $(-\Delta)J_0 u \in H^{-1}(\Omega; \mathbb{R}^3)$. The following identities take place in V'_D :

$$\mathbb{P}_1\big(J(A_D u) - (-\Delta)J_0 u\big) = \mathbb{P}_1 J(A_D u) - \mathbb{P}_1(-\Delta)J_0 u = A_D u - A_D u = 0.$$

By de Rham's theorem, this implies that there exists $p \in \mathscr{C}^{\infty}_{c}(\Omega; \mathbb{R})'$ such that $J(A_{D}u) - (-\Delta)\tilde{J}u = \nabla p: \nabla p \in H^{-1}(\Omega; \mathbb{R}^{3})$, which implies that $p \in L^{2}(\Omega; \mathbb{R})$.

The relations between the spaces and the operators described above are summarized in the following commutative diagram:



In the case of a bounded Lipschitz domain $\Omega \subset \mathbb{R}^3$, the following property of $\mathsf{D}(A_D^{\frac{3}{4}})$ also holds; see [34, Corollary 5.5].

Proposition 2. The domain of $A_D^{\frac{3}{4}}$ is continuously embedded into $W_0^{1,3}(\Omega; \mathbb{R}^3)$.

It has been proved by R. Brown and Z. Shen [7] that the domain of A_D is embedded into $W_0^{1,p}(\Omega; \mathbb{R}^3) \cap W^{\frac{3}{2},2}(\Omega, \mathbb{R}^3)$ for some p > 3. The proof Proposition 2 uses the well-posedness result for the Poisson problem of the Stokes system [16, Theorem 5.6], similar to the corresponding result proved in [26] for the Laplacian.

2.1.2 The L^p Theory

P. Deuring provided in [14] an example of a domain with one conical singularity such that the Dirichlet-Stokes semigroup does not extend to an analytic semigroup in L^p for p large, away from 2. M.E. Taylor in [54], however, conjectured that this should be true for p in an interval containing $\left[\frac{3}{2}, 3\right]$, which was indeed proved 12 years later by the second author in [51].

Let $\mathscr{C}^{\infty}_{c,\sigma}(\Omega)$ denote the space of vector fields $u \in \mathscr{C}^{\infty}_{c}(\Omega; \mathbb{R}^{3})$ with div u = 0 in Ω and

$$L^p_{\sigma}(\Omega) =$$
 the closure of $\mathscr{C}^{\infty}_{c,\sigma}(\Omega)$ in $L^p(\Omega; \mathbb{R}^3)$. (6)

Note that if Ω is Lipschitz and p = 2, $L^2_{\sigma}(\Omega) = H_D$. In view of Proposition 1, the Dirichlet-Stokes operator in the L^p setting for 1 is defined by

$$A_{D,p} = -\Delta u + \nabla \pi, \tag{7}$$

with the domain

$$\mathsf{D}(A_{D,p}) = \left\{ u \in W_0^{1,p}(\Omega; \mathbb{R}^3); \text{ div } u = 0 \text{ in } \Omega \text{ and} \\ -\Delta u + \nabla \pi \in L^p_{\sigma}(\Omega) \text{ for some } \pi \in L^p(\Omega) \right\}.$$
(8)

Since $\mathscr{C}^{\infty}_{c,\sigma}(\Omega) \subset \mathsf{D}(A_{D,p})$, the operator $A_{D,p}$ is densely defined in $L^p_{\sigma}(\Omega)$ and $A_{D,p}(u) = \mathbb{P}(-\Delta)u$ for $u \in \mathscr{C}^{\infty}_{c,\sigma}(\Omega)$. If p = 2, $A_{D,p}$ agrees with the Dirichlet-Stokes operator A_D defined in the previous subsection.

The following theorem was proved in [51].

Theorem 2. Let Ω be a bounded Lipschitz domain in \mathbb{R}^3 . Then there exists $\varepsilon > 0$, depending only on the Lipschitz character of Ω , such that $-A_{D,p}$ generates a bounded analytic semigroup in $L^p_{\sigma}(\Omega)$ for $(3/2) - \varepsilon .$

It was in fact proved in [51] that if Ω is a bounded Lipschitz domain in \mathbb{R}^d , $d \ge 3$, then $-A_{D,p}$ generates a bounded analytic semigroup in $L^p_{\sigma}(\Omega)$ for

$$\frac{2d}{d+1} - \varepsilon$$

where $\varepsilon > 0$ depends only on *d* and the Lipschitz character of Ω . This was done by establishing the following resolvent estimate in L^p :

$$\|(A_{D,p} + \lambda)^{-1} f\|_{L^{p}(\Omega; \mathbb{C}^{d})} \le C_{p} |\lambda|^{-1} \|f\|_{L^{p}(\Omega; \mathbb{C}^{d})}$$
(10)

for any $f \in \mathscr{C}^{\infty}_{c}(\Omega; \mathbb{C}^{d})$ with div f = 0 in Ω , where p satisfies (9),

$$\lambda \in \Sigma_{\theta} := \{ z \in \mathbb{C} : \lambda \neq 0 \text{ and } | \arg(z) | < \pi - \theta \},\$$

and $\theta \in (0, \pi/2)$. The constant C_p in (10) depends only on d, θ , p, and Ω . It has long been known that if Ω is a bounded \mathscr{C}^2 domain in \mathbb{R}^d , the resolvent estimate (10) holds for $\lambda \in \Sigma_{\theta}$ and $1 (see [21]). Consequently, the operator <math>A_{D,p}$ generates a bounded analytic semigroup in L^p for any $1 , if <math>\Omega$ is \mathscr{C}^2 . The case of nonsmooth domains is much more delicate. As mentioned earlier, P. Deuring constructed a three-dimensional Lipschitz domain for which the L^p resolvent estimate (10) fails for p sufficiently large. This was somewhat unexpected. Indeed it was proved in [48] that the L^p resolvent estimate holds for $1 in bounded Lipschitz domains in <math>\mathbb{R}^3$ for any second-order elliptic systems with constant coefficients satisfying the Legendre-Hadamard conditions (the range is $\frac{2d}{d+3} - \varepsilon for <math>d \ge 4$). It is worth mentioning that it is not known whether the range of p in Theorem 2 is sharp.

The approach used in [51] to the proof of (10) is described below. Consider the operator T_{λ} on $L^2(\Omega; \mathbb{C}^d)$, defined by $T_{\lambda}(f) = \lambda u$, where $\lambda \in \Sigma_{\theta}$ and $u \in H_0^1(\Omega; \mathbb{C}^d)$ are the unique solution to the Stokes system:

$$\begin{cases}
-\Delta u + \nabla \pi + \lambda u = f & \text{in } \Omega, \\
\text{div } u = 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}$$
(11)

Note that T_{λ} is bounded on $L^2(\Omega; \mathbb{C}^d)$ and $||T_{\lambda}||_{L^2 \to L^2} \leq C$. To show that T_{λ} is bounded on $L^p(\Omega; \mathbb{C}^d)$ and $||T_{\lambda}||_{L^p \to L^p} \leq C$ for 2 , a real variable argument is used, which may be regarded as a refined (and dual) version of the celebrated Calderón-Zygmund lemma. According to this argument, which originated from [8] and was further developed in [49,50], one only needs to establish the weak reverse Hölder estimate:

$$\left(\int_{B(x_0,r)\cap\Omega} |u|^{p_d}\right)^{1/p_d} \le C\left(\int_{B(x_0,2r)\cap\Omega} |u|^2\right)^{1/2}$$
(12)

for $p_d = \frac{2d}{d-1}$, whenever $u \in H_0^1(\Omega; \mathbb{C}^d)$ is a (local) solution of the Stokes system:

$$\begin{cases} -\Delta u + \nabla \pi + \lambda u = 0, \\ \text{div} \, u = 0 \end{cases}$$
(13)

in $B(x_0, 3r) \cap \Omega$ for some $x_0 \in \overline{\Omega}$ and $0 < r < c \operatorname{diam}(\Omega)$. The extra ε in the range of *p* is due to the self-improvement property of the weak reverse Hölder inequalities (see, e.g., [25]).

To prove the estimate (12), the Dirichlet problem for the Stokes system (13) is considered in a bounded Lipschitz domain Ω in \mathbb{R}^d , with boundary data u = f on $\partial\Omega$, where $f \in L^2(\partial\Omega; \mathbb{C}^d)$ and $\int_{\partial\Omega} f \cdot v = 0$. The goal is to show that

$$\|(u)^*\|_{L^2(\partial\Omega)} \le C \,\|f\|_{L^2(\partial\Omega)},\tag{14}$$

where $(u)^*$ denotes the nontangential maximal function of u and is defined by

$$(u)^*(Q) := \sup \left\{ |u(x)| : x \in \Omega \text{ and } |x - Q| < C_0 \operatorname{dist}(x, \partial \Omega) \right\}$$

for any $Q \in \partial \Omega$ ($C_0 > 1$ is a large fixed constant depending on d and Ω). This, together with the inequality

$$\left(\int_{\Omega}|u|^{p_d}\right)^{1/p_d}\leq C\left(\int_{\partial\Omega}|(u)^*|^2\right)^{1/2},$$

which holds for any continuous function u in Ω , leads to

$$\left(\int_{\Omega} |u|^{p_d}\right)^{1/p_d} \le C\left(\int_{\partial\Omega} |u|^2\right)^{1/2}.$$
(15)

The desired estimate (12) follows by applying (15) in the domain $B(x_0, tr) \cap \Omega$ for $t \in (1, 2)$ and then integrating the resulting inequality with respect to *t* over (1, 2).

Finally, the nontangential maximal function estimate (14) is established by the method of layer potentials. The case $\lambda = 0$ was studied in [11, 18], where the L^2 Dirichlet problem as well as the Neumann type boundary value problems with

boundary data in L^2 for the system $-\Delta u + \nabla \pi = 0$ and div u = 0 in a Lipschitz domain Ω was solved by the method of layer potentials, using the Rellich-type estimates:

$$\left\|\frac{\partial u}{\partial \rho}\right\|_{L^2(\partial\Omega)} \approx \|\nabla_{\tan} u\|_{L^2(\partial\Omega)}.$$

Here $\frac{\partial u}{\partial \rho}$ is a conormal derivative and $\nabla_{tan} u$ denotes the tangential derivative of u on $\partial\Omega$. The reader is referred to the book [27] by C. Kenig for references on related work on L^p boundary value problems for elliptic and parabolic equations in nonsmooth domains. In an effort to solve the L^2 initial boundary value problems for the nonstationary Stokes equations $\partial_t u - \Delta u + \nabla \pi = 0$ and div u = 0 in a Lipschitz cylinder $(0, T) \times \Omega$, the Stokes system (13) for $\lambda = i\tau$ with $\tau \in \mathbb{R}$ was considered by the second author in [47]. One of the key observations in [47] is that if $\lambda = i\tau$ and $\tau \in \mathbb{R}$ is large, the Rellich estimates for the system (13) involve two extra terms $|\tau|^{1/2} ||u||_{L^2(\partial\Omega)}$ and $|\tau|||u \cdot v||_{H^{-1}(\partial\Omega)}$, where $H^{-1}(\partial\Omega)$ denotes the dual of $H^1(\partial\Omega)$. While the first term $|\tau|^{1/2} ||u||_{L^2(\partial\Omega)}$ was expected in view of the Rellich estimates for the Helmholtz equation $-\Delta + i\tau$ in [6], the second term $|\tau|||u \cdot v||_{H^{-1}(\partial\Omega)}$ was not. Let

$$\frac{\partial u}{\partial \rho} = \frac{\partial u}{\partial \nu} - \pi \nu.$$

By following the general approach in [47], it was proved in [51] that if (u, π) is a suitable solution of (13) in Ω , then

$$\|\frac{\partial u}{\partial \rho}\|_{L^{2}(\partial\Omega)} \approx \|\nabla_{\tan}u\|_{L^{2}(\partial\Omega)} + |\lambda|^{1/2} \|u\|_{L^{2}(\partial\Omega)} + |\lambda| \|u \cdot v\|_{H^{-1}(\partial\Omega)}$$
(16)

holds uniformly in λ for $\lambda \in \Sigma_{\theta}$ with $|\lambda| \ge c > 0$. As in the case of Laplace's equation [56], the estimate (14) follows from (16) by the method of layer potentials. The reader is referred to [51] for the details.

2.2 The Nonlinear Dirichlet-Navier-Stokes Equations

The system {(NS), (Dbc)} is invariant under the scaling $u_{\lambda}(t, x) = \lambda u(\lambda^2 t, \lambda x)$, $(\lambda^2 t, \lambda x) \in (0, T) \times \Omega$ ($\lambda > 0$): if *u* is a solution of {(NS), (Dbc)} in (0, T) $\times \Omega$ for the initial value u_0 , then u_{λ} is a solution of {(NS), (Dbc)} in $(0, \frac{T}{\lambda^2}) \times \frac{1}{\lambda} \Omega$ for the initial value $x \mapsto \lambda u_0(\lambda x)$.

The goal here is to find the so-called mild solutions of the system $\{(NS), (Dbc)\}$ for initial values u_0 in a critical space, in the same spirit as in [20].

Lemma 1. The space $D(A_D^{\frac{1}{4}})$ is a critical space for the Navier-Stokes equations.

Proof. The space $D(A_D^{\frac{1}{4}})$ is invariant under the scaling $u_{\lambda}(x) = \lambda u_0(\lambda x)$ for $x \in \frac{1}{\lambda} \Omega$, $\lambda > 0$. Indeed, it suffices to check that $||u_{\lambda}||_2 = \lambda^{-\frac{1}{2}} ||u||_2$ and $||\nabla u_{\lambda}||_2 = \lambda^{\frac{1}{2}} ||\nabla u||_2$ and apply the fact that $D(A_D^{\frac{1}{4}})$ is the interpolation space (with coefficient $\frac{1}{2}$) between H_D , closed subspace of $L^2(\Omega; \mathbb{R}^3)$, and $V_D = D(A_D^{\frac{1}{2}})$, closed subspace of $H_0^1(\Omega; \mathbb{R}^3)$.

For T > 0, define the space \mathscr{E}_T by

$$\mathscr{E}_{T} = \left\{ u \in \mathscr{C}_{b}([0,T]; \mathsf{D}(A_{D}^{\frac{1}{4}})); u(t) \in \mathsf{D}(A_{D}^{\frac{3}{4}}), u'(t) \in \mathsf{D}(A_{D}^{\frac{1}{4}}) \text{ for all } t \in (0,T] \right.$$

and
$$\sup_{t \in (0,T)} \|t^{\frac{1}{2}} A_{D}^{\frac{3}{4}} u(t)\|_{2} + \sup_{t \in (0,T)} \|tA_{D}^{\frac{1}{4}} u'(t)\|_{2} < \infty \right\}$$

endowed with the norm

$$\|u\|_{\mathscr{E}_{T}} = \sup_{t \in (0,T)} \|A_{D}^{\frac{1}{4}}u(t)\|_{2} + \sup_{t \in (0,T)} \|t^{\frac{1}{2}}A_{D}^{\frac{3}{4}}u(t)\|_{2} + \sup_{t \in (0,T)} \|tA_{D}^{\frac{1}{4}}u'(t)\|_{2}.$$

The fact that \mathscr{E}_T is a Banach space is straightforward. Assume now that $u \in \mathscr{E}_T$ and that (J_0u, p) (with $p \in L^2(\Omega; \mathbb{R})$) satisfy $\{(NS), (Dbc)\}$ in $H^{-1}(\Omega; \mathbb{R}^3)$: indeed, every term ∇p , $\partial_t J_0 u$, $-\Delta J_0 u$, and $(J_0 u \cdot \nabla) J_0 u$ independently belongs to $H^{-1}(\Omega; \mathbb{R}^3)$. Apply \mathbb{P}_1 to the equations and obtain

$$u'(t) + A_D u(t) = -\mathbb{P}_1 \big((J_0 u \cdot \nabla) J_0 u \big)$$

since $\mathbb{P}_1 \nabla p = 0$ and $\mathbb{P}_1(-\Delta) J_0 u = A_{0,D} u$. The problem {(NS), (Dbc)} is then reduced to the abstract Cauchy problem:

$$u'(t) + A_{0,D}u(t) = -\mathbb{P}_1((J_0u \cdot \nabla)J_0u)$$

$$u(0) = u_0, \quad u \in \mathscr{E}_T,$$

(17)

for which a mild solution is given by the Duhamel formula:

$$u = \alpha + \phi(u, u), \tag{18}$$

where $\alpha(t) = e^{-tA_D}u_0$ and

$$\phi(u,v)(t) = \int_0^t e^{-(t-s)A_D} \left(-\frac{1}{2} \mathbb{P}_1 \left((J_0 u(s) \cdot \nabla) J_0 v(s) + (J_0 v(s) \cdot \nabla) J_0 u(s) \right) \right) \mathrm{d}s.$$
(19)

The strategy to find $u \in \mathscr{E}_T$ satisfying $u = \alpha + \phi(u, u)$ is to apply a fixed-point theorem. For that, \mathscr{E}_T needs to be a "good" space for the problem, i.e., $\alpha \in \mathscr{E}_T$ and

 $\phi(u, u) \in \mathscr{E}_T$. The fact that $\alpha \in \mathscr{E}_T$ follows directly from the properties of the Stokes operator A_D and the semigroup $(e^{-tA_D})_{t\geq 0}$.

