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Sylvie Monniaux ‡

Abstract

Depending of the geometry of the domain, one can define –at least– three different
Stokes operators with Dirichlet boundary conditions. We describe how the resolvents of
these Stokes operators converge with respect to a converging sequence of domains.

1 Introduction

Let Ω denote an open connected subset of Rd . We do not impose any regularity of the
boundary ∂Ω of the domain Ω and possibly Ω is unbounded. To avoid too many cases, we
will however assume that the d-dimensional Hausdorff measure of ∂Ω is zero.

We denote by D = C∞c (Ω,Rd) the space of smooth vector fields with compact support in
Ω. Let D′ denote its dual, the space of (vector valued) distributions on Ω.
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2 Setting

2.1 The Leray orthogonal decomposition of L2

We start with a very important and profound result due to de Rham [8, Chapter IV §22,
Theorem 17’]; see also [11, Chapter I §1.4, Proposition 1.1].

Theorem 2.1 (de Rham). Let T ∈ D′ be a distribution. Then the following two properties
are equivalent.

(i) D′〈T, ϕ〉D = T (ϕ) = 0 for all ϕ ∈ D with divϕ = 0.

(ii) There exists a scalar distribution S ∈ C∞c (Ω)′ such that T = ∇S in D′ .

De Rham’s theorem has the following corollary.
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Corollary 2.2. Let T ∈ H−1(Ω,Rd). Then the following are equivalent.

(i) H−1(Ω,Rd)〈T, ϕ〉H1
0 (Ω,Rd) = 0 for all ϕ ∈ D with divϕ = 0.

(ii) There exists a scalar distribution π ∈ L2
loc(Ω) such that T = ∇π in D′ .

Proof. We only have to show (i) =⇒ (ii). By Theorem 2.1 there exists S ∈ C∞c (Ω)′ such that
T = ∇S . Then ∇S ∈ H−1(Ω,Rd). Consequently, S ∈ L2

loc(Ω) by [11, Proposition 1.2] (for a
direct proof, see also [9, Lemma 2.2.1].

Denote by H = L2(Ω,Rd) the square integrable vector fields on Ω. We endow the vector-
valued space H with the scalar product

〈u, v〉H :=

ˆ
Ω
u · v =

d∑
j=1

ˆ
Ω
ujvj , u, v ∈ H.

Then H is a Hilbert space. We define the subspace G of H consisting of gradients by

G :=
{
∇π;π ∈ L2

loc(Ω),∇π ∈ H
}
. (2.1)

As a consequence of Corollary 2.2, G is a closed subspace of H . We denote by H the
orthogonal subspace of G in H , that is

H =
{
u ∈ H; 〈u, g〉H = 0 for all g ∈ G

}
. (2.2)

Obviously, H is a Hilbert space and one has the orthogonal decomposition

H = H
⊥
⊕ G . (2.3)

The orthogonal projection from H to H denoted by P is called the Leray projection. It is
the adjoint of the canonical embedding J : H ↪→ H ; it verifies PJu = u for all u ∈H . Next,
define the subspace

D =
{
u ∈ D; div u = 0 in Ω

}
. (2.4)

Then D ⊂ H and by De Rham’s theorem, D⊥ = G , so that D is dense in H with respect
to the L2 -norm of H .

The canonical embedding J0 : D ↪→ D is the restriction of J to D . Its adjoint J ′0 = P1 :
D′ → D ′ is therefore an extension of the Leray projection P . A reformulation of de Rham’s
theorem (Thm 2.1) is

kerP1 =
{
T ∈ D′;P1T = 0

}
=
{
∇S;S ∈ C∞c (Ω)′

}
.