Proposition 3. The mapping $\phi : \mathscr{E}_T \times \mathscr{E}_T \to \mathscr{E}_T$ is bilinear, continuous, and symmetric.

Proof. The fact that ϕ is bilinear and symmetric is immediate, once it is proved that it is well-defined. For $u, v \in \mathscr{E}_T$, let

$$f(t) = -\frac{1}{2}\mathbb{P}_1((J_0u(t) \cdot \nabla)J_0v(t) + (J_0v(t) \cdot \nabla)J_0u(t)), \quad t \in (0,T).$$
(20)

By the definition of \mathscr{E}_T and Sobolev embeddings, it is easy to see that

$$(J_0u(t)\cdot\nabla)J_0v(t) + (J_0v(t)\cdot\nabla)J_0u(t) \in L^2(\Omega;\mathbb{R}^3)$$

and

$$\left\| (J_0 u(t) \cdot \nabla) J_0 v(t) + (J_0 v(t) \cdot \nabla) J_0 u(t) \right\|_2 \le C t^{-\frac{3}{4}} \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T}$$

where C is a constant independent from t, which gives the following estimate:

$$\|f(t)\|_{2} \le C t^{-\frac{3}{4}} \|u\|_{\mathscr{E}_{T}} \|v\|_{\mathscr{E}_{T}}$$
(21)

Therefore,

$$\begin{split} \|A_D^{\frac{1}{4}}\phi(u,v)(t)\|_2 &\leq \int_0^t \|A_D^{\frac{1}{4}}e^{-(t-s)A_D}\|_{\mathscr{L}(H_D)}C \ s^{-\frac{3}{4}} \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T} \ \mathrm{d}s\\ &\leq C \Big(\int_0^t (t-s)^{-\frac{1}{4}}s^{-\frac{3}{4}} \ \mathrm{d}s\Big) \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T}, \end{split}$$

and since $\int_0^t (t-s)^{-\frac{1}{4}} s^{-\frac{3}{4}} ds = \int_0^1 (1-s)^{-\frac{1}{4}} s^{-\frac{3}{4}} ds$, the following estimate is finally obtained:

$$\|A_D^{\frac{1}{4}}\phi(u,v)(t)\|_2 \le C \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T}.$$
(22)

The proof of the continuity of $t \mapsto A_D^{\frac{1}{4}}\phi(u, v)(t)$ on H_D is straightforward once the estimate (22) is established. The proof of the fact that

$$\|\sqrt{t}A_{D}^{\frac{3}{4}}\phi(u,v)(t)\|_{2} \le C \|u\|_{\mathscr{E}_{T}} \|v\|_{\mathscr{E}_{T}}$$
(23)

is proved the same way, replacing $A_D^{\frac{1}{4}}$ by $A_D^{\frac{3}{4}}$ and using the fact that

$$\|A_D^{\frac{3}{4}}e^{-(t-s)A_D}\|_{\mathscr{L}(H_D)} \leq C \ (t-s)^{-\frac{3}{4}}$$

and

$$\int_0^t (t-s)^{-\frac{3}{4}} s^{-\frac{3}{4}} \, \mathrm{d}s = t^{-\frac{1}{2}} \int_0^1 (1-s)^{-\frac{3}{4}} s^{-\frac{3}{4}} \, \mathrm{d}s.$$

It remains to prove the estimate on the derivative with respect to t of $\phi(u, v)$. Rewrite f as defined in (20) as follows:

$$f(s) = -\frac{1}{2}\mathbb{P}_1 \nabla \cdot \left(J_0 u(s) \otimes J_0 v(s) + J_0 v(s) \otimes J_0 u(s) \right)$$
(24)

where $u \otimes v$ denotes the matrix $(u_i v_j)_{1 \leq i,j \leq 3}$ and the differential operator $\nabla \cdot$ acts on matrices $M = (m_{i,j})_{1 \leq i,j \leq 3}$ the following way:

$$\nabla \cdot M = \left(\sum_{i=1}^{3} \partial_i m_{i,j}\right)_{1 \le j \le 3}$$

For $u, v \in \mathscr{E}_T$ and $s \in (0, T)$,

$$f'(s) = -\frac{1}{2} \mathbb{P}_1 \nabla \cdot \left(J u'(s) \otimes J_0 v(s) + J_0 u(s) \otimes J v'(s) \right)$$
$$+ J v'(s) \otimes J_0 u(s) + J_0 v(s) \otimes J u'(s) \right)$$

For all $s \in (0, T)$,

$$s^{\frac{2}{4}} \|Ju'(s) \otimes J_0v(s)\|_2 \le \|sJu'(s)\|_3 \|s^{\frac{1}{4}} J_0v(s)\|_6$$

$$\le \|sA_D^{\frac{1}{4}}u'(s)\|_2 \|s^{\frac{1}{4}} A_D^{\frac{1}{2}}v(s)\|_2$$

$$\le \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T},$$

where the first inequality comes from the fact that $L^3 \cdot L^6 \hookrightarrow L^2$, the second inequality comes from the Sobolev embeddings $\mathsf{D}(A_D^{\frac{1}{4}}) \hookrightarrow L^3(\Omega; \mathbb{R}^3)$ and $\mathsf{D}(A_D^{\frac{1}{2}}) \hookrightarrow L^6(\Omega; \mathbb{R}^3)$, and the third inequality follows directly from the definition of the space \mathscr{E}_T . Of course the same occurs for the other three terms $J_0u(s) \otimes Jv'(s)$, $Jv'(s) \otimes J_0u(s)$, and $J_0v(s) \otimes Ju'(s)$. Therefore, since $A_D^{-\frac{1}{2}}$ maps V'_d to H_D ,

$$\sup_{0 < s < T} \|s^{\frac{5}{4}} A_D^{-\frac{1}{2}} f'(s)\|_2 \le c \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T}.$$
(25)

It is straightforward that

$$\phi(u,v)(t) = \int_0^{\frac{t}{2}} e^{-sA_D} f(t-s) ds + \int_0^{\frac{t}{2}} e^{-(t-s)A_D} f(s) ds \quad t \in (0,T),$$

and therefore

$$\phi(u,v)'(t) = e^{-\frac{t}{2}A_D} f\left(\frac{t}{2}\right) + \int_0^{\frac{t}{2}} A_D^{\frac{1}{2}} e^{-sA_D} A_{0,D}^{-\frac{1}{2}} f'(t-s) \,\mathrm{d}s$$
$$+ \int_0^{\frac{t}{2}} -A_D e^{-(t-s)A_D} f(s) \,\mathrm{d}s,$$

which yields

$$\begin{split} \|A_D^{\frac{1}{4}}\phi(u,v)'(t)\|_2 &\leq \frac{c}{t^{\frac{1}{4}}} \left\|f\left(\frac{t}{2}\right)\right\|_2 + c\left(\int_0^{\frac{t}{2}} \frac{1}{s^{\frac{3}{4}}} \frac{1}{(t-s)^{\frac{5}{4}}} \,\mathrm{d}s\right) \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T} \\ &+ c\left(\int_0^{\frac{t}{2}} \frac{1}{(t-s)^{\frac{5}{4}}} \frac{1}{s^{\frac{3}{4}}} \,\mathrm{d}s\right) \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T} \\ &\leq \frac{c}{t} \left(1 + \int_0^{\frac{1}{2}} \frac{\mathrm{d}\sigma}{(1-\sigma)^{\frac{5}{4}} \sigma^{\frac{3}{4}}}\right) \|u\|_{\mathscr{E}_T} \|v\|_{\mathscr{E}_T}, \end{split}$$

where the estimates (21), (25) and the fact that $-A_D$ generates a bounded analytic semigroup (so that $||A_D^{\alpha}e^{-tA_D}||_{\mathscr{L}(H_D)} \leq C t^{-\alpha}$) were used. This last inequality together with (22) and (23) ensures that $\phi(u, v) \in \mathscr{E}_T$ whenever $u, v \in \mathscr{E}_T$.

This section is concluded by applying Picard's fixed-point theorem (see, e.g., [28, Theorem 13.2] or [42, Theorem A.1]) to obtain the following existence result for the system $\{(NS), (Dbc)\}$.

Theorem 3 (Existence). Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and let $u_0 \in D(A_D^{\frac{1}{4}})$. Let α and ϕ be defined as above:

- (i) If $||A_D^{\frac{1}{4}}u_0||_2$ is small enough, then there exists a unique $u \in \mathscr{E}_{\infty}$ solution of $u = \alpha + \phi(u, u)$.
- (ii) For all $u_0 \in D(A_D^{\frac{1}{4}})$, there exists T > 0 and a unique $u \in \mathscr{E}_T$ solution of $u = \alpha + \phi(u, u)$.

Uniqueness in the larger space $\mathscr{C}_b([0, T); \mathsf{D}(A_D^{\frac{1}{4}}))$ can be obtained, by applying [40, Theorem 1.1]. The argument there is somewhat stronger though, since uniqueness in $\mathscr{C}_b([0, T); L^3)$ is proved, using a maximal regularity result by Z. Shen [47, Theorem 5.1.2].

Theorem 4 (Uniqueness). Let $u, v \in \mathcal{C}_b([0, T); \mathsf{D}(A_D^{\frac{1}{4}}))$ both be mild solutions of the system $\{(NS), (Dbc)\}$, i.e., they both satisfy (18). Then u = v on [0, T).

Before proving this theorem, the following lemma is shown, similar to [39, Proposition 2].

Lemma 2. Let $p \in (1, \infty)$ and $\tau \in (0, T]$: ϕ defined by (19) maps $L^{p}(0, \tau; \mathsf{D}(A_{D}^{\frac{1}{4}})) \times L^{\infty}(0, \tau; \mathsf{D}(A_{D}^{\frac{1}{4}}))$ to $L^{p}(0, \tau; \mathsf{D}(A_{D}^{\frac{1}{4}}))$. Moreover, there exists a constant $C_{p} > 0$ independent of τ such that

$$\|\phi(u,v)\|_{L^{p}(0,\tau;\mathsf{D}(A_{D}^{1/4}))} \leq C_{p} \|u\|_{L^{p}(0,\tau;\mathsf{D}(A_{D}^{1/4}))} \|v\|_{L^{\infty}(0,\tau;\mathsf{D}(A_{D}^{1/4}))}.$$
(26)

If $v \in L^{\infty}(0, \tau; V_D)$, the following improved estimate holds

$$\|\phi(u,v)\|_{L^{p}(0,\tau;\mathsf{D}(A_{D}^{\frac{1}{4}}))} \leq K_{p} \tau^{\frac{1}{4}} \|u\|_{L^{p}(0,\tau;\mathsf{D}(A_{D}^{1/4}))} \|v\|_{L^{\infty}(0,\tau;V_{D})},$$
(27)

where $K_p > 0$ is a constant independent of τ .

Proof. First, let \mathcal{M} be the maximal regularity operator on H_D : for all $\varphi \in L^p(0, \tau; H_D)$, $\mathcal{M}\varphi$ is defined by

$$\mathcal{M}\varphi(t) := \int_0^t A_D e^{-(t-s)A_D}\varphi(s) \,\mathrm{d}s, \quad t \in (0,\tau).$$

Since H_D is a Hilbert space and $-A_D$ generates an analytic semigroup in H_D , the operator \mathcal{M} is bounded on $L^p(0, \tau; H_D)$ for all $p \in (1, \infty)$ and all $\tau > 0$; see, e.g., [13]. Moreover, $\|\mathcal{M}\|_{\mathscr{L}(L^p(0,\tau;H_D))}$ is independent of τ . Then

$$A_D^{\frac{1}{4}}\phi(u,v) = \mathcal{M}\left(A_D^{-\frac{3}{4}}f\right)$$

where f is defined by (24). For $u \in L^p(0, \tau; \mathsf{D}(A_D^{\frac{1}{4}}) \text{ and } v \in L^{\infty}(0, \tau; \mathsf{D}(A_D^{\frac{1}{4}}))$, by Sobolev embeddings, $Ju \otimes Jv + Jv \otimes Ju \in L^p(0, \tau; L^{3/2}(\Omega; \mathbb{R}^3))$, with the estimate

$$\|Ju \otimes Jv + Jv \otimes Ju\|_{L^{p}(0,\tau;L^{3/2}(\Omega;\mathbb{R}^{3}))} \leq C \|u\|_{L^{p}(0,\tau;\mathsf{D}(A_{D}^{1/4}))} \|v\|_{L^{\infty}(0,\tau;\mathsf{D}(A_{D}^{1/4}))},$$

where the constant *C* depends only on the constant of the embedding $D(A_D^{\frac{1}{4}}) \hookrightarrow L^3(\Omega; \mathbb{R}^3)$. This implies that $f \in L^p(0, \tau; \mathbb{P}_1(W^{-1,3/2}))$. Since $D(A_D^{\frac{3}{4}}) \hookrightarrow W_0^{1,3}(\Omega; \mathbb{R}^3)$ (see Proposition 2), the embedding $\mathbb{P}_1(W^{-1,3/2}(\Omega; \mathbb{R}^3)) \hookrightarrow (D(A_D^{\frac{3}{4}}))'$ holds and therefore $A_D^{-\frac{3}{4}} f \in L^p(0, \tau; H_D)$ with

$$\|A_D^{-\frac{3}{4}}f\|_{L^p(0,\tau;H_D)} \le C \|u\|_{L^p(0,\tau;\mathsf{D}(A_D^{1/4}))} \|v\|_{L^\infty(0,\tau;\mathsf{D}(A_D^{1/4}))}.$$

Using the L^p maximal regularity result in H_D gives (26).