2.2 Another orthogonal decomposition of L2

Since we made the assumption that the d-dimensional Hausdorff measure of ∂Ω is zero, we can
identify H = L2(Ω,Rd) with

{
U|Ω ;U ∈ L2(Rd,Rd), U = 0 a.e. in cΩ

}
and define the space E

to be the closure in L2(Ω,Rd) of

W :=
{
U|Ω ;U ∈ H1(Rd,Rd), U = 0 a.e. in cΩ and divU = 0 in Rd

}
. (2.5)
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The space E is closed in H by definition and contains D , and then H . The following
decomposition of H holds

H = E
⊥
⊕ F , (2.6)

where F = E ⊥ . Since H ⊂ E , it is obvious that F ⊂ G . It is also obvious that
{
∇q|Ω ; q ∈

Ḣ1(Rd)
}
⊂ F : let u = U|Ω ∈ W and q ∈ Ḣ1(Rd); then

〈u,∇q〉H = 〈U,∇q〉L2(Rd,Rd) = 0.

For further use, we will denote by L : E ↪→ H the canonical embedding; its adjoint L′ = Q :
H → E is the orthogonal projection from H to E . The operators L and Q verify QLu = u
for all u ∈ E , as do J and P in the above setting.

Remark 2.3. When Ω ⊂ Rd is bounded and smooth enough, say with Lipschitz boundary,
the spaces H and E coincide: they are equal to

L2
σ(Ω) :=

{
u ∈ L2(Ω,Rd); div u = 0 in Ω and ν · u = 0 on ∂Ω

}
,

where div u is to be taken in the sense of distributions and ν(x) denotes the exterior normal
unit vector at x ∈ ∂Ω, defined for almost every x in the case of a Lipschitz boundary ∂Ω.
Here, ν · u ∈ H−1/2(∂Ω) is defined via the integration by parts formula

H−1/2〈ν · u, ϕ〉H1/2 =

ˆ
Ω
u · ∇Φ +

ˆ
Ω

div u · Φ

for all ϕ ∈ H1/2(∂Ω) and Φ ∈ H1(Ω) satisfying Tr|∂Ω
Φ = ϕ .

The fact that H = L2
σ(Ω) in the case of a bounded domain with Lipschitz boundary was

proved in [11, Thm 1.4]. If Ω ⊂ Rd has a continuous boundary as in [2, Prop. 2.2] (see also
[10]), W = {u ∈ H1

0 (Ω,Rd); div u = 0} . According to [11, Thm 1.6], this latter space is the
closure of D in H1(Ω,Rd) if the boundary of Ω is Lipschitz, so that E = L2

σ(Ω) = H .

3 Spaces of divergence-free vector fields

In this section, we introduce several spaces which yield different suitable definitions of the
Stokes operator with Dirichlet boundary conditions.

We start with
V = H1

0 (Ω,Rd).

Then V is the closure of D in H1(Ω,Rd). We provide V with the norm induced from
H1(Ω,Rd). Next, we define the space

W :=
{
U|Ω : U ∈ H1(Rd,Rd) and U = 0 a.e. in Ω

c}
.

Then W is a closed subspace of H1(Ω,Rd) and we provide W with the norm induced from
H1(Ω,Rd).

It is clear that D ⊂ V ⊆ W ⊂ H . If Ω has a continuous boundary, then V = W (see [10,
pages 24-26]), but in general V 6=W , as shown in [2, Section 7]). Identifying H with its dual,
we obtain the Gelfand triples V ↪→ H ↪→ V ′ and W ↪→ H ↪→W ′ .

Let V be the closure of D in V = H1
0 (Ω,Rd) and let X := V ∩H . It is straightforward

that V ⊆ X ⊆ W . If Ω is bounded with Lipschitz boundary, then V = X = W (see [4,
Section 3] and [6, Theorem 2.2]), but not in general. The famous example for which V is
different from X is the unbounded smooth aperture domain (see [4, Theorem 17]). The three
spaces V , X and W all contain D , V and X are dense subspaces of H , W is a dense
subspace of E by definition. Moreover, V and X are closed in V and W is closed in W .
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3.1 Weak- and pseudo-Dirichlet Laplacians

We now briefly describe how to define the Laplacian with homogeneous Dirichlet boundary
conditions in a weak sense: depending on how the boundary conditions are modelled, different
operators appear. Recall that since we do not impose any regularity on the boundary of our
domain Ω, it does not make sense to talk about traces. We start by defining the bilinear form
a :W ×W → R by

a(u, v) := 〈∇u,∇v〉H =
d∑
j=1

〈∂ju, ∂jv〉H. (3.1)

The forms a and a|V×V are associated with analytic semigroups of contractions on H (see,

e.g., [5, §VI.2]). Let −∆Ω
D be the operator associated with the form a|V×V and let −∆Ω

D be
the operator associated with the form a . Following [2], we call ∆Ω

D the (weak-)Dirichlet

Laplacian and ∆Ω
D the pseudo-Dirichlet Laplacian. They are self-adjoint (unbounded)

operators in H . The interest of considering the weak-Dirichlet and the pseudo-Dirichlet Lapla-
cians lies in particular in domain perturbation problems.

Let Ω,Ω1,Ω2, . . . be bounded open subsets of Rd . We say that Ωn ↑ Ω as n → ∞ if
Ωn ⊂ Ωn+1 for all n ∈ N and for each compact subset K ⊂ Ω there exists an n ∈ N
with K ⊂ Ωn . We say that Ωn ↓ Ω as n → ∞ if Ωn ⊃ Ωn+1 ⊃ Ω for all n ∈ N and
limn→∞ |(Ωn ∩B) \ Ω| = 0 for every ball B , where | · | denotes the Lebesgue measure in Rd .

If f ∈ H , then we denote by f̃ ∈ L2(Rd,Rd) the extension by 0 of f to Rd .

The following results have been established in [2, §3]. See also [1, §6] and [3, §6 and §7].

Proposition 3.1. Let Ω,Ω1,Ω2, . . . be bounded open subsets of Rd .

a. Suppose that Ωn ↑ Ω as n→∞. Then

lim
n→∞

[(
I + (−∆Ωn

D )
)−1

(f|Ωn
)
]
|̃Ω

=
(
I + (−∆Ω

D)
)−1

f and

lim
n→∞

[(
I + (−∆Ωn

D )
)−1

(f|Ωn
)
]
|̃Ω

=
(
I + (−∆Ω

D)
)−1

f

in H for all f ∈ H .

b. Suppose that Ωn ↓ Ω as n→∞. Then

lim
n→∞

[(
I + (−∆Ωn

D )
)−1

(f̃|Ωn
)
]
|Ω

=
(
I + (−∆Ω

D)
)−1

f and

lim
n→∞

[(
I + (−∆Ωn

D )
)−1

(f̃|Ωn
)
]
|Ω

=
(
I + (−∆Ω

D)
)−1

f

in H for all f ∈ H .

Remark 3.2. Strictly speaking, Proposition 3.1 has been proved in [2] for scalar valued func-
tions f ∈ L2(Ω,R), and only the first part of a ([2, Proposition 3.2]) and the second part
of b ([2, Proposition 3.5]) can be found in that reference. Using [2, Proposition 2.3] es-
tablishing monotonicity properties of the resolvents of the weak-Dirichlet Laplacian and the
pseudo-Dirichlet Laplacian with respect to the inclusion of domains, the other two limits are
immediate.
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3.2 The weak-Dirichlet Stokes operator

Since the spaces V and X are dense subspaces of the Hilbert space H , one can define two
Dirichlet types of Stokes operators in H . Recall the form a :W ×W → R from (3.1)

a(u, v) := 〈∇u,∇v〉H =

d∑
j=1

〈∂ju, ∂jv〉H.

Then a|X ×X is a positive symmetric densely defined closed form in H . Let B be the operator
associated with a|X ×X . Then B is self-adjoint and B is the Stokes operator considered in [7].

Since V ⊂X we can also define B0 to be the self-adjoint operator in H associated with
the form a|V ×V . We call B0 the weak-Dirichlet Stokes operator. This Stokes operator is
the one which was considered by H. Sohr in [9, Chapter 3, §2.1].

The operators B and B0 are both negative generators of analytic semigroups in H .
Each of the cases above models differently spaces of divergence free vector fields with zero

boundary conditions. As already mentioned before, they coincide in the case of bounded
Lipschitz domains and consequently then also the two operators B and B0 coincide.