To prove (27), let $u \in L^p(0, \tau; \mathsf{D}(A_D^{\frac{1}{4}}))$ and $v \in L^{\infty}(0, \tau; V_D)$. Using the embeddings $\mathsf{D}(A_D^{\frac{1}{4}}) \hookrightarrow L^3(\Omega; \mathbb{R}^3)$ and $V_D \hookrightarrow L^6(\Omega; \mathbb{R}^3)$,

$$\|Ju \otimes Jv + Jv \otimes Ju\|_{L^{p}(0,\tau;L^{2}(\Omega,\mathbb{R}^{3}))} \leq C \|u\|_{L^{p}(0,\tau;\mathsf{D}(A_{D}^{1/4}))} \|v\|_{L^{\infty}(0,\tau;V_{D})}.$$

As before, this implies that $f \in L^p(0, \tau; V'_D)$, and therefore

$$A_D^{\frac{1}{4}}\phi(u,v)(t) = \int_0^t A_D^{\frac{3}{4}}e^{(t-s)A_D} \left(A_D^{-\frac{1}{2}}f(s)\right) \mathrm{d}s, \quad t \in (0,\tau).$$

Using the analyticity of the semigroup $(e^{-tA_D})_{t\geq 0}$ in H_D and Young's inequality,

$$\|A_D^{\frac{1}{4}}\phi(u,v)\|_{L^p(0,\tau;H_D)} \leq C \|t \mapsto t^{-\frac{3}{4}}\|_{L^1(0,\tau)} \|u\|_{L^p(0,\tau;\mathsf{D}(A_D^{1/4}))} \|v\|_{L^{\infty}(0,\tau;V_D)}.$$

Proof of Theorem 4. The proof is inspired by the method described in [39] (see also [2, Section 8]). Let $p \in (1, \infty)$, $\varepsilon > 0$ to be chosen later and $w := u - v \in \mathscr{C}_b(0, T; \mathsf{D}(A^{\frac{1}{4}}_{D})) \subset L^p(0, T; \mathsf{D}(A^{\frac{1}{4}}_{D}))$: w satisfies

$$w = \phi(u, w) + \phi(w, v) = \phi(w, u + v - 2\alpha) + 2\phi(w, \alpha)$$
$$= \phi(w, u + v - 2\alpha) + 2\phi(w, \alpha - \alpha_{\varepsilon}) + 2\phi(w, \alpha_{\varepsilon})$$

where $\alpha_{\varepsilon}(t) = e^{-tA_D}u_{0,\varepsilon}$, with $u_{0,\varepsilon} \in V_D$ satisfying the estimate $||u_{0,\varepsilon} - u_0||_{\mathsf{D}(A_D^{1/4})} \le \varepsilon$. Using Lemma 2, *w* is estimated in $L^p(0, \tau; \mathsf{D}(A^{\frac{1}{4}}))$ as follows:

$$\begin{split} \|w\|_{L^{p}(0,\tau;\mathsf{D}(A^{1/4}))} \\ &\leq \|w\|_{L^{p}(0,\tau;\mathsf{D}(A^{1/4}))} \Big(C_{p}(\|u+v-2\alpha\|_{L^{\infty}(0,\tau;\mathsf{D}(A_{D}^{1/4}))}+\varepsilon) + K_{p} \tau^{\frac{1}{4}} \|u_{0,\varepsilon}\|_{V_{D}} \Big) \\ &\leq \kappa_{p} \big(\varepsilon + g_{\varepsilon}(\tau) \big) \|w\|_{L^{p}(0,\tau;\mathsf{D}(A^{1/4}))}, \end{split}$$

where $g_{\varepsilon}(\tau) = \|u + v - 2\alpha\|_{L^{\infty}(0,\tau;\mathsf{D}(A_D^{1/4}))} + \tau^{\frac{1}{4}} \|u_{0,\varepsilon}\|_{V_D} \xrightarrow[t \to 0]{} 0$. This shows that choosing $\varepsilon > 0$ small enough, there exists $\tau > 0$ such that $\|w\|_{L^p(0,\tau;\mathsf{D}(A^{1/4}))} \leq \frac{1}{2} \|w\|_{L^p(0,\tau;\mathsf{D}(A^{1/4}))}$; in other terms, w = 0 on $[0, \tau)$ (recall that w is continuous on [0, T)). If $\tau = T$, then it was proved that u = v on [0, T). If $\tau < T$, by continuity, $w(\tau) = 0$ also holds. The previous reasoning can be iterated on intervals of the form $[k\tau, (k+1)\tau)$ to prove ultimately that w = 0 on [0, T) (remark again that all constants C_p, K_p, κ_p appearing in the estimates above are independent of τ). \Box

3 Neumann Boundary Conditions

In this section, the system $\{(NS), (Nbc)\}$ is studied. The results proved in [37] will be only surveyed, the method to prove existence of solutions being similar to what has been done in Sect. 2.

3.1 The Linear Neumann-Stokes Operator

Before defining the Neumann-Stokes operator, the following integration by parts formula will be useful.

Lemma 3. Let $\lambda \in \mathbb{R}$, $u, w : \Omega \to \mathbb{R}^3$, $\pi, \rho : \Omega \to \mathbb{R}$ be sufficiently nice functions defined on the Lipschitz domain $\Omega \subset \mathbb{R}^3$. Let $L_{\lambda}u = \Delta u + \lambda \nabla(\operatorname{div} u)$ and define the conormal derivative:

$$\partial_{\nu}^{\lambda}(u,\pi) = \left(\lambda \nabla u + (\nabla u)^{\top}\right)\nu - \pi\nu \quad on \ \partial\Omega.$$
(28)

Then the following integration by parts formula holds:

$$\int_{\Omega} (L_{\lambda}u - \nabla\pi) \cdot w \, \mathrm{d}x = -\int_{\Omega} \left[I_{\lambda}(\nabla u, \nabla w) - \pi \operatorname{div} w \right] \mathrm{d}x + \int_{\partial\Omega} \partial_{\nu}^{\lambda}(u, \pi) \cdot w \, \mathrm{d}\sigma$$
(29)

$$= \int_{\Omega} (L_{\lambda}w - \nabla\rho) \cdot u \, \mathrm{d}x + \int_{\Omega} \left[\pi \operatorname{div} w - \rho \operatorname{div} u\right] \mathrm{d}x$$
$$+ \int_{\partial\Omega} \left[\partial_{\nu}^{\lambda}(u, \pi) \cdot w - \partial_{\nu}^{\lambda}(w, \rho) \cdot u\right] \mathrm{d}\sigma, \qquad (30)$$

where

$$I_{\lambda}(\xi,\zeta) = \sum_{i,j=1}^{3} (\xi_{i,j}\zeta_{i,j} + \lambda\xi_{i,j}\zeta_{j,i}), \text{ for } \xi = (\xi_{i,j})_{1 \le i,j \le 3} \text{ and } \zeta = (\zeta_{i,j})_{1 \le i,j \le 3}.$$

Recall that $\nabla u = (\partial_i u_j)_{1 \le i,j \le 3}$.

The space $L^2(\Omega; \mathbb{R}^3)$ admits the following Hodge decomposition, dual to the one shown in Sect. 2: $H_N \stackrel{\perp}{\oplus} G_0$, where $G_0 := \{ \nabla \pi; \pi \in H_0^1(\Omega; \mathbb{R}) \}$ and

$$H_N := \{ u \in L^2(\Omega; \mathbb{R}^3); \text{div } u = 0 \}.$$
(31)

Following the steps of the previous section, define $V_N = H^1(\Omega; \mathbb{R}^3) \cap H_N$ and $J_N : H_N \hookrightarrow L^2(\Omega; \mathbb{R}^3)$ the canonical embedding, $\mathbb{P}_N = J'_N : L^2(\Omega; \mathbb{R}^3) \to H_N$ the orthogonal projection, and $\tilde{J}_N : V_N \hookrightarrow H^1(\Omega; \mathbb{R}^3)$ the restriction of J_N on V_N and $\tilde{J}'_N = \mathbb{P}_N : (H^1(\Omega; \mathbb{R}^3))' \to V'_N$, extension of \mathbb{P}_N to $(H^1(\Omega; \mathbb{R}^3))'$. The Neumann-Stokes operator is defined as follows.

Definition 2. Let $\lambda \in \mathbb{R}$. The Neumann-Stokes operator A_{λ} is defined as being the associated operator of the bilinear form:

$$a_{\lambda}: V_N \times V_N \to \mathbb{R}, \quad a_{\lambda}(u, v) = \int_{\Omega} I_{\lambda}(\nabla \tilde{J}_N u, \nabla \tilde{J}_N v) \, dx$$

In the case where $\lambda \in (-1, 1]$, the bilinear form a_{λ} is continuous, symmetric, coercive, and sectorial. So its associated operator is self-adjoint, invertible and the negative generator of an analytic semigroup of contractions on H_N .

The following proposition is a consequence of the integration by parts formula (29), [37, Theorem 6.8] and [29, Théorème 5.3].

Proposition 4. Let $\lambda \in (-1, 1]$. The Neumann-Stokes operator A_{λ} is the part in H_N of the bounded operator $A_{0,\lambda} : V_N \to V'_N$ defined by $(A_{0,\lambda}u)(v) = a_{\lambda}(u, v)$. The operator A_{λ} is self-adjoint, invertible, $-A_{\lambda}$ generates an analytic semigroup of contractions on H_N , $\mathsf{D}(A_{\lambda}^{\frac{1}{2}}) = V_N$ and for all $u \in \mathsf{D}(A_{\lambda})$, there exists $\pi \in L^2(\Omega; \mathbb{R})$ such that

$$J_N A_\lambda u = -\Delta \tilde{J}_N u + \nabla \pi \tag{32}$$

and $D(A_{\lambda})$ admits the following description:

$$\mathsf{D}(A_{\lambda}) = \left\{ u \in V_N; \exists \pi \in L^2(\Omega; \mathbb{R}) : f = -\Delta \tilde{J}_N u + \nabla \pi \in H_N \text{ and } \partial_{\nu}^{\lambda}(u, \pi)_f = 0 \right\}.$$

where $\partial_{\nu}^{\lambda}(u, \pi)_{f}$ is defined in a weak sense for all $f \in (H^{1}(\Omega; \mathbb{R}^{3}))'$ by

$$\langle \partial_{\nu}^{\lambda}(u,\pi)_{f},\psi\rangle_{\partial\Omega} = {}_{(H^{1})'}\langle f,\Psi\rangle_{H^{1}} + \int_{\Omega} I_{\lambda}(\nabla \tilde{J}_{n}u,\nabla\Psi)\,\mathrm{d}x - {}_{L^{2}}\langle\pi,\mathrm{div}\,\Psi\rangle_{L^{2}}$$

for $\Psi \in H^1(\Omega)$ and $\psi = \operatorname{Tr}_{\partial\Omega} \Psi$.

Remark 3. If $f \in (H^1(\Omega; \mathbb{R}^3))'$, the quantity $\partial_{\nu}^{\lambda}(u, \pi)_f$ exists on $\partial\Omega$ in the Besov space $B^{2,2}_{-\frac{1}{2}}(\partial\Omega; \mathbb{R}^3) = H^{-\frac{1}{2}}(\partial\Omega, \mathbb{R}^3)$ according to [37, Proposition 3.6].

Thanks to [37, Sections 9 & 10], a good description of the domain of fractional powers of the Neumann-Stokes operator A_{λ} can be given. In particular, in [37, Corollary 10.6], it was established that

$$\mathsf{D}(A_{\lambda}^{\frac{3}{4}})$$
 is continuously embedded into $W^{1,3}(\Omega;\mathbb{R}^3)$. (33)

3.2 The Nonlinear Neumann-Navier-Stokes Equations

The results in Sect. 3.1 allow to prove a result similar to Theorem 3 for the Navier-Stokes system with Neumann boundary conditions $\{(NS), (Nbc)\}$. As in the previous section, it is not difficult to see that $D(A_{\lambda}^{\frac{1}{4}}) \hookrightarrow L^{3}(\Omega; \mathbb{R}^{3})$ is a critical space for the system. For $T \in (0, \infty]$, following the definition of \mathscr{E}_{T} in Sect. 2, define

$$\mathscr{F}_{T} = \left\{ u \in \mathscr{C}_{b}([0,T]; \mathsf{D}(A_{\lambda}^{\frac{1}{4}})); u(t) \in \mathsf{D}(A_{\lambda}^{\frac{3}{4}}), u'(t) \in \mathsf{D}(A_{\lambda}^{\frac{1}{4}}) \text{ for all } t \in (0,T] \right.$$

and
$$\sup_{t \in (0,T)} \|t^{\frac{1}{2}} A_{\lambda}^{\frac{3}{4}} u(t)\|_{2} + \sup_{t \in (0,T)} \|tA_{\lambda}^{\frac{1}{4}} u'(t)\|_{2} < \infty \right\}$$

endowed with the norm

$$\|u\|_{\mathscr{F}_{T}} = \sup_{t \in (0,T)} \|A_{\lambda}^{\frac{1}{4}}u(t)\|_{2} + \sup_{t \in (0,T)} \|t^{\frac{1}{2}}A_{\lambda}^{\frac{3}{4}}u(t)\|_{2} + \sup_{t \in (0,T)} \|tA_{\lambda}^{\frac{1}{4}}u'(t)\|_{2}.$$

The same tools as in 2.2 apply, so the following result can be proved (see [37, Theorem 11.3]).

Theorem 5. Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and let $u_0 \in \mathsf{D}(A_{\lambda}^{\frac{1}{4}})$. Let β and ψ be defined by

$$\beta(t) = e^{-tA_{\lambda}}u_0, \quad t \ge 0,$$

and for $u, v \in \mathscr{F}_T$ and $t \in (0, T)$,

$$\psi(u,v)(t) = \int_0^t e^{-(t-s)A_\lambda} (-\frac{1}{2}\mathbb{P}_N) \big((J_N u(s) \cdot \nabla) \tilde{J}_N v(s) + J_N v(s) \cdot \nabla) \tilde{J}_N u(s) \big) \,\mathrm{d}s :$$

- (i) If $||A_{\lambda}^{\frac{1}{4}}u_0||_2$ is small enough, then there exists a unique $u \in \mathscr{F}_{\infty}$ solution of $u = \beta + \psi(u, u)$.
- (ii) For all $u_0 \in \mathsf{D}(A_{\lambda}^{\frac{1}{4}})$, there exists T > 0 and a unique $u \in \mathscr{F}_T$ solution of $u = \beta + \psi(u, u)$.

A comment here may be necessary to link the solution u obtained in Theorem 5 and a solution of the system {(NS), (Nbc)}. If $u \in \mathcal{F}_T$, then $u' \in H_N$ and $(J_N u \cdot \nabla) \tilde{J}_N u \in L^2(\Omega; \mathbb{R}^n)$. Moreover, if u satisfies the equation $u = \beta + \psi(u, u)$, then u is a mild solution of

$$A_{\lambda}u = -u' - \mathbb{P}_N\big((J_N u \cdot \nabla)\tilde{J}_N u\big) \in H_N.$$

Going further,

$$J_N \mathbb{P}_N \left((J_N u \cdot \nabla) \tilde{J}_N u \right) = (J_N u \cdot \nabla) \tilde{J}_N u - \nabla q$$

where $q \in H_0^1(\Omega; \mathbb{R})$ satisfies

$$\Delta q = \operatorname{div} \left(J_N u \cdot \nabla \right) \tilde{J}_N u \right) \in H^{-1}(\Omega; \mathbb{R}^n).$$

Therefore, by definition of A_{λ} , there exists $\pi \in L^2(\Omega, \mathbb{R})$ such that

$$-\Delta \tilde{J}_n u + \nabla \pi = J_N (A_\lambda u) = -J_N u' - (J_N u \cdot \nabla) \tilde{J}_N u + \nabla q$$

and at the boundary, (u, π) satisfies (Nbc) in the weak sense as in Proposition 4. Since $q \in H_0^1(\Omega; \mathbb{R})$, $(u, \pi - q)$ satisfies also (Nbc). This proves that $(u, \pi - q)$ is a solution of the system {(NS), (Nbc)}.

The uniqueness is true in a larger space than \mathscr{F}_T : for each $u_0 \in \mathsf{D}(A^{\frac{1}{4}})$, there is at most one $u \in \mathscr{C}_b([0, T); \mathsf{D}(A^{\frac{1}{4}}))$, mild solution of the system {(NS), (Nbc)}. For a more precise statement, see [37, Theorem 11.8].

4 Hodge Boundary Conditions

Most of the results presented here are proved thoroughly in [36] for the linear theory and [35] for the nonlinear system. The linear Hodge-Laplacian on L^p -spaces is first studied and then the Hodge-Stokes operator before applying the properties of this operator to prove the existence of mild solutions of the Hodge-Navier-Stokes system in L^3 . Some recent developments/improvements can be found in [30].

4.1 The Hodge-Laplacian and the Hodge-Stokes Operators

We denote by *H* the space $L^2(\Omega; \mathbb{R}^3)$. Let

$$W_T := \{ u \in H ; \operatorname{curl} u \in H, \operatorname{div} u \in L^2(\Omega; \mathbb{R}) \text{ and } v \cdot u = 0 \text{ on } \partial \Omega \},\$$

and $W_N := \{ u \in H ; \operatorname{curl} u \in H, \operatorname{div} u \in L^2(\Omega; \mathbb{R}) \text{ and } v \times u = 0 \text{ on } \partial \Omega \},\$

(subscript T is for "tangential" and N for "normal") both endowed with the scalar product

$$\langle\!\langle u, v \rangle\!\rangle_W := \langle \operatorname{curl} u, \operatorname{curl} v \rangle_{\Omega} + \langle \operatorname{div} u, \operatorname{div} v \rangle_{\Omega} + \langle u, v \rangle_{\Omega},$$

where $\langle \cdot, \cdot \rangle_E$ denotes the $L^2(E)$ -pairing.