The relation between the weak-Dirichlet Laplacian and the weak-Dirichlet Stokes operator
is described in the following commutative diagram:

V

B0

��

� _

d
��

� � J0 // V� _
d
��

(−∆Ω
D)

��

H � _

d
��

� � J // H
P=J ′
oo � _

d
��

V ′ V ′
P1=J ′0

oo

where J0 is the restriction of J to V and P1 , its adjoint operator, is the extension of the
Leray projection P to V ′ . What this says in particular is that B0 = P1(−∆Ω

D)J0 .

3.3 The pseudo-Dirichlet Stokes operator

If we now restrict the form a to W ×W we obtain a positive symmetric densely defined closed
form in E . We then define A to be the self-adjoint operator in E associated with a|W ×W . We
call A the pseudo-Dirichlet Stokes operator. It is the negative generator of an analytic
semigroup in E .

As said before, in the case of a bounded domain Ω with Lipschitz boundary, the spaces
X , V and W coincide as well as the spaces H and E , then so do the operators B , B0 and
A .

The relation between the pseudo-Dirichlet Laplacian and the pseudo-Dirichlet Stokes op-
erator is described in the following commutative diagram:

W

A

��

� _

d
��

� � L0 //W� _
d
��

(−∆Ω
D)

��

E � _

d
��

� � L // H
Q=L′
oo � _

d
��

W ′ W ′
Q1=L′0

oo
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where L0 is the restriction of L to W and Q1 , its adjoint operator, is the extension of the
projection Q from §2.2 to W ′ . What this says in particular is that A = Q1(−∆Ω

D)L0 .

4 Domain perturbation

Similar results as those stated in Proposition 3.1 hold for the different Dirichlet Stokes operators
described above. Roughly speaking, resolvents of the different Stokes operators converge to
the resolvent of the weak-Dirichlet Stokes operator in H in the case of an increasing sequence
of open sets and to the resolvent of the pseudo-Dirichlet Stokes operator in E in the case of a
decreasing sequence of open sets.

4.1 Increasing sequence of domains

Theorem 4.1. Let Ω,Ω1,Ω2, . . . be connected open subsets of Rd . Suppose that Ωn ↑ Ω
as n → ∞. For all n ∈ N denote by Pn the Leray projection from L2(Ωn,R

d) onto Hn

(the corresponding space of divergence-free vector fields as in (2.3)), In the identity operator

on Hn , Vn the corresponding form domain and B(n)
0 the corresponding weak-Dirichlet Stokes

operator. Then

lim
n→∞

((
In + B(n)

0

)−1Pn(f|Ωn
)
)˜
|Ω

= (I + B0)−1f

in H1(Ω,Rd) for all f ∈H .

Proof. For all n ∈ N define un =
(
In + B(n)

0

)−1Pn(f|Ωn
). Then un ∈ Vn and ũn|Ω ∈ V and

ˆ
Ωn

∇un · ∇v +

ˆ
Ωn

un · v =

ˆ
Ωn

(Pn(f|Ωn
)) · v =

ˆ
Ωn

f · v (4.1)

for all v ∈ Vn . Choosing v = un gives

ˆ
Ωn

|∇un|2 +

ˆ
Ωn

|un|2 =

ˆ
Ωn

Pn(f|Ωn
) · un ≤ ‖f‖2

(ˆ
Ωn

|un|2
)1/2

.

This implies that (ũn|Ω)n∈N is a bounded sequence in V . Passing to a subsequence if necessary,
there exists a u ∈ V such that lim

n→∞
ũn|Ω = u weakly in V . Let v ∈ D . There exists an N ∈ N

such that ṽ|Ωn
∈ Dn for all n ≥ N . By definition of un we then have for all n ≥ N that

a(ũn|Ω , v) + 〈ũn|Ω , v〉L2(Ω,Rd) = 〈f, v〉L2(Ω,Rd).

Taking the limit as n→∞ we obtain that

a(u, v) + 〈u, v〉L2(Ω,Rd) = 〈f, v〉L2(Ω,Rd). (4.2)

This is true for all v ∈ D . Then by continuity and density, (4.2) is valid for all v ∈ V . This
shows that u ∈ D(B0) and u = (I + B0)−1f .

It remains to show that lim
n→∞

ũn|Ω = u strongly in L2(Ω,Rd). Since lim
n→∞

ũn|Ω = u weakly

in L2(Ω,Rd),

lim inf
n→∞

‖ũn|Ω‖L2(Ω,Rd) ≥ ‖u‖L2(Ω,Rd).
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Comparing lim sup
n→∞

‖un‖2 and lim inf
n→∞

‖un‖2 , it suffices to show that

lim sup
n→∞

‖ũn|Ω‖L2(Ω,Rd) ≤ ‖u‖L2(Ω,Rd).

Let n ∈ N . Choose v = un in (4.1). Then the following equality holds

ˆ
Ω
|ũn|Ω |

2 =

ˆ
Ω
f · ũn|Ω −

ˆ
Ω

∣∣∇ũn|Ω∣∣2. (4.3)

Since lim
n→∞

ũn|Ω = u weakly in V , and hence in H1
0 (Ω,Rd), one deduces that

lim
n→∞

ˆ
Ω
f ·ũn|Ω =

ˆ
Ω
f ·u and lim

n→∞
∂kũn|Ω = ∂ku weakly in L2(Ω,Rd) for all k ∈ {1, . . . , d}.

This implies ‖∂ku‖L2(Ω,Rd) ≤ lim inf
n→∞

‖∂kũn|Ω‖L2(Ω,Rd) . Consequently,

lim sup
n→∞

‖ũn|Ω‖
2
L2(Ω,Rd) = lim

n→∞

(ˆ
Ω
f · ũn|Ω

)
− lim inf

n→∞
‖∇ũn|Ω‖

2
L2(Ω,Rd×d)

≤ 〈f, u〉L2(Ω,Rd) − ‖∇u‖2L2(Ω,Rd×d) = ‖u‖2L2(Ω,Rd),

where the last equality follows from (4.2). Then lim
n→∞

ũn|Ω = u strongly in L2(Ω,Rd). One

concludes by the fact that every sequence for which every subsequence posseses a convergent
subsequence to a unique limit is convergent. To prove the convergence in H1(Ω,Rd), rewrite
(4.3) as ˆ

Ω

∣∣∇ũn|Ω∣∣2 =

ˆ
Ω
f · ũn|Ω −

ˆ
Ω
|ũn|Ω |

2

and take the lim sup
n→∞

: the right hand-side converges to

〈f, u〉L2(Ω,Rd) − ‖u‖2L2(Ω,Rd) = ‖∇u‖2L2(Ω,Rd×d)

and therefore
(
∇ũn|Ω

)
n≥1

converges strongly in L2(Ω,Rd×d) as claimed.

4.2 Decreasing sequence of domains

If f ∈ L2(Ω,Rd), then we denote by f̃ ∈ L2(Rd,Rd) the extension by 0 of f to Rd .

Theorem 4.2. Let Ω,Ω1,Ω2, . . . be connected open subsets of Rd . Suppose that the d-
dimensional Hausdorff measure of ∂Ω and ∂Ωn for all n ∈ N is zero. Suppose that Ωn ↓ Ω
as n→∞. For all n ∈ N denote by Qn the projection from L2(Ωn,R

d) onto En (the corre-
sponding space of divergence-free vector fields as in (2.6)), In the identity operator on En , Wn

the corresponding form domain and An the corresponding pseudo-Dirichlet Stokes operator.
Then

lim
n→∞

((
In +An

)−1
f̃|Ωn

)
|Ω

= (I +A)−1f

in H1(Ω,Rd) for all f ∈ E .
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Proof. First note that f̃|Ωn
∈ En for all f ∈ E and ũ|Ωn

∈ Wn for all u ∈ W and all n ∈ N .

Fix f ∈ E . For all n ∈ N define un :=
(
In +An

)−1
(f̃|Ωn

). Then un ∈ Wn and

ˆ
Rd

∇ũn · ∇ṽ +

ˆ
Rd

ũn · ṽ =

ˆ
Ωn

f̃|Ωn
· ṽ =

ˆ
Rd

f̃ · ṽ, (4.4)

for all v ∈ Wn . Choosing v = un gives

‖∇ũn‖2L2(Rd,Rd) + ‖ũn‖2L2(Rd,Rd) ≤ ‖f̃‖L2(Rd,Rd)‖ũn‖L2(Rd,Rd).