Remark 4. As in Remark 1 for a bounded Lipschitz domain Ω and a vector field $w \in H$ satisfying curl $w \in H$, define $v \times w$ on $\partial \Omega$ in the following weak sense in $H^{-\frac{1}{2}}(\partial \Omega; \mathbb{R}^3)$: for $\phi \in H^1(\Omega; \mathbb{R}^3)$,

$$\langle \operatorname{curl} w, \phi \rangle_{\Omega} - \langle w, \operatorname{curl} \phi \rangle_{\Omega} = \langle v \times w, \phi \rangle_{\partial \Omega}$$
 (34)

where $\varphi = \text{Tr}_{\partial\Omega} \phi$, the right-hand side of (34) depends only on φ on $\partial\Omega$ and not on the choice of ϕ , its extension to Ω .

Remark 5. In the case of smooth bounded domains, i.e., with a $\mathscr{C}^{1,1}$ boundary or convex, the spaces W_T and W_N are contained in $H^1(\Omega; \mathbb{R}^3)$ (see, e.g., [3, Theorems 2.9, 2.12, and 2.17]).

This is not the case if Ω is only Lipschitz. The Sobolev embedding associated to the spaces $W_{T,N}$ is as follows: $W_{T,N} \hookrightarrow H^{\frac{1}{2}}(\Omega; \mathbb{R}^3)$ with the estimate

$$\|u\|_{H^{1/2}} \le C \left[\|u\|_2 + \|\operatorname{curl} u\|_2 + \|\operatorname{div} u\|_2 \right], \quad u \in W_{T,N};$$
(35)

- 2

see, for instance, [9] or [32, Theorem 11.2] where it was proved moreover that

---- - -

If
$$u \in W_{T,N}$$
, then u has an L^2 trace at the boundary $\partial \Omega$:

$$u_{|_{\partial\Omega}} = (v \cdot u)v + (v \times u) \times v \in L^2(\partial\Omega; \mathbb{R}^3), \quad (36)$$
and $||u_{|_{\partial\Omega}}||_{L^2(\partial\Omega; \mathbb{R}^3)} \leq C [||u||_2 + ||\operatorname{curl} u||_2 + ||\operatorname{div} u||_2]. \quad (37)$

Remark 6. If Ω is of class \mathscr{C}^1 , the previous result applies also if $u \in L^p(\Omega; \mathbb{R}^3)$ with curl $u \in L^p(\Omega; \mathbb{R}^3)$, div $u \in L^p(\Omega; \mathbb{R})$, and $v \cdot u = 0$ on $\partial\Omega$ (or $v \times u = 0$ on $\partial\Omega$) if $p \in (1, \infty)$ (see [32, Theorem 11.2], where it was proved that if Ω is only Lipschitz, it is also true for p in a range around 2).

Remark 7. The Helmholtz projection $\mathbb{P} : L^2(\Omega; \mathbb{R}^3) \to H_D$ defined in Sect. 2 (after Remark 2) maps also W_T to the space $\{u \in W_T; \text{div } u = 0\} =: \mathcal{V}_T$.

The projection $\mathbb{P}_N : L^2(\Omega; \mathbb{R}^3) \to H_N$ defined in Sect. 3 (before Definition 2) maps also W_N to the space $\{u \in W_N; \text{div } u = 0\} =: \mathcal{V}_N$.

On $W_T \times W_T$, we define the following form:

$$b_T: W_T \times W_T \to \mathbb{R}, \quad b_T(u, v) = \langle \operatorname{curl} u, \operatorname{curl} v \rangle + \langle \operatorname{div} u, \operatorname{div} v \rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes either the scalar or the vector-valued L^2 -pairing. Similarly, we define

$$b_N: W_N \times W_N \to \mathbb{R}, \quad b_N(u, v) = \langle \operatorname{curl} u, \operatorname{curl} v \rangle + \langle \operatorname{div} u, \operatorname{div} v \rangle$$

Proposition 5. The Hodge-Laplacian operators B_T and B_N , defined as the associated operators in H of the forms b_T and b_N , satisfy

$$\mathsf{D}(B_{T,N}) = \left\{ u \in W_{T,N}; \nabla \operatorname{div} u \in H, \operatorname{curl} \operatorname{curl} u \in H \text{ and } \middle| \begin{array}{l} v \times \operatorname{curl} u \\ (\operatorname{div} u)v \end{array} = 0 \text{ on } \partial\Omega \right\}$$
$$B_{T,N}u = -\Delta u, \quad u \in \mathsf{D}(B_{T,N}).$$
(38)

Proof. Let $u \in W_{T,N}$ and $v \in H_0^1(\Omega; \mathbb{R}^3) \subset W_{T,N}$. Then

$$b_{T,N}(u,v) = {}_{H^{-1}}\langle -\nabla \operatorname{div} u + \operatorname{curl} \operatorname{curl} u, v \rangle_{H^{1}_{0}} = {}_{H^{-1}}\langle -\Delta u, v \rangle_{H^{1}_{0}}$$

so that $B_{T,N}u = -\Delta u$ in $H^{-1}(\Omega; \mathbb{R}^3)$.

The proof of Proposition 5 is described now in the case of b_T defined on $W_T \times W_T$. The case of b_N defined on $W_N \times W_N$ can be proved with the same arguments (using \mathbb{P}_N instead of \mathbb{P} in what follows). Let *D* be the space

 $D := \{ u \in W_T; \nabla \operatorname{div} u \in H, \operatorname{curl} \operatorname{curl} u \in H \text{ and } \nu \times \operatorname{curl} u = 0 \text{ on } \partial \Omega \}.$

If $u \in D$, then $B_T u = -\Delta u \in H$ and therefore $u \in \mathsf{D}(B_T)$.

Conversely, assume that $u \in D(B_T)$. Then $(\mathrm{Id} - \mathbb{P})B_T u \in H$ satisfies for all $v \in W_T$

$$\langle (\mathrm{Id} - \mathbb{P})B_T u, v \rangle = \langle B_T u, (\mathrm{Id} - \mathbb{P})v \rangle = b_T(u, v) - b_T(u, \mathbb{P}v)$$
$$= \langle \operatorname{div} u, \operatorname{div} v \rangle = {}_{W'_T} \langle -\nabla \operatorname{div} u, v \rangle_{W_T},$$

so that $-\nabla \operatorname{div} u = (\operatorname{Id} - \mathbb{P})B_T u \in H$. Then $\operatorname{curl} \operatorname{curl} u = B_T u + \nabla \operatorname{div} u \in H$. It remains to prove that $\nu \times \operatorname{curl} u = 0$ on $\partial\Omega$. Remark that it makes sense to consider the tangential part of $w := \operatorname{curl} u$ on the boundary $\partial\Omega$ since it was just proved that $\operatorname{curl} w \in H$, and, therefore, thanks to (34), $\nu \times w \in H^{-\frac{1}{2}}(\partial\Omega; \mathbb{R}^3)$. For all $\varphi \in H^{\frac{1}{2}}(\partial\Omega; \mathbb{R}^3) \cap L^2_{\operatorname{tan}}(\partial\Omega; \mathbb{R}^3)$, there exists $\phi \in H^1(\Omega; \mathbb{R}^3)$ such that $\phi_{|_{\partial\Omega}} = \varphi$. In that case, $\phi \in W_T$, and therefore

$$\langle -\nabla \operatorname{div} u + \operatorname{curl} \operatorname{curl} u, \phi \rangle = \langle B_T u, \phi \rangle = b_T(u, \phi)$$

= $\langle \operatorname{div} u, \operatorname{div} \phi \rangle + \langle \operatorname{curl} u, \operatorname{curl} \phi \rangle$

$$= \langle -\nabla \operatorname{div} u + \operatorname{curl} \operatorname{curl} u, \phi \rangle - {}_{H^{-1/2}(\partial \Omega)} \langle v \times \operatorname{curl} u, \varphi \rangle_{H^{1/2}(\partial \Omega)}$$

It proves that $_{H^{-1/2}(\partial\Omega)}\langle \nu \times \operatorname{curl} u, \varphi \rangle_{H^{1/2}(\partial\Omega)} = 0$ for all $\varphi \in H^{\frac{1}{2}}(\partial\Omega; \mathbb{R}^3) \cap L^2_{\operatorname{tan}}(\partial\Omega; \mathbb{R}^3)$, and then $\nu \times \operatorname{curl} u = 0$ on $\partial\Omega$.

Since the forms $b_{T,N}$ are continuous, bilinear, symmetric, coercive, and sectorial, the operators $-B_{T,N}$ generate analytic semigroups of contractions on H; $B_{T,N}$ is self-adjoint and $D(B_{T,N}^{1/2}) = W_{T,N}$. The following property will be useful in the next section; it links B_T and B_N , as shown in [43, Proposition 2.2].

Lemma 4. For $u \in H$ such that $\operatorname{curl} u \in H$, the following commutator property occurs for all $\varepsilon > 0$:

$$\operatorname{curl}\left(1+\varepsilon B_T\right)^{-1}u = (1+\varepsilon B_N)^{-1}\operatorname{curl} u.$$
(39)

Proof. Let $u \in H$ such that $\operatorname{curl} u \in H$. Let $u_{\varepsilon} = (1 + \varepsilon B_T)^{-1} u$ and $w_{\varepsilon} = (1 + \varepsilon B_N)^{-1} \operatorname{curl} u$.

Step 1: curl $u_{\varepsilon} \in D(B_N)$.

By (38), it holds $\operatorname{curl} u_{\varepsilon} \in H$, $\operatorname{curl} \operatorname{curl} u_{\varepsilon} \in H$, div $(\operatorname{curl} u_{\varepsilon}) = 0 \in H^{1}(\Omega)$, $\nu \times \operatorname{curl} u_{\varepsilon} = 0$ on $\partial \Omega$, and div $(\operatorname{curl} u_{\varepsilon}) = 0$ on $\partial \Omega$. To prove that $\operatorname{curl} u_{\varepsilon} \in D(B_{T})$, it remains to show, thanks to (38), that $\operatorname{curl} \operatorname{curl} (\operatorname{curl} u_{\varepsilon}) \in H$. This is due to the fact that

$$\operatorname{curl}\operatorname{curl}(\operatorname{curl} u_{\varepsilon}) = \operatorname{curl}(-\Delta u_{\varepsilon}) \quad \text{in } H^{-1}(\Omega, \mathbb{R}^3).$$

Since

$$-\Delta u_{\varepsilon} = B_T (1 + \varepsilon B_T)^{-1} u = \frac{1}{\varepsilon} \left(u - u_{\varepsilon} \right)$$

and curl u_{ε} , curl $u \in H$, the claim follows.

Step 2: $\operatorname{curl} u_{\varepsilon} = w_{\varepsilon}$.

By Step 1, curl $u_{\varepsilon} \in D(B_N)$. Moreover, in the sense of distributions,

$$(1 + \varepsilon B_N)(\operatorname{curl} u_{\varepsilon}) = \operatorname{curl} u_{\varepsilon} - \varepsilon \Delta \operatorname{curl} u_{\varepsilon} = \operatorname{curl} \left(u_{\varepsilon} - \varepsilon \Delta u_{\varepsilon} \right) = \operatorname{curl} u$$

since $u_{\varepsilon} - \varepsilon \Delta u_{\varepsilon} = (1 + \varepsilon B_T)(1 + \varepsilon B_T)^{-1}u = u$. Therefore,

$$\operatorname{curl} u_{\varepsilon} = (1 + \varepsilon B_N)^{-1} \operatorname{curl} u = w_{\varepsilon}$$

which proves the claim.

To prove that the operators $B_{T,N}$ extend to L^p -spaces, it suffices to prove that their resolvents admit $L^2 - L^2$ off-diagonal estimates. This was proved in, e.g., [36, Section 6] (see also [30]).

Proposition 6. There exist two constants C, c > 0 such that for any open sets $E, F \subset \mathbb{R}^3$ such that dist (E, F) > 0 and for all t > 0, $f \in H$ and

$$u = (\mathrm{Id} + t^2 B_{T,N})^{-1} (\mathbb{1}_F f),$$

it holds

$$\|\mathbf{1}_{E}u\|_{2} + t\|\mathbf{1}_{E}\operatorname{div} u\|_{2} + t\|\mathbf{1}_{E}\operatorname{curl} u\|_{2} \le Ce^{-c\frac{\operatorname{dist}(E,F)}{t}}\|\mathbf{1}_{F}f\|_{2}.$$
(40)

Proof. Start by choosing a smooth cutoff function $\xi : \mathbb{R}^3 \to \mathbb{R}$ satisfying $\xi = 1$ on $E, \xi = 0$ on F, and $\|\nabla \xi\|_{\infty} \leq \frac{k}{\operatorname{dist}(E,F)}$. Then define $\eta = e^{\delta \xi}$ where $\delta > 0$ is to be chosen later. Next, take the scalar product of the equation:

$$u - t^2 \Delta u = \mathbb{1}_F f, \quad u \in \mathsf{D}(B_{T,N})$$

with the function $v = \eta^2 u$. Since $\eta = 1$ on F and $||u||_2 \le ||\mathbf{1}|_F f||_2$, it is easy to check then that

$$\|\eta u\|_{2}^{2} + t^{2} \|\eta \operatorname{div} u\|_{2}^{2} + t^{2} \|\eta \operatorname{curl} u\|_{2}^{2}$$

$$\leq \|\mathbf{1}_{F} f\|_{2}^{2} + 2\alpha \|\nabla \xi\|_{\infty} t^{2} \|\eta u\|_{2} (\|\eta \operatorname{div} u\|_{2} + \|\eta \operatorname{curl} u\|_{2})$$

and therefore, using the estimate on $\|\nabla \xi\|_{\infty}$ and choosing $\delta = \frac{\operatorname{dist}(E,F)}{4kt}$,

$$\|\eta u\|_{2}^{2} + t^{2} \|\eta \operatorname{div} u\|_{2}^{2} + t^{2} \|\eta \operatorname{curl} u\|_{2}^{2} \le 2\|\mathbf{1}_{F} f\|_{2}^{2}.$$

Using now the fact that $\eta = e^{\delta}$ on E,

$$\|1\!\!1_E u\|_2 + t \|1\!\!1_E \operatorname{div} u\|_2 + t \|1\!\!1_E \operatorname{curl} u\|_2 \le \sqrt{2}e^{-\frac{\operatorname{dis}(L,F)}{4kt}} \|1\!\!1_F f\|_2,$$

which gives (40) with $C = \sqrt{2}$ and $c = \frac{1}{4k}$.