Hence (ũn)n∈N is a bounded sequence in H1(Rd,Rd). Passing to a subsequence if necessary,
there exists a U ∈ H1(Rd,Rd) such that lim

n→∞
ũn = U weakly in H1(Rd,Rd).

We next show that U = 0 a.e. on Ω
c
. Let Φ ∈ C∞c (Rd,Rd) and suppose that supp Φ ⊂ Ω

c
.

Let R > 0 such that supp Φ is contained in the ball B = B(0, R). If n ∈ N , then∣∣∣ˆ
Rd

ũn · Φ
∣∣∣ ≤ ‖ũn‖L2(Rd,Rd)‖Φ‖L2(Ωn,Rd) ≤ ‖f̃‖L2(Rd,Rd)‖Φ‖L∞(Rd,Rd)|(Ωn \ Ω) ∩B|1/2.

Since lim
n→∞

|(Ωn \ Ω) ∩B| = 0 it follows that

ˆ
Rd

U · Φ = lim
n→∞

ˆ
Rd

ũn · Φ = 0.

So U = 0 a.e. on Ω
c
. Set u = U |Ω . Then u ∈ W .

To prove that u ∈ W , it remains to prove that divU = 0 in Rd . This is straightforward
since for all ∇p ∈ L2(Rd,Rd) and for all n ∈ N ,

ˆ
Rd

U · ∇p←−−−
∞←n

ˆ
Rd

ũn · ∇p = 0.

Now, taking the limit as n goes to ∞ in (4.4) for v ∈ W , we obtain that

ˆ
Rd

∇U · ∇ṽ +

ˆ
Rd

U · ṽ = a(u, v) + 〈u, v〉 = 〈f, v〉 =

ˆ
Rd

f̃ · ṽ. (4.5)

Therefore, u ∈ D(A). It remains to prove that un|Ω −−−→n→∞
u strongly in L2(Ω,Rd). The proof

is similar to the proof of Theorem 4.1, comparing lim inf
n→∞

∥∥un|Ω∥∥ and lim sup
n→∞

∥∥un|Ω∥∥ . By weak

convergence of
(
un|Ω

)
n∈N to u in L2(Ω,Rd), the inequality lim inf

n→∞

∥∥un|Ω∥∥2
≥ ‖u‖2 holds. The

proof of lim sup
n→∞

∥∥un|Ω∥∥2
≤ ‖u‖2 , uses (4.4) with v = un and the fact that

(
ũn
)
n∈N converges

weakly to U in L2(Rd,Rd), so that

lim sup
n→∞

‖un|Ω
∥∥2

2
≤ lim sup

n→∞
‖ũn‖22 = lim

n→∞

ˆ
Rd

ũn · f̃ − lim inf
n→∞

∥∥∇ũn∥∥2

2

≤
ˆ
Rd

U · f̃ − ‖∇U‖22 = 〈u, f〉 − ‖∇u‖22 = ‖u‖22

by (4.5) with v = u . The strong convergence of
(
∇un|Ω

)
n≥1

to ∇u in L2(Ω,Rd×d) is proved
using the same arguments as in the proof of Theorem 4.1.
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4.3 Comments

The reader may want to compare Theorem 4.2 and Theorem 4.1 with Proposition 3.1 and ask
whether one can approximate the pseudo-Dirichlet Stokes operator in Ω with weak-Dirichlet
Stokes operators in Ωn where Ωn ↓ Ω and the weak-Dirichlet Stokes operator in Ω with pseudo-
Dirichlet Stokes operators in Ωn where Ωn ↑ Ω. This is obviously true if the approximation
domains Ωn are smooth and bounded since in this case, the weak-Dirichlet Stokes operator
and the pseudo-Dirichlet Stokes operator coincide. In the case of increasing or decreasing
sequences of arbitrary domains, the strategy followed by [2] (comparison of resolvents with
respect to the inclusion of domains as in Remark 3.2) doesn’t work: the Stokes problem is
purely vector-valued and the spaces involved are not Banach lattices.
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