With a slight modification of the proof, it can be shown that for all $\theta \in (0, \pi)$, there exist two constants C, c > 0 such that for any open sets $E, F \subset \mathbb{R}^3$ such that dist (E, F) > 0, and for all $z \in \Sigma_{\pi-\theta} = \{\omega \in \mathbb{C} \setminus \{0\}; |\arg z| < \pi - \theta\}, f \in H$ and

$$u = (z \mathrm{Id} + B_{T,N})^{-1} (\mathbb{1}_F f),$$

it holds

$$|z| \| \mathbb{1}_{E} u \|_{2} + |z|^{\frac{1}{2}} \| \mathbb{1}_{E} \operatorname{div} u \|_{2} + |z|^{\frac{1}{2}} \| \mathbb{1}_{E} \operatorname{curl} u \|_{2} \le C \ e^{-c \operatorname{dist}(E,F)|z|^{\frac{1}{2}}} \| \mathbb{1}_{F} f \|_{2}.$$
(41)

Following [31] and [10] (see also [30]), there exist Bogovskiĭ-type operators R_i , T_i , i = 1, 2, 3, and $K_{1,2}$, $L_{1,2}$ such that for all $p \in (1, \infty)$,

$$R_{1}: L^{p}(\Omega; \mathbb{R}^{3}) \to W^{1,p}(\Omega; \mathbb{R}), \qquad T_{1}: L^{p}(\Omega; \mathbb{R}^{3}) \to W_{0}^{1,p}(\Omega; \mathbb{R}),$$

$$R_{2}: L^{p}(\Omega; \mathbb{R}^{3}) \to W^{1,p}(\Omega; \mathbb{R}^{3}), \qquad T_{2}: L^{p}(\Omega; \mathbb{R}^{3}) \to W_{0}^{1,p}(\Omega; \mathbb{R}^{3}),$$

$$R_{3}: L^{p}(\Omega; \mathbb{R}) \to W^{1,p}(\Omega; \mathbb{R}^{3}), \qquad T_{3}: L^{p}(\Omega; \mathbb{R}) \to W_{0}^{1,p}(\Omega; \mathbb{R}^{3}),$$

$$K_{1,2}: L^{p}(\Omega; \mathbb{R}^{3}) \to W^{1,p}(\Omega; \mathbb{R}^{3}), \qquad \text{and } L_{1,2}: L^{p}(\Omega; \mathbb{R}^{3}) \to W_{0}^{1,p}(\Omega; \mathbb{R}^{3})$$

satisfying

$$R_{2}\operatorname{curl} u + \nabla R_{1}u = u - K_{1}u \quad \forall u \in L^{p}(\Omega; \mathbb{R}^{3}) \text{ with } \operatorname{curl} u \in L^{p}(\Omega; \mathbb{R})$$

and $\operatorname{curl} K_{1}u = 0$ if $\operatorname{curl} u = 0$, (42)

$$R_{3}\operatorname{div} u + \operatorname{curl} R_{2}u = u - K_{2}u, \quad \forall u \in L^{p}(\Omega; \mathbb{R}^{3}) \text{ with } \operatorname{div} u \in L^{p}(\Omega; \mathbb{R})$$

and div $K_{2}u = 0$ if div $u = 0$, (43)

$$T_{2}\operatorname{curl} u + \nabla T_{1}u = u - L_{1}u, \quad \forall u \in L^{p}(\Omega; \mathbb{R}^{3}) \text{ with } \operatorname{curl} u \in L^{p}(\Omega; \mathbb{R}),$$
$$v \times u = 0 \text{ on } \partial\Omega \text{ and } \operatorname{curl} L_{1}u = 0 \text{ if } \operatorname{curl} u = 0,$$

$$(44)$$

$$T_{3}\operatorname{div} u + \operatorname{curl} T_{2}u = u - L_{2}u, \quad \forall u \in L^{p}(\Omega; \mathbb{R}^{3}) \text{ with } \operatorname{div} u \in L^{p}(\Omega; \mathbb{R}),$$
$$v \cdot u = 0 \text{ on } \partial\Omega \text{ and } \operatorname{div} L_{2}u = 0 \text{ if } \operatorname{div} u = 0.$$
(45)

With these potential operators (at this point, only the relations (43) and (45) are needed) and (41), it is easy to prove that (see, e.g., [30])

 $z(z\mathrm{Id} + B_T)^{-1}$ is bounded in H_D^p and in G_p for $p \in \left[\frac{6}{5}, 2\right]$ uniformly in $z \in \Sigma_{\pi-\theta}$ (46) where $H_D^p := \{u \in L^p(\Omega; \mathbb{R}^3) \text{ s.t. div } u = 0 \text{ and } v \cdot u = 0 \text{ on } \partial\Omega\}$ and $G_p := \nabla W^{1,p}(\Omega; \mathbb{R})$ are defined for $p \in (1, \infty)$; if p = 2, then $H_D^2 = H_D$ and $G_2 = G$ defined in Sect. 2. With the same reasoning, one can prove that

 $z(z\mathrm{Id} + B_N)^{-1}$ is bounded in H_N^p and in $G_{p,0}$ for $p \in \begin{bmatrix} 6\\ 5\\ 2 \end{bmatrix}$ uniformly in $z \in \Sigma_{\pi-\theta}$ (47) where $H_N^p := \{u \in L^p(\Omega; \mathbb{R}^3) \text{ s.t. div } u = 0\}$ and $G_{p,0} := \nabla W_0^{1,p}(\Omega; \mathbb{R})$ are defined for $p \in (1,\infty)$; if p = 2, then $H_N^2 = H_N$ and $G_{2,0} = G_0$ defined in Sect. 3. **Proposition 7.** The resolvents $\{z(zId + B_{T,N})^{-1}, z \in \Sigma_{\pi-\theta}\}$ are uniformly bounded in $L^p(\Omega; \mathbb{R}^3)$ for all $p \in (q'_0, q_0)$, where $q_0 := \min\{6, 3 + \varepsilon\}$ ($\varepsilon > 0$ depends on $\partial \Omega$).

Proof. By [19, Theorems 11.1 and 11.2], the projections defined in Sect. 2 and Sect. 3

 \mathbb{P} and \mathbb{P}_N extend to bounded projections on $L^p(\Omega; \mathbb{R}^3)$ for $p \in ((3 + \varepsilon)', 3 + \varepsilon)$,

(48) where $\varepsilon > 0$ depends on $\partial\Omega$ (and $(3 + \varepsilon)' = \frac{3+\varepsilon}{2+\varepsilon} < \frac{3}{2}$); if Ω is of class \mathscr{C}^{4} , then $\varepsilon = \infty$. This means in particular that H_{D}^{p} coincides with the space $L_{\sigma}^{p}(\Omega)$ defined in (6) for all $p \in ((3 + \varepsilon)', 3 + \varepsilon)$. Therefore for all $p \in (q'_{0}, 2]$, the resolvents $\{z(z\mathrm{Id} + B_{T,N})^{-1}, z \in \Sigma_{\pi-\theta}\}$ are uniformly bounded in $L^{p}(\Omega; \mathbb{R}^{3})$. The same result for all $p \in [2, q_{0})$ is obtained by duality.

Corollary 1. The semigroups $(e^{-tB_{T,N}})_{t\geq 0}$ extend to bounded analytic semigroups on $L^p(\Omega; \mathbb{R}^3)$ for $p \in (q'_0, q_0)$ and satisfy

$$\left\|\sqrt{t}\,\operatorname{div}\,(e^{-tB_{T,N}}\,f)\right\|_{p} \le C_{p}\|f\|_{p} \quad \left\|\sqrt{t}\,\operatorname{curl}\,(e^{-tB_{T,N}}\,f)\right\|_{p} \le C_{p}'\|f\|_{p} \tag{49}$$

$$\|t\nabla \operatorname{div}(e^{-tB_{T,N}}f)\|_{p} \le K_{p}\|f\|_{p} \quad \|t\operatorname{curl}\operatorname{curl}(e^{-tB_{T,N}}f)\|_{p} \le K_{p}'\|f\|_{p} \quad (50)$$

for all $f \in L^p(\Omega; \mathbb{R}^3)$.

Proof. The estimates (49) and (50) in the corollary above come from the fact that for $p \in (q'_0, q_0)$, the negative generators $B^p_{T,N}$ of the semigroups $(e^{-tB_{T,N}})_{t\geq 0}$ satisfy

$$\mathsf{D}(B^p_{T,N}) = \left\{ u \in L^p(\Omega; \mathbb{R}^3); \operatorname{div} u \in W^{1,p}(\Omega; \mathbb{R}^3), \operatorname{curl} u \in L^p(\Omega; \mathbb{R}^3), \right.$$

 $\operatorname{curl}\operatorname{curl} u \in L^p(\Omega; \mathbb{R}^3), \nu \cdot u = 0 \text{ and } \nu \times \operatorname{curl} u = 0 \text{ on } \partial\Omega \}$ (51)

$$B_{T,N}^p u = -\Delta u, \quad u \in \mathsf{D}(B_{T,N}^p).$$

This can be proved the same way we proved Proposition 5, (case p = 2) using the fact that \mathbb{P} and \mathbb{P}_N are bounded in $L^p(\Omega; \mathbb{R})$.

Remark 8. Let $w \in L^2(\Omega; \mathbb{R}^3)$ such that curl $w \in L^2(\Omega; \mathbb{R}^3)$ and $v \times w = 0$ on $\partial\Omega$. Then $v \cdot \text{curl } w = 0$ in $H^{-\frac{1}{2}}(\partial\Omega)$.

If the operator B_T is restriced on H_D and the operator B_N on H_N , the following Hodge-Stokes operators A_T and A_N defined by

$$\mathsf{D}(A_T) = \left\{ u \in H_D \cap W_T; \operatorname{curl}\operatorname{curl} u \in L^2(\Omega; \mathbb{R}^3) \text{ and } \nu \times \operatorname{curl} u = 0 \text{ on } \partial\Omega \right\}$$

$$A_T u = \operatorname{curl} \operatorname{curl} u \quad \text{for } u \in \mathsf{D}(A_T)$$

and

$$\mathsf{D}(A_N) = \left\{ u \in H_N \cap W_N; \operatorname{curl} \operatorname{curl} u \in L^2(\Omega; \mathbb{R}^3) \right\}$$
$$A_N u = \operatorname{curl} \operatorname{curl} u \quad \text{for } u \in \mathsf{D}(A_N)$$

are obtained. The construction of the Hodge-Stokes operators is strongly related to the particular Hodge boundary conditions. As seen in Sect. 2 and 3, this doesn't hold in general. The reason behind this is that the Helmholtz projection \mathbb{P} commutes with B_T and \mathbb{P}_N commutes with B_N . Remark 8 ensures that if $u \in D(A_T)$ as defined above, $v \cdot \text{curl curl } u = 0$ on $\partial\Omega$, so that curl curl $u \in H_D$.

The properties (46) and (47), together with a duality argument and the fact that the projections \mathbb{P} and \mathbb{P}_N are bounded on $L^p(\Omega; \mathbb{R}^3)$ for $p \in ((3 + \varepsilon)', 3 + \varepsilon)$, prove that $(e^{-tA_T})_{t\geq 0}$ extends to an analytic semigroup on H_D^p (its generator is denoted by $-A_{T,p}$) and $(e^{-tA_N})_{t\geq 0}$ extends to an analytic semigroup on H_N^p (its generator is denoted by $-A_{N,p}$) for all $p \in [\frac{6}{5}, q_0)$. Moreover, the estimates (49) and (50) are valid if $B_{T,N}$ is replaced by $A_{T,N}$ for all $p \in [\frac{6}{5}, q_0)$.

Lemma 5. If $u \in H_D^3$ and $\operatorname{curl} u \in L^3(\Omega; \mathbb{R}^3)$, then $u \in H_D^p$ for all $p \in [3, q_0)$.

Proof. Thanks to the relation (42),

$$u = \mathbb{P}u = \mathbb{P}(R_2 \operatorname{curl} u + K_1 u)$$

since $\mathbb{P}\nabla R_1 u = 0$. The mapping properties of R_2 and K_1 show that $R_2 \operatorname{curl} u + K_1 u \in L^3(\Omega, \mathbb{R}^3) \cap L^6(\Omega, \mathbb{R}^3)$, which proves the claim of the lemma. This has been done in, e.g., [35, Sections 3 and 4].

Remark 9. One can actually prove that the operator $-A_{T,p}$ generates an analytic semigroup in H_D^p for all $p \in (1, 3 + \varepsilon)$. The same holds for $-A_{N,p}$ on H_N^p . See [30] for more details.

Remark 10. In [54], M.E. Taylor conjectured that the Dirichlet-Stokes operator generates an analytic semigroup in H_D^p for $p \in ((3 + \varepsilon)', 3 + \varepsilon)$, which was proved in [51]. The question of optimality of this range is still open; the counterexample provided by P. Deuring in [14] is for p > 6. We see here that, for the Hodge-Stokes operator, one can allow all $p \in (1, 3 + \varepsilon)$.

4.2 The Nonlinear Hodge-Navier-Stokes Equations

The nonlinear Hodge-Navier-Stokes system ((NS'), (Hbc))

$$\begin{cases} \partial_t u - \Delta u + \nabla \pi - u \times \operatorname{curl} u = 0 & \text{in } (0, T) \times \Omega, \\ & \operatorname{div} u = 0 & \operatorname{in } (0, T) \times \Omega, \\ \nu \cdot u = 0, \quad \nu \times \operatorname{curl} u = 0 & \operatorname{on } (0, T) \times \partial \Omega, \\ & u(0) = u_0 & \operatorname{in } \Omega, \end{cases}$$

is considered for initial data u_0 in the critical space H_D^3 in the abstract form:

$$u'(t) + A_{T,p}u(t) - \mathbb{P}(u(t) \times \operatorname{curl} u(t)) = 0, \quad u_0 \in H_D^3.$$
(52)

The idea to solve (52) is to apply the same method as in Sect. 2 and 3.

With the properties of the Hodge-Stokes semigroup listed in the previous subsection (and more particularly Lemma 5), the following existence result for (52) is almost immediate. For $T \in (0, \infty]$, define the space \mathscr{G}_T by

$$\mathscr{G}_{T} = \left\{ u \in \mathscr{C}_{b}([0,T); H_{D}^{3}) \cap \mathscr{C}((0,T); H_{D}^{3(1+\delta)}); \operatorname{curl} u \in \mathscr{C}((0,T); L^{3}(\Omega, \mathbb{R}^{3})) \right.$$

with $\sup_{0 < s < T} \left(\| s^{\frac{\delta}{2(1+\delta)}} u(s) \|_{3(1+\delta)} + \| \sqrt{s} \operatorname{curl} u(s) \|_{3} \right) < \infty \right\}$

endowed with the norm

$$\|u\|_{\mathscr{G}_T} = \sup_{0 < s < T} \left(\|u(s)\|_3 + \|s^{\frac{\delta}{2(1+\delta)}}u(s)\|_{3(1+\delta)} + \|\sqrt{s}\operatorname{curl} u(s)\|_3 \right),$$

where $0 < \delta < \frac{\varepsilon}{3}$ ($\varepsilon > 0$ coming from (48)).

Theorem 6. Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and let $u_0 \in H_D^3$. Let γ and Φ be defined by

$$\gamma(t) = e^{-tA_{T,p}}u_0, \quad t \ge 0,$$

and for $u, v \in \mathcal{G}_T$, and $t \in (0, T)$,

$$\Phi(u,v)(t) = \int_0^t e^{-(t-s)A_{T,3/2}} \left(\frac{1}{2}\mathbb{P}\right) \left((u(s) \times \operatorname{curl} v(s) + v(s) \times \operatorname{curl} u(s) \right) \mathrm{d}s.$$

- (i) If $||u_0||_3$ is small enough, then there exists a unique $u \in \mathscr{G}_{\infty}$ solution of $u = \gamma + \Phi(u, u)$.
- (ii) For all $u_0 \in H_D^3$, there exists T > 0 and a unique $u \in \mathscr{G}_T$ solution of $u = \gamma + \Phi(u, u)$.

For a complete proof of this theorem, we refer to [35, Section 5].

5 Robin Boundary Conditions

As studied in [5], the system ((NS'), (Rbc)) can also be considered. See also [22, 38, 46, 52]. Recently, this has also been investigated in an L^2 -setting for smooth domains Ω but with the friction coefficient α replaced by a (time-dependent) matrix $[0, T] \times \partial \Omega \ni (t, x) \mapsto \beta(t, x) \in \mathcal{M}_3(\mathbb{R})$ with $L_{t,x}^{\infty}$ coefficients, admitting $\nu(x)$ as eigenvector for almost every (t, x); see [43]. It is also worth mentioning that the material here is part of a project with Jürgen Saal [44]. In the following, consider $\alpha \ge 0$ a constant. Note that the proofs in this section go through if $\alpha : \partial \Omega \to [0, \infty)$ is an L^{∞} -function.

5.1 The Robin-Hodge-Laplacian

Recall the notations at the beginning of Sect. 4.1: $H = L^2(\Omega; \mathbb{R}^3)$ and

$$W_T := \{ u \in H ; \operatorname{curl} u \in H, \operatorname{div} u \in L^2(\Omega; \mathbb{R}) \text{ and } v \cdot u = 0 \text{ on } \partial \Omega \}$$

On $W_T \times W_T$, define the form:

 $b_{\alpha}: W_T \times W_T \to \mathbb{R}, \quad b_{\alpha}(u, v) = \langle \operatorname{curl} u, \operatorname{curl} v \rangle_{\Omega} + \langle \operatorname{div} u, \operatorname{div} v \rangle_{\Omega} + \langle \alpha u, v \rangle_{\partial \Omega}.$

Recall that according to (36), any $u \in W_T$ admits an L^2 -trace on $\partial\Omega$, so that $\langle \alpha u, v \rangle_{\partial\Omega}$ makes sense for every $u, v \in W_T$.

Remark 11. The previous property holds also in L^p , $1 , provided <math>\Omega$ is of class \mathscr{C}^1 . More precisely, any $u \in L^p(\Omega, \mathbb{R}^3)$ with curl $u \in L^p(\Omega, \mathbb{R}^3)$, div $u \in L^p(\Omega, \mathbb{R})$, and $v \cdot u = 0$ on $\partial\Omega$ admits an L^p -trace on $\partial\Omega$ which satisfies

$$||u|_{\partial\Omega}||_{L^{p}(\partial\Omega;\mathbb{R}^{3})} \leq C(||u||_{p} + ||\operatorname{curl} u||_{p} + ||\operatorname{div} u||_{p}).$$

See, e.g., [33, Proposition 6.2]: in the case of a \mathscr{C}^{4} domain Ω , the exponent q_{Ω} in that result (related to the solvability of the Poisson problem for Neumann boundary data and the regularity of the Poisson problem for Dirichlet boundary data) is equal to ∞ .

The form b_{α} is continuous, bilinear, symmetric, coercive, and sectorial, so that the associated operator B_{α} on H is self-adjoint; $-B_{\alpha}$ generates an analytic semigroup of contractions and $D(B_{\alpha}^{1/2}) = W_T$. The operator B_{α} is called the Hodge-Robin-Laplacian. It has the following description:

$$\mathsf{D}(B_{\alpha}) = \left\{ u \in W_T; \nabla \operatorname{div} u \in H, \operatorname{curl} \operatorname{curl} u \in H \text{ and } \nu \times \operatorname{curl} u = \alpha \ u \text{ on } \partial \Omega \right\}$$
$$B_{\alpha}u = -\Delta u, \quad u \in \mathsf{D}(B_{\alpha}).$$
(53)

Remark that for $u \in W_T$, $u_{|\partial\Omega} \in L^2(\partial\Omega; \mathbb{R}^3)$ and if moreover curl curl $u \in H$, the tangential vector field $v \times \operatorname{curl} u$ belongs to $H^{-\frac{1}{2}}(\partial\Omega; \mathbb{R}^3)$. Therefore, the identity $v \times \operatorname{curl} u = \alpha u$ above holds in $H^{-\frac{1}{2}}(\partial\Omega; \mathbb{R}^3)$. The proof of (53) follows the lines of the proof of Proposition 5, thanks to the following result (see, e.g., [43, Lemma 2.3], inspired by [33, Proof of Proposition 2.4 (iii)]) of which we also give the proof.

Lemma 6. 1. Let $g \in L^2(\partial\Omega, \mathbb{R}^3)$. Then there exists $w \in H$ with curl $w \in H$ such that for all $\phi \in W_T$

$$\langle g, \phi \rangle_{\partial\Omega} = \langle \operatorname{curl} w, \phi \rangle_{\Omega} - \langle w, \operatorname{curl} \phi \rangle_{\Omega}.$$
 (54)

Moreover, there exists C > 0 such that

$$\|w\|_{H} + \|\operatorname{curl} w\|_{H} \le C \|g\|_{L^{2}(\partial\Omega,\mathbb{R}^{3})}.$$
(55)

- 2. If in addition $g \in L^2_{tan}(\partial\Omega; \mathbb{R}^3)$ (which means that $g \in L^2(\partial\Omega; \mathbb{R}^3)$ and $v \cdot g = 0$ on $\partial\Omega$), then there exists $w \in H$ such that $\operatorname{curl} w \in H$ and (54) holds for all $\phi \in H^1(\Omega)$. And in that case $g = v \times w$ in $H^{-1/2}(\partial\Omega; \mathbb{R}^3)$.
- *Proof.* 1. Define the space $X := \{(\phi, \operatorname{curl} \phi); \phi \in W_T\}$. It is a subspace of $H \times H$. As already mentioned, every $\phi \in W_T$ admits an L^2 -trace at the boundary $\partial\Omega$ and therefore $\nu \times \phi \in L^2(\partial\Omega; \mathbb{R}^3)$ for all $\phi \in W_T$. Since $g \in L^2(\partial\Omega; \mathbb{R}^3)$, it is immediate that $\nu \times g \in L^2(\partial\Omega; \mathbb{R}^3) = (L^2(\partial\Omega; \mathbb{R}^3))'$. Thus, $\nu \times g$ acts as a linear functional on X as follows:

$$(\nu \times g)(\phi, \operatorname{curl} \phi) := \langle \nu \times g, \nu \times \phi \rangle_{\partial\Omega}$$
 for all $\phi \in W_T$.

By the Hahn-Banach theorem, there exist $(v_1, v_2) \in H \times H$ such that

$$(v \times g)(\phi, \operatorname{curl} \phi) = \langle v_1, \operatorname{curl} \phi \rangle_{\Omega} + \langle v_2, \phi \rangle_{\Omega}$$
 for all $\phi \in W_T$

where $(H \times H)'$ has been identified with $H \times H$. Choose $\phi \in H_0^1(\Omega; \mathbb{R}^3) \subset W_T$ and obtain that

$$0 = {}_{H^{-1}} \langle \operatorname{curl} v_1 + v_2, \phi \rangle_{H^{-1}}$$

This gives that $\operatorname{curl} v_1 + v_2 = 0$ in $H^{-1}(\Omega; \mathbb{R}^3)$. Set $w := -v_1 \in H$, so that $\operatorname{curl} w = v_2 \in H$. Moreover,

$$\langle v \times g, v \times \phi \rangle_{\partial\Omega} = -\langle w, \operatorname{curl} \phi \rangle_{\Omega} + \langle \operatorname{curl} w, \phi \rangle_{\Omega} \text{ for all } \phi \in W_T.$$
 (56)

Since $\phi \in W_T$, $\phi_{|_{\partial\Omega}} \in L^2_{tan}(\partial\Omega, \mathbb{R}^3)$, and it is clear that $\phi = (\nu \times \phi) \times \nu$, so that the left-hand side of (56) coincides with

$$\langle g, \phi \rangle_{\partial\Omega} \quad \text{for all } \phi \in W_T,$$
 (57)

which proves (54).

The existence of C > 0 such that (55) holds follows from the closed graph theorem since $\{u \in H; \operatorname{curl} u \in H\}$ is complete for the norm $||u||_2 + ||\operatorname{curl} u||_2$.

2. Assume now that $g \in L^2_{tan}(\partial\Omega; \mathbb{R}^3)$. Let $w \in H$ such that $\operatorname{curl} w \in H$ and (54) holds. Since $v \times g \in L^2(\partial\Omega; \mathbb{R}^3)$, we can approach it in $L^2(\partial\Omega; \mathbb{R}^3)$ by a sequence $(\varphi_n)_{n \in \mathbb{N}}$ of vector fields $\varphi_n \in H^{1/2}(\partial\Omega, \mathbb{R}^3)$. In particular,

$$\varphi_n \times \nu \longrightarrow (\nu \times g) \times \nu = g \text{ in } L^2(\partial \Omega; \mathbb{R}^3) \text{ as } n \to \infty$$

By assertion 1, for each $n \in \mathbb{N}$, there exists $w_n \in H$ such that $\operatorname{curl} w_n \in H$ satisfying

$$\langle \varphi_n \times \nu, \phi \rangle_{\partial\Omega} = \langle \operatorname{curl} w_n, \phi \rangle_{\Omega} - \langle w_n, \operatorname{curl} \phi \rangle_{\Omega}$$
 for all $\phi \in W_T$.

Thanks to the estimate (55), it is immediate that

$$w_n \xrightarrow[n \to \infty]{} w$$
 and $\operatorname{curl} w_n \xrightarrow[n \to \infty]{} \operatorname{curl} w$ in H .

Let now $\phi \in H^1(\Omega; \mathbb{R}^3)$. For $\varepsilon > 0$, let $\phi_{\varepsilon} = (1 + \varepsilon B_T)^{-1} \phi$. Then $\phi_{\varepsilon} \in W_T$, and thanks to Lemma 4,

$$\phi_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \phi$$
 and $\operatorname{curl} \phi_{\varepsilon} = (1 + \varepsilon B_N)^{-1} \operatorname{curl} \phi \xrightarrow[\varepsilon \to 0]{} \operatorname{curl} \phi$ in *H*.

This implies also that

$$\nu \times \phi_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \nu \times \phi \quad \text{in } H^{-1/2}(\partial \Omega; \mathbb{R}^3).$$

Therefore, for all $\varepsilon > 0$ and $n \in \mathbb{N}$

$$\langle v \times \phi_{\varepsilon}, \varphi_n \rangle_{\partial \Omega} = \langle \varphi_n \times v, \phi_{\varepsilon} \rangle_{\partial \Omega} = \langle \operatorname{curl} w_n, \phi_{\varepsilon} \rangle_{\Omega} - \langle w_n, \operatorname{curl} \phi_{\varepsilon} \rangle_{\Omega}.$$

First take the limit as ε goes to 0 and obtain (recall that $\varphi_n \in H^{1/2}(\partial\Omega; \mathbb{R}^3)$)

$$_{H^{-1/2}}\langle v \times \phi, \varphi_n \rangle_{H^{1/2}} = \langle \operatorname{curl} w_n, \phi \rangle_{\Omega} - \langle w_n, \operatorname{curl} \phi \rangle_{\Omega}$$

Since $\phi \in H^1(\Omega, \mathbb{R}^3)$, the first term of the latter equation is also equal to $\langle \varphi_n \times \nu, \phi \rangle_{\partial\Omega}$. Taking the limit as *n* goes to ∞ yields

$$\langle g, \phi \rangle_{\partial \Omega} = \langle \operatorname{curl} w, \phi \rangle_{\Omega} - \langle w, \operatorname{curl} \phi \rangle_{\Omega}$$

which proves the claim made in 2.

Remark 12. If Ω is of class \mathscr{C}^{1} , one can prove that Lemma 6 is also valid in L^{p} instead of L^{2} for all $p \in (1, \infty)$, identifying the dual of L^{p} with $L^{p'}$ (noting that q_{0} defined in Proposition 7 is equal to ∞).

Proof of (53). For the time being, denote by D_{α} the set on the right-hand side of (53). Let $u \in D_{\alpha}$: $\Delta u = -\text{curl curl } u + \nabla \text{div } u \in H$, and for all $v \in W_T \cap H^1(\Omega; \mathbb{R}^3)$,

$$\begin{aligned} \langle -\Delta u, v \rangle_{\Omega} &= \langle \operatorname{curl} \operatorname{curl} u, v \rangle_{\Omega} - \langle \nabla \operatorname{div} u, v \rangle_{\Omega} \\ &= \langle \operatorname{curl} u, \operatorname{curl} v \rangle_{\Omega} + \langle v \times \operatorname{curl} u, v \rangle_{\partial\Omega} + \langle \operatorname{div} u, \operatorname{div} v \rangle_{\Omega} \\ &= \langle \operatorname{curl} u, \operatorname{curl} v \rangle_{\Omega} + \langle \operatorname{div} u, \operatorname{div} v \rangle_{\Omega} + \alpha \langle u, v \rangle_{\partial\Omega} \\ &= b_{\alpha}(u, v). \end{aligned}$$

The second equality comes from the integration by parts formula. In the third equality, the characterization of elements in D_{α} has been used. Thanks to the density of $W_T \cap H^1(\Omega; \mathbb{R}^3)$ in W_T , this proves the inclusion $D_{\alpha} \subseteq D(B_{\alpha})$ and that $B_{\alpha}u = -\Delta u$ for $u \in D_{\alpha}$.

Conversely, let $u \in D(B_{\alpha})$. Let $\eta = -B_{\alpha}u \in H$, $g = \alpha u$. Since $u_{|\partial\Omega|} \in L^2_{tan}(\partial\Omega; \mathbb{R}^3)$, Lemma 6 shows the existence of $w \in H$ with curl $w \in H$ such that $\alpha u = v \times w$ on $\partial\Omega$. Therefore, the boundary value $g = \alpha u$ satisfies the conditions of [33, Theorem 1.2] with p = 2. Then there exists a unique \tilde{u} satisfying

$$\begin{cases} \tilde{u} \in W_T, \operatorname{curl}\operatorname{curl}\tilde{u} \in H, \operatorname{div}\tilde{u} \in H^1(\Omega), \\ \Delta \tilde{u} = \eta \in H, \\ \nu \times \operatorname{curl}\tilde{u} = g \in H^{-1/2}(\partial\Omega; \mathbb{R}^3), \end{cases}$$
(58)

For all $v \in W_T$, integrating by parts,

$$\langle \operatorname{curl} \tilde{u}, \operatorname{curl} v \rangle_{\Omega} + \langle \operatorname{div} \tilde{u}, \operatorname{div} v \rangle_{\Omega} = \langle -\Delta \tilde{u}, v \rangle_{\Omega} - \langle v \times \operatorname{curl} \tilde{u}, v \rangle_{\partial\Omega} = \langle -\eta, v \rangle_{\Omega} - \langle g, v \rangle_{\partial\Omega} = \langle B_{\alpha} u, v \rangle_{\Omega} - \langle \alpha u, v \rangle_{\partial\Omega} = b_{\alpha} (u, v) - \alpha \langle u, v \rangle_{\partial\Omega} = \langle \operatorname{curl} u, \operatorname{curl} v \rangle_{\Omega} + \langle \operatorname{div} u, \operatorname{div} v \rangle_{\Omega},$$

The second equality comes from the fact that \tilde{u} is the solution of (58). The third equality is a simple reformulation of the previous line using the notations introduced before. The fourth equality uses the fact that B_{α} is the operator associated with the form b_{α} . Finally, the last equality comes directly from the definition of b_{α} . Therefore, we proved that $v = u - \tilde{u} \in W_T$ and satisfies curl v = 0 and div v = 0. Since Ω is simply connected, this proves that v = 0, or equivalently $u = \tilde{u}$, and then that $u \in D_{\alpha}$ from which follows the inclusion $D(B_{\alpha}) \subseteq D_{\alpha}$.

Ultimately, it has been proved that $D(B_{\alpha}) = D_{\alpha}$.

As in the case of Proposition 6, Gaffney-type estimates hold.

Proposition 8. There exist two constants C, c > 0 such that for any open sets $E, F \subset \mathbb{R}^3$ such that dist (E, F) > 0 and for all t > 0, $f \in H$ and

$$u = (\mathrm{Id} + t^2 B_{\alpha})^{-1} (\mathbb{1}_F f),$$

it holds

 $\| \mathbb{1}_{E} u \|_{2} + t \| \mathbb{1}_{E} \operatorname{div} u \|_{2} + t \| \mathbb{1}_{E} \operatorname{curl} u \|_{2} + t \sqrt{\alpha} \| \mathbb{1}_{E} u \|_{L^{2}(\partial\Omega;\mathbb{R}^{3})} \leq C e^{-c \frac{\operatorname{dist}(E,F)}{t}} \| \mathbb{1}_{F} f \|_{2}.$ (59)

Proof. The proof goes as in the case $\alpha = 0$ (Proposition 6 for B_T). Choose a smooth cutoff function $\xi : \mathbb{R}^3 \to \mathbb{R}$ satisfying $\xi = 1$ on $E, \xi = 0$ on F, and $\|\nabla \xi\|_{\infty} \leq \frac{k}{\operatorname{dist}(E,F)}$. Then define $\eta = e^{\delta \xi}$ where $\delta > 0$ is to be chosen later. Next, take the scalar product of the equation:

$$u - t^2 \Delta u = \mathbb{1}_F f, \quad u \in \mathsf{D}(B_\alpha)$$

with the function $v = \eta^2 u$. Since $\eta = 1$ on F and $||u||_2 \le ||\mathbf{1}|_F f||_2$, it is easy to check then that

$$\|\eta u\|_{2}^{2} + t^{2} \|\eta \operatorname{div} u\|_{2}^{2} + t^{2} \|\eta \operatorname{curl} u\|_{2}^{2} + t^{2} \alpha \|\eta u\|_{L^{2}(\partial\Omega;\mathbb{R}^{3})}^{2}$$

$$\leq \|\mathbf{1}_{F} f\|_{2}^{2} + 2\alpha \|\nabla \xi\|_{\infty} t^{2} \|\eta u\|_{2} (\|\eta \operatorname{div} u\|_{2} + \|\eta \operatorname{curl} u\|_{2})$$

and therefore, using the estimate on $\|\nabla \xi\|_{\infty}$ and choosing $\delta = \frac{\operatorname{dist}(E,F)}{4kt}$,

$$\|\eta u\|_{2}^{2} + t^{2} \|\eta \operatorname{div} u\|_{2}^{2} + t^{2} \|\eta \operatorname{curl} u\|_{2}^{2} + t^{2} \alpha \|\eta u\|_{L^{2}(\partial\Omega;\mathbb{R}^{3})}^{2} \leq 2 \|\mathbb{1}_{F} f\|_{2}^{2}.$$

Using now the fact that $\eta = e^{\delta}$ on E,

$$\|1\!\!1_E u\|_2 + t \|1\!\!1_E \operatorname{div} u\|_2 + t \|1\!\!1_E \operatorname{curl} u\|_2 + t \sqrt{\alpha} \|1\!\!1_E u\|_{L^2(\partial\Omega;\mathbb{R}^3)} \le \sqrt{2}e^{-\frac{\operatorname{dist}(E,F)}{4k_I}} \|1\!\!1_F f\|_2$$

which gives (59) with $C = \sqrt{2}$ and $c = \frac{1}{4k}$.

As before, with a slight modification of the proof, it can be shown that for all $\theta \in (0, \pi)$ there exist two constants C, c > 0 such that for any open sets $E, F \subset \mathbb{R}^3$ such that dist (E, F) > 0 and for all $z \in \Sigma_{\pi-\theta} = \{\omega \in \mathbb{C} \setminus \{0\}; |\arg z| < \pi - \theta\}, f \in H$ and

$$u = (z \mathrm{Id} + B_{\alpha})^{-1} (\mathbb{1}_F f),$$

it holds

 $|z| \| \mathbb{1}_{E} u \|_{2} + |z|^{\frac{1}{2}} \| \mathbb{1}_{E} \operatorname{div} u \|_{2} + |z|^{\frac{1}{2}} \| \mathbb{1}_{E} \operatorname{curl} u \|_{2}$ $+ |z|^{\frac{1}{2}} \sqrt{\alpha} \| \mathbb{1}_{E} u \|_{L^{2}(\partial\Omega;\mathbb{R}^{3})} \leq C \ e^{-c \operatorname{dist}(E,F)|z|^{\frac{1}{2}}} \| \mathbb{1}_{F} f \|_{2}.$ (60)

With the same arguments as for the Hodge-Laplacian, the analogue of Proposition 7 and Corollary 1 can be obtained, as well as (51) for B_{α} : for all $p \in (q'_0, q_0)$:

$$\{z(z\mathrm{Id} + B_{\alpha})^{-1}, z \in \Sigma_{\pi-\theta}\}$$
 is uniformly bounded in $L^{p}(\Omega; \mathbb{R}^{3});$ (61)

$$(e^{-tB_{\alpha}})_{t\geq 0}$$
 extends to a bounded analytic semigroup on $L^{p}(\Omega; \mathbb{R}^{3})$; (62)

$$\|\sqrt{t}\operatorname{div}(e^{-tB_{\alpha}}f)\|_{p} \le C_{p}\|f\|_{p}, \quad \|\sqrt{t}\operatorname{curl}(e^{-tB_{\alpha}}f)\|_{p} \le C_{p}'\|f\|_{p};$$
 (63)

$$\left\| t\nabla \operatorname{div}\left(e^{-tB_{\alpha}}f\right)\right\|_{p} \leq K_{p} \|f\|_{p}, \quad \left\| t\operatorname{curl}\operatorname{curl}\left(e^{-tB_{\alpha}}f\right)\right\|_{p} \leq K_{p}^{\prime} \|f\|_{p}.$$
(64)

Moreover, if Ω is of class \mathscr{C}^{1} , the following description of $B_{\alpha,p}$, the negative generator of $(e^{-tB_{\alpha}})_{t\geq 0}$ in $L^{p}(\Omega; \mathbb{R}^{3})$ holds:

$$\mathsf{D}(B_{\alpha,p}) = \left\{ u \in L^p(\Omega; \mathbb{R}^3); \operatorname{div} u \in W^{1,p}(\Omega; \mathbb{R}^3), \operatorname{curl} u \in L^p(\Omega; \mathbb{R}^3), \operatorname{curl} u \in L^p(\Omega; \mathbb{R}^3), v \cdot u = 0 \text{ and } v \times \operatorname{curl} u = \alpha u \text{ on } \partial\Omega \right\}$$
(65)

$$B_{\alpha,p}u = -\Delta u, \quad u \in \mathsf{D}(B_{\alpha,p}),$$

To prove that, the result in Remark 6 has been used, as well as the solvability of (58) in L^p for p in the interval $((3 + \varepsilon)', 3 + \varepsilon) = (1, \infty)$ in that case ([33, Theorem 1.2] is also valid in this range of p).

5.2 The Robin-Hodge-Stokes Operator

From now on, assume that Ω is of class \mathscr{C}^{1} . Let $p \in (1, \infty)$. Let $g \in L^{p}(\Omega; \mathbb{R}^{3})$, with div g = 0. By Remark 1 (also valid for $p \in (1, \infty)$ with the obvious changes), it holds $\nu \cdot g \in B_{p,p}^{-1/p}(\partial \Omega)$ and also $\nu \cdot g$ satisfies the condition $B_{p,p}^{-1/p}(\partial \Omega) \langle \nu \cdot g, 1 \rangle_{B_{p',p'}^{1/p}(\partial \Omega)} = 0$. By [19, Corollary 9.3], the problem

$$q \in W^{1,p}(\Omega), \quad \Delta q = 0 \text{ in } \Omega, \quad \partial_{\nu}q = \nu \cdot g \text{ on } \partial\Omega$$
(66)

has a unique (modulo constants) solution satisfying moreover

$$\|\nabla q\|_p \lesssim \|\nu \cdot g\|_{B^{-1/p}_{p,p}(\partial\Omega)}.$$
(67)

Consider the operator

$$\Gamma_p: \mathsf{D}(B_{\alpha,p}) \longrightarrow W^{1,p}(\Omega), \quad u \longmapsto q$$

where q is the solution of (66) with g = -curl curl u.

Lemma 7. For $p \in (1, \infty)$, $u \in D(B_{\alpha, p})$, the following estimate holds

$$\|\nabla \Gamma_p u\|_p \lesssim \alpha \big(\|\operatorname{curl} u\|_p + \|\operatorname{div} u\|_p \big).$$
(68)

Proof. Let $p \in (1, \infty)$ and $u \in D(B_{\alpha,p})$. Let $\varphi \in B_{p',p'}^{1/p}(\partial\Omega)$. Let $\Phi \in W^{1,p'}(\Omega)$, so that $\Phi_{|\partial\Omega} = \varphi$ (recall that $\frac{1}{p} = 1 - \frac{1}{p'}$). Thanks to the description of $D(B_{\alpha,p})$ given by (65) and the formula (34) (also valid in L^p), there holds

$${}_{B^{-1/p}_{p,p}(\partial\Omega)} \langle v \cdot \operatorname{curl} \operatorname{curl} u, \varphi \rangle_{B^{1/p}_{p',p'}(\partial\Omega)} = \langle \operatorname{curl} \operatorname{curl} u, \nabla \Phi \rangle_{\Omega} = \langle v \times \operatorname{curl} u, \nabla \Phi \rangle_{\partial\Omega}$$
$$= \alpha \, \langle u, \nabla \Phi \rangle_{\partial\Omega} = \alpha \, \langle \operatorname{curl} w, \nabla \Phi \rangle_{\Omega},$$

where $w \in L^p(\Omega; \mathbb{R}^3)$ with curl $w \in L^p(\Omega; \mathbb{R}^3)$ is determined by Lemma 6, 2 (for g = u; see Remark 6). Therefore by Remark 11,

$$\begin{aligned} \|v \cdot \operatorname{curl} \operatorname{curl} u\|_{B^{-1/p}_{p,p}(\partial\Omega)} &\leq C \|\operatorname{curl} w\|_p \leq C \|u\|_{L^p(\partial\Omega;\mathbb{R}^3)} \\ &\leq C \left(\|u\|_p + \|\operatorname{curl} u\|_p + \|\operatorname{div} u\|_p\right). \end{aligned}$$

Since Ω is bounded, $||u||_p$ can be estimated in terms of $||\operatorname{curl} u||_p$ and $||\operatorname{div} u||_p$, which gives (68).

Next result links the operator Γ_p and $B_{\alpha,p}$ with the Robin-Hodge-Stokes resolvent problem for $z \in \Sigma_{\pi-\theta}$:

$$\begin{cases} zu - \Delta u + \nabla q = f & \text{in } \Omega, \\ \text{div } u = 0 & \text{in } \Omega, \\ v \cdot u = 0, \ v \times \text{curl } u = \alpha u & \text{on } \partial\Omega. \end{cases}$$
(69)

Proposition 9. Let $p \in (1, \infty)$. Let $z \in \Sigma_{\pi-\theta}$ and $f \in H_D^p$. Then $(u,q) \in D(B_{\alpha,p}) \times W^{1,p}(\Omega)$ is a solution of (69) if, and only if, $u \in D(B_{\alpha,p}) \cap H_D^p$ satisfies $zu - \Delta u + \nabla \Gamma_p u = f$ and in that case $q = \Gamma_p u$.

Proof. \Rightarrow : Assume that $(u, q) \in D(B_{\alpha, p}) \times W^{1, p}(\Omega)$ is a solution of (69). Applying the divergence to the first equation of (69) and using the fact that div u = 0, there holds $\Delta \pi = 0$. Moreover, taking the normal component at the boundary of the same equation, $\partial_{\nu}q = \nu \cdot \Delta u = -\nu \cdot \text{curl curl } u$ (recall that, since $f \in H_D^p$, $\nu \cdot f = 0$ on $\partial \Omega$) and therefore q satisfies (66) with g = -curl curl u, which implies by definition of Γ_p that $q = \Gamma_p u$. This shows that $u \in D(B_{\alpha,p}) \cap$ H_D^p and satisfies $zu - \Delta u + \nabla \Gamma_p u = f$.

 $⇐: Conversely, let <math>u \in \mathsf{D}(B_{\alpha,p}) \cap H_D^p$ satisfying $zu - \Delta u + \nabla \Gamma_p u = f$ and define $v := \operatorname{div} u \in W^{1,p}(\Omega)$. Then v satisfies $zv - \Delta v = 0$ in Ω: apply the divergence to $zu - \Delta u + \nabla \Gamma_p u = f$ and remark that div f = 0 and div $\nabla \Gamma_p u = \Delta \Gamma_p u = 0$. Moreover, taking the normal component of $zu - \Delta u + \nabla \Gamma_p u = f$ at the boundary, $-\partial_v v + v \cdot \operatorname{curl} \operatorname{curl} u + \partial_v \Gamma_p u = 0$ on $\partial \Omega$ (we wrote $-\Delta u = -\nabla v + \operatorname{curl} \operatorname{curl} u$), and therefore $\partial_v v = 0$ on $\partial \Omega$. Uniqueness of the Neumann problem for the Laplacian,

$$(zv - \Delta v = 0 \text{ in } \Omega \quad \text{and} \quad \partial_v v = 0 \text{ on } \partial \Omega) \Longrightarrow (v = 0)$$

shows that v = div u = 0. Therefore, $(u, \Gamma_p u) \in \mathsf{D}(B_{\alpha, p}) \times W^{1, p}(\Omega)$ is a solution of (69).

Proposition 9 allows to define the part of $B_{\alpha,p}$ in H_D^p . In this case, the pressure term $\nabla \Gamma_p u$ appears as a small perturbation of the main term given by $-\Delta u$. This happened already in the case of Hodge boundary conditions ($\alpha = 0$): $\nabla \Gamma_p u = 0$; see (68) and the comment Sect. 4 after the definitions of A_T and A_N .

Definition 3. Let $p \in (1, \infty)$. The Robin-Hodge-Stokes operator denoted by $A_{\alpha,p}$ is an unbounded operator in H_D^p defined by

$$\mathsf{D}(A_{\alpha,p}) = \mathsf{D}(B_{\alpha,p}) \cap H_D^p, \qquad A_{\alpha,p}u = -\Delta u + \nabla \Gamma_p u, \quad u \in \mathsf{D}(A_{\alpha,p}).$$
(70)

Remark 13. If p = 2, it is easy to see that $A_{\alpha,2}$ is the operator associated with the continuous, bilinear, symmetric, coercive form a_{α} defined as follows:

$$a_{\alpha}: (W_T \cap H_D) \times (W_T \cap H_D) \to \mathbb{R}, \quad a_{\alpha}(u, v) := \langle \operatorname{curl} u, \operatorname{curl} v \rangle_{\Omega} + \langle \alpha u, v \rangle_{\partial \Omega}.$$

Therefore, $A_{\alpha,2}$ is self-adjoint, and $-A_{\alpha,2}$ is the generator of an analytic semigroup of contractions in H_D .

Lemma 8. Let
$$p \in [2, \infty)$$
 and $u \in \mathsf{D}(A_{\alpha, p})$. Then $u \in L^{\frac{9p}{4}}(\Omega; \mathbb{R}^3)$.

Proof. By definition, if $u \in D(A_{\alpha,p})$, then $u, \operatorname{curl} u \in L^p(\Omega; \mathbb{R}^3)$, div $u = 0 \in L^p(\Omega)$, and $v \cdot u = 0$ on $\partial\Omega$. By [32, Theorem 11.2] (note that $B_{p,p}^{1/p} \hookrightarrow L^{\frac{3p}{2}}$ in dimension 3), there holds $u \in L^{\frac{3p}{2}}(\Omega; \mathbb{R}^3)$. Apply the same reasoning to curl u: curl u, curl curl $u \in L^p(\Omega; \mathbb{R}^3)$, div curl $u = 0 \in L^p(\Omega)$, and $v \times \operatorname{curl} u = \alpha u \in L^p(\partial\Omega; \mathbb{R}^3)$, so that curl $u \in L^{\frac{3p}{2}}(\Omega; \mathbb{R}^3)$. Using again that $v \cdot u = 0$ on $\partial\Omega$, there holds $u \in L^{\frac{2p}{4}}(\Omega; \mathbb{R}^3)$.

Theorem 7. For all $p \in (1, \infty)$, the operator $-A_{\alpha,p}$ generates an analytic semigroup in H_D^p satisfying the estimates

$$\left\|\sqrt{t}\operatorname{curl}\left(e^{-tA_{\alpha,p}}f\right)\right\|_{p} \leq C_{p}\|f\|_{p} \quad and \quad \left\|t\operatorname{curl}\operatorname{curl}\left(e^{-tA_{\alpha,p}}f\right)\right\|_{p} \leq K_{p}\|f\|_{p},$$
(71)
for all $f \in H_{D}^{p}$ and all $t > 0$ if $p \geq 2$.

Proof. Let $z \in \Sigma_{\pi-\theta}$. By Proposition 9,

$$(z\mathrm{Id} + A_{\alpha,p}) = (\mathrm{Id} - \nabla \Gamma_p (z\mathrm{Id} + B_{\alpha,p})^{-1})(z\mathrm{Id} + B_{\alpha,p}).$$

Lemma 7 and (63) imply that for all $f \in L^p(\Omega; \mathbb{R}^3)$,

$$\begin{aligned} \|\nabla\Gamma_p(z\mathrm{Id} + B_{\alpha,p})^{-1}f\|_p &\lesssim \alpha \left(\|\mathrm{curl}\,(z\mathrm{Id} + B_{\alpha,p})^{-1}f\|_p + \|\mathrm{div}\,(z\mathrm{Id} + B_{\alpha,p})^{-1}f\|_p\right) &\leq C \frac{\alpha}{\sqrt{|z|}} \|f\|_p. \end{aligned}$$

This proves that, for |z| large enough $(|z| \ge 4C^2\alpha^2)$, $zId + A_{\alpha,p} : D(A_{\alpha,p}) \to H_D^p$ is invertible with

$$(z\mathrm{Id} + A_{\alpha,p})^{-1} = (z\mathrm{Id} + B_{\alpha,p})^{-1} \big(\mathrm{Id} - \nabla\Gamma_p(z\mathrm{Id} + B_{\alpha,p})^{-1}\big)^{-1}$$

and

$$\left\| z(z\mathrm{Id} + A_{\alpha,p})^{-1} \right\|_{\mathscr{L}(H^p_D)} \le 2 \left\| z(z\mathrm{Id} + B_{\alpha,p})^{-1} \right\|_{\mathscr{L}(L^p(\Omega;\mathbb{R}^3))} \lesssim 1.$$

Moreover, the same reasoning gives

$$\left\| \sqrt{|z|} \operatorname{curl} (z \operatorname{Id} + A_{\alpha, p})^{-1} \right\|_{\mathscr{L}(H_D^p; L^p(\Omega; \mathbb{R}^3))} \le 2 \left\| \sqrt{|z|} \operatorname{curl} (z \operatorname{Id} + B_{\alpha, p})^{-1} \right\|_{\mathscr{L}(L^p(\Omega; \mathbb{R}^3))} \lesssim 1$$
(72)

and

$$\left\|\operatorname{curl}\operatorname{curl}(z\operatorname{Id}+A_{\alpha,p})^{-1}\right\|_{\mathscr{L}(H^p_D;L^p(\Omega;\mathbb{R}^3))} \leq 2\left\|\operatorname{curl}\operatorname{curl}(z\operatorname{Id}+B_{\alpha,p})^{-1}\right\|_{\mathscr{L}(L^p(\Omega;\mathbb{R}^3))} \lesssim 1$$
(73)

To prove that $zId + A_{\alpha,p} : D(A_{\alpha,p}) \to H_D^p$ is invertible if $z \in \Sigma_{\pi-\theta}$ with $|z| \leq 4C^2\alpha^2$, proceed by induction. The assertion is proved for $p \geq 2$ (the range is obtained $1 by duality since <math>A_{\alpha,2}$ is self-adjoint in H_D). Assume first that $p \in [2, \frac{9}{2}]$, so that $D(A_{\alpha,2}) \hookrightarrow H_D^p$ by Lemma 8. Let $z \in \Sigma_{\pi-\theta}$ with $|z| \leq 4C^2\alpha^2$ and let $\omega = z + 8C^2\alpha^2$. There holds $\omega \in \Sigma_{\pi-\theta}$ and $|\omega| \geq 8C^2\alpha^2 - |z| \geq 4C^2\alpha^2$. Therefore, for $f \in H_D^p \hookrightarrow H_D$,

$$(z\mathrm{Id} + A_{\alpha,2})^{-1}f = (\omega\mathrm{Id} + A_{\alpha,p})^{-1}f + 8C^2\alpha^2(\omega\mathrm{Id} + A_{\alpha,p})^{-1}(z\mathrm{Id} + A_{\alpha,2})^{-1}f,$$

which gives

$$\|(z\mathrm{Id} + A_{\alpha,2})^{-1}f\|_p \le C_{\alpha}\|f\|_p,$$

and this proves that $zId + A_{\alpha,p} : D(A_{\alpha,p}) \to H_D^p$ is invertible with the norm of its inverse controlled by a constant depending on α . For any $p \ge 2$, the previous procedure can be iterated using again Lemma 8 valid for all $p \ge 2$. Estimates of the form (72) and (73) are straightforward. Eventually, the result claimed in Theorem 7 is obtained for $p \ge 2$. As mentioned earlier, the case 1 is obtained byduality.

5.3 The Nonlinear Robin-Hodge-Navier-Stokes Equations

The nonlinear Robin-Hodge-Navier-Stokes system ((NS'), (Rbc))

$$\begin{cases} \partial_t u - \Delta u + \nabla \pi - u \times \operatorname{curl} u = 0 & \text{in } (0, T) \times \Omega, \\ \operatorname{div} u = 0 & \operatorname{in } (0, T) \times \Omega, \\ \nu \cdot u = 0, \quad \nu \times \operatorname{curl} u = \alpha \, u \, \operatorname{on} \, (0, T) \times \partial \Omega, \\ u(0) = u_0 & \operatorname{in } \Omega, \end{cases}$$

for initial data u_0 is considered in the critical space H_D^3 in the abstract form:

$$u'(t) + A_{\alpha,p}u(t) - \mathbb{P}\big(u(t) \times \operatorname{curl} u(t)\big) = 0, \quad u_0 \in H_D^3.$$
(74)

Recall that \mathscr{C}^{4} domains Ω are considered here. The idea to solve (74) is to apply the same method as in previous sections.

With the properties of the Robin-Hodge-Stokes semigroup listed in particular in Theorem 7, the following existence result for (74) is almost immediate. For $T \in (0, \infty]$, define the space \mathscr{H}_T by

$$\mathscr{H}_{T} = \left\{ u \in \mathscr{C}_{b}([0,T); H_{D}^{3}); \operatorname{curl} u \in \mathscr{C}((0,T); L^{3}(\Omega, \mathbb{R}^{3})) \right.$$

with
$$\sup_{0 < s < T} \|\sqrt{s} \operatorname{curl} u(s)\|_{3} < \infty \right\}$$

endowed with the norm

$$||u||_{\mathscr{H}_{T}} = \sup_{0 < s < T} (||u(s)||_{3} + ||\sqrt{s} \operatorname{curl} u(s)||_{3}).$$

Theorem 8. Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and let $u_0 \in H_D^3$. Let γ and Φ be defined by

$$\gamma(t) = e^{-tA_{\alpha,3}}u_0, \quad t \ge 0,$$

and for $u, v \in \mathcal{H}_T$, and $t \in (0, T)$,

$$\Phi(u,v)(t) = \int_0^t e^{-(t-s)A_{\alpha,2}} \left(\frac{1}{2}\mathbb{P}\right) \left((u(s) \times \operatorname{curl} v(s) + v(s) \times \operatorname{curl} u(s) \right) \mathrm{d}s.$$

- (i) If $||u_0||_3$ is small enough, then there exists a unique $u \in \mathscr{H}_{\infty}$ solution of $u = \gamma + \Phi(u, u)$.
- (ii) For all $u_0 \in H_D^3$, there exists T > 0 and a unique $u \in \mathscr{H}_T$ solution of $u = \gamma + \Phi(u, u)$.

Elements of the proof. Remark that, as in Lemma 5, for $u \in \mathscr{H}_T$, (thanks to (42)) there holds $u = \mathbb{P}(R_2 \operatorname{curl} u + K_1 u) \in \mathscr{C}((0, T); H_D^6)$ with $\sup_{0 < s < T} \sqrt{s} \|u(s)\|_6 \le \|u\|_{\mathscr{H}_T}$.

The proof goes as in the previous sections.

6 Conclusion

In the case of a smooth bounded domain in \mathbb{R}^n , it was proved by Y. Giga and T. Miyakawa in [23] that the Dirichlet-Navier-Stokes system admits a local mild solution for initial values in L^n (critical space for the system in dimension *n*). Their method relies on the fact that the Dirichlet-Stokes operator, as defined in Sect. 2, extends to all L^p spaces and is the negative generator of an analytic semigroup there, which was proved in [21]. The situation in Lipschitz domains is different. For instance, P. Deuring provided in [14] an example of a domain with one conical singularity such that the Dirichlet-Stokes semigroup does not extend to an analytic semigroup in L^p for *p* large, away from 2 (in this example, p > 6).

As already mentioned, E. Fabes, O. Mendez, and M. Mitrea proved in [19] that the orthogonal projection \mathbb{P} defined in Sect. 2 on $L^2(\Omega; \mathbb{R}^3)$ extends to a bounded projection on $L^p(\Omega; \mathbb{R}^3)$ for p in an open interval containing $\left[\frac{3}{2}, 3\right]$ (if Ω is \mathscr{C}^4 , then this interval is $(1, \infty)$). This led M. Taylor in [54] to formulate the conjecture that the Dirichlet-Stokes semigroup defined originally on H_D extends to an analytic semigroup on L^p for p in the same interval as in [19]. This is actually true as shown in Sect. 2.1.2. It is not known whether this range is optimal, i.e., for any p > 3 (or any $p < \frac{3}{2}$), is there a bounded Lipschitz domain such that the Dirichlet-Stokes semigroup $(e^{-tA_D})_{t\geq 0}$ does not extend to a bounded analytic semigroup in H_D^p ? When considering Hodge boundary conditions (Hbc), the range where $(e^{-tA_T})_{t\geq 0}$ extends to a bounded analytic semigroup in H_D^p is however larger (see Remark 9, based on results in [30]).

To apply the Fujita-Kato scheme as in Sect. 2.2, proving that the Dirichlet-Stokes semigroup $(e^{-tA_D})_{t\geq 0}$ extends to an analytic semigroup in H_D^3 seems to be the first step to obtain mild solutions of the Navier-Stokes system with Dirichlet boundary conditions. The next step is to be able to estimate ∇e^{-tA_D} in the L^3 norm, which is not as straightforward as in the L^2 case where $\|\nabla e^{-tA_D} f\|_2 = \|A_D^{1/2} e^{-tA_D} f\|_2$.

Finally, it would be very satisfactory to obtain a theory for Robin boundary conditions (Rbc) in Lipschitz domains as studied in Sect. 5 for \mathscr{C}^1 domains.

Acknowledgements The first author was partially supported by: Harmonic Analysis at its Boundaries, ANR-12-BS01-0013-01.

Cross-References

- ► Critical Function Spaces for Well-Posedness of the Navier-Stokes Initial Value Problems
- ► Derivation of Model Problems
- ► Equations for Incompressible Viscous Fluids in Geophysics
- ▶ Stokes Equation in the Lp-Setting Well-Posedness and Regularity Properties
- ▶ Stokes Semigroup, Strong, Weak and Very Weak Solutions for General Domains

References

- 1. T. Akiyama, H. Kasai, Y. Shibata, M. Tsutsumi, On a resolvent estimate of a system of Laplace operators with perfect wall condition. Funkcial. Ekvac. **47**(3), 361–394 (2004)
- H. Amann, On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2(1), 16–98 (2000)
- C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)
- 4. C. Bègue, C. Conca, F. Murat, O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. in *Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IX (Paris, 1985–1986).* Pitman Research Notes in Mathematics Series, vol. 181 (Longman Scientific & Technical, Harlow, 1988), pp 179–264
- 5. H. Beirão da Veiga, Remarks on the Navier-Stokes evolution equations under slip type boundary conditions with linear friction. Port. Math. (N.S.) **64**(4), 377–387 (2007)
- R.M. Brown, The method of layer potentials for the heat equation in Lipschitz cylinders. Am. J. Math. 111, 339–379 (1989)
- R.M. Brown, Z. Shen, Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44(4), 1183–1206 (1995)
- 8. L. Caffarelli, I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. **51**, 1–21 (1998)
- M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Methods Appl. Sci. 12(4), 365–368 (1990)
- M. Costabel, A. M^cIntosh, On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010)
- B. Dahlberg, C. Kenig, G. Verchota, Boundary value problems for the system of elastostatics in Lipschitz domains. Duke Math. J. 57, 795–818 (1988)
- 12. G. de Rham, *Differentiable Manifolds*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 266 (Springer, Berlin, 1984), Forms, currents, harmonic forms, Translated from the French by F.R. Smith, With an introduction by S.S. Chern
- L. de Simon, Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova 34, 205–223 (1964)

- 14. P. Deuring, The Stokes resolvent in 3D domains with conical boundary points: nonregularity in L^p -spaces. Adv. Differential Equations 6(2), 175–228 (2001)
- P. Deuring, W. von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains. Math. Nachr. 171, 111–148 (1995)
- M. Dindoš, M. Mitrea, The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C¹ domains. Arch. Ration. Mech. Anal. 174(1), 1–47 (2004)
- L. R. Duduchava, D. Mitrea, M. Mitrea, Differential operators and boundary value problems on hypersurfaces, Math. Nachr. 279(9–10), 996–1023 (2006)
- E. Fabes, C. Kenig, G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)
- E. Fabes, O. Mendez, M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159(2), 323–368 (1998)
- H. Fujita, T. Kato, On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)
- 21. Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L_r spaces, Math. Z. **178**(3), 297–329 (1981)
- Y. Giga, The nonstationary Navier-Stokes system with some first order boundary condition. Proc. Jpn. Acad. Ser. A Math. Sci. 58(3), 101–104 (1982)
- Y. Giga, T. Miyakawa, Solutions in L_r of the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)
- 24. V. Girault, Curl-conforming finite element methods for Navier-Stokes equations with nonstandard boundary conditions in R³, in *The Navier-Stokes Equations* (Oberwolfach, 1988), Lecture Notes in Mathematics, vol. 1431 (Springer, Berlin, 1990), pp. 201–218
- 25. T. Iwaniec, C.A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in **R**^{*n*}. Ann. Acad. Sci. Fenn. Ser. A I Math. **10** 267–282 (1985)
- D. Jerison, C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)
- 27. C.E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Regional Conference Series in Mathematics, vol. 83 (Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, 1994)
- P.G. Lemarié-Rieusset, *Recent Developments in the Navier-Stokes Problem*. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431 (Chapman & Hall/CRC, Boca Raton, 2002)
- J.-L. Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs. J. Math. Soc. Jpn. 14, 233–241 (1962)
- 30. A. M^cIntosh, S. Monniaux, Hodge-Dirac, Hodge-Laplacian, and Hodge-Stokes operators in L^p spaces on Lipschitz domains (2016, submitted), 36 pp. Available on arXiv:1608.01797
- D. Mitrea, M. Mitrea, S. Monniaux, The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Commun. Pure Appl. Anal. 7(6), 1295–1333 (2008)
- D. Mitrea, M. Mitrea, M. Taylor, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds. Mem. Am. Math. Soc. 150(713), x+120 (2001)
- M. Mitrea, Sharp Hodge decompositions, Maxwell's equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds. Duke Math. J. 125(3), 467–547 (2004)
- 34. M. Mitrea, S. Monniaux, The regularity of the Stokes operator and the Fujita-Kato approach to the Navier-Stokes initial value problem in Lipschitz domains. J. Funct. Anal. 254(6), 1522– 1574 (2008)
- M. Mitrea, S. Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains. Differ. Integral Equ. 22(3–4), 339–356 (2009)
- 36. M. Mitrea, S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds. Trans. Am. Math. Soc. 361(6), 3125–3157 (2009)

- M. Mitrea, S. Monniaux, M. Wright, The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. (N.Y.) 176(3), 409–457 (2011)
- T. Miyakawa, The L^p approach to the Navier-Stokes equations with the Neumann boundary condition. Hiroshima Math. J. 10(3), 517–537 (1980)
- S. Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal L^pregularity. C. R. Acad. Sci. Paris Sér. I Math. 328(8), 663–668 (1999)
- S. Monniaux, On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains. J. Funct. Anal. 195(1), 1–11 (2002)
- S. Monniaux, Navier-Stokes equations in arbitrary domains: the Fujita-Kato scheme. Math. Res. Lett. 13(2–3), 455–461 (2006)
- 42. S. Monniaux, Maximal regularity and applications to PDEs, *Analytical and Numerical Aspects* of Partial Differential Equations (Walter de Gruyter, Berlin, 2009), pp. 247–287
- S. Monniaux, E.M. Ouhabaz, The Incompressible Navier–Stokes System with Time-Dependent Robin-Type Boundary Conditions. J. Math. Fluid Mech. 17(4), 707–722 (2015)
- 44. S. Monniaux, J. Saal, Robin-Hodge boundary conditions for the Navier-Stokes equations in 3D-bounded Lipschitz domains (2016, in preparation)
- 45. B. O'Neill, *Elementary Differential Geometry*, 2nd edn. (Elsevier/Academic Press, Amsterdam, 2006)
- 46. J. Saal, Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space. J. Math. Fluid Mech. 8(2), 211–241 (2006)
- Z. Shen, Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders. Am. J. Math. 113, 293–373 (1991)
- 48. Z. Shen, Resolvent estimates in L^p for elliptic systems in Lipschitz domains. J. Funct. Anal. 133, 224–251 (1995)
- 49. Z. Shen, Bounds of Riesz transforms on L^p spaces for second order elliptic operators. Ann. Inst. Fourier (Grenoble) **55**, 173–197 (2005)
- 50. Z. Shen, Necessary and sufficient conditions for the solvability of the L^p Dirichlet problems on Lipschitz domains. Math. Ann. **336**, 697–724 (2006)
- Z. Shen, Resolvent estimates in L^p for the Stokes operator in Lipschitz domains. Arch. Ration. Mech. Anal. 205(2), 395–424 (2012)
- Y. Shibata, R. Shimada, On a generalized resolvent estimate for the Stokes system with Robin boundary condition. J. Math. Soc. Jpn. 59(2), 469–519 (2007)
- 53. M.E. Taylor, *Partial Differential Equations. I.* Applied Mathematical Sciences, vol. 115 (Springer, New York, 1996). Basic theory
- 54. M.E. Taylor, Incompressible fluid flows on rough domains, in *Semigroups of Operators: Theory and Applications* (Newport Beach, 1998). Progress in Nonlinear Differential Equations and Their Applications, vol. 42 (Birkhäuser, Basel, 2000), pp. 320–334
- 55. R. Temam, *Navier-Stokes Equations*, revised ed., Studies in Mathematics and its Applications, vol. 2 (North-Holland Publishing Co., Amsterdam/New York, 1979), Theory and Numerical Analysis, With an appendix by F. Thomasset
- 56. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J. Funct. Anal. **59**, 572–611 (1984)