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AUTOMORPHISMS AND QUOTIENTS OF
QUATERNIONIC FAKE QUADRICS

AMIR DŽAMBIĆ AND XAVIER ROULLEAU

A Q-homology quadric is a normal projective algebraic surface with the
same Betti numbers as the smooth quadric in P3. A smooth Q-homology
quadric is either rational or of general type with vanishing geometric genus.
Smooth minimal Q-homology quadrics of general type are called fake quad-
rics. Here we study quaternionic fake quadrics, that is, fake quadrics whose
fundamental group is an irreducible lattice in PSL2(R) ⇥ PSL2(R) derived
from a division quaternion algebra over a real number field. We provide
examples of quaternionic fake quadrics X with a nontrivial automorphism
group G and compute the invariants of the quotient X/G and of its mini-
mal desingularization Z. In this way we provide examples of singular Q-
homology quadrics and minimal surfaces Z of general type with q = p

g

= 0
and K

2 = 4 or 2 which contain the maximal number of disjoint (�2)-curves.
Conversely, we also show that if a smooth minimal surface of general type
has the same invariant as Z and same number of (�2)-curves, then we can
construct geometrically a surface of general type with c

2
1 = 8, c2 = 4.

1. Introduction

In this paper we will be interested in Q-homology quadric surfaces, which are
normal projective algebraic surfaces with the same Betti numbers as the quadric
surface in P3, that is, b1 = 0 and b2 = 2. A smooth Q-homology quadric S has the
following numerical invariants: pg(S) = q(S) = 0, e(S) = c2(S) = 4, and c2

1(S) = 8.
By the classification theory of algebraic surfaces, such S is either a Hirzebruch
surface6n (with60 =P1⇥P1) or S is of general type. The latter S is either minimal
or has at most one exceptional curve. Blowing down this (�1)-curve we obtain a
fake projective plane, that is, a smooth minimal surface of general type with the
same Betti numbers as the projective plane P2, being an example of a Q-homology
projective plane. By the analogy with fake projective planes, we define a fake
quadric to be a minimal smooth Q-homology quadric of general type (see [Barth et al.
2004, p. 231; Hirzebruch 1987, p. 780; Iskovskikh and Shafarevich 1989, p. 195]).
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All known fake quadrics have H ⇥ H, the product of two copies of the complex
upper half plane, as the universal covering. Hence, such a fake quadric X is of the
form X = 0\H⇥H, where 0 is a torsion-free and cocompact discrete subgroup in
Aut(H ⇥ H), the group of holomorphic automorphisms of H ⇥ H. Essentially, we
distinguish between two classes of such quotients according to the structure of 0.

One class of fake quadrics consists of surfaces 0\H⇥H with the property that
the group 0 is reducible. By reducible we mean that there exists a subgroup of
finite index 00 = 01 ⇥02 of 0 such that the group 0i acts on H and Ci = H/0i is a
smooth algebraic curve. This case is now well understood and the full classification
of these fake quadrics, named also fake quadrics isogenous to a higher product, has
been achieved by Bauer, Catanese and Grunewald in [Bauer et al. 2008]. In practice,
this classification and construction is done geometrically by classifying triples
(C1, C2, G) of two smooth curves Ci of general type and a group G, such that G
acts faithfully and freely on the surface C1 ⇥ C2 and the quotient (C1 ⇥ C2)/G has
the asked invariants.

In this paper we will focus on fake quadrics of the other class, which we call
quaternionic fake quadrics. These fake quadrics are Shimura surfaces, that is,
quotients of H ⇥ H by cocompact irreducible arithmetic lattices 0 in Aut(H) ⇥
Aut(H), defined by an indefinite quaternion algebra over a totally real number field.
Within the general framework of Prasad and Yeung on fake compact symmetric
Hermitian spaces the quaternionic fake quadrics belong to the class of so-called
arithmetic fake A1; see [Prasad and Yeung 2012].

Using the previous work of Kuga, the first quaternionic fake quadrics have been
constructed in [Shavel 1978]. We know that these surfaces are rigid and thus that
there are only a finite number of them, but at the moment we do not have a complete
list of all these surfaces. We have a list of commensurability classes of fake quadrics
defined by quaternion algebras over quadratic fields (see [Džambić 2013]).

The situation for quaternionic fake quadrics is very similar to the case of fake
projective planes. By the theorem of Klingler (and also Yeung), all fake projective
planes are quotients of the 2-dimensional complex unit ball B2 by cocompact
arithmetic lattices 0 ⇢ PU(2, 1). This provides an arithmetic construction of
these surfaces, but it is generally not easy to handle and construct these sur-
faces geometrically, for instance, as a quotient or ramified cover of some known
surfaces.

In order to remedy this situation, Keum [2012; 2008; 2006] studied quotients
of fake projective planes by groups of automorphisms. In this way, he obtained
surfaces of general type with geometric genus pg = 0 and was able to rebuild a
fake projective plane by only knowing the properties of the quotient surface.

The aim of this paper is to study automorphisms of quaternionic fake quadrics
and the quotients of these surfaces by groups of automorphisms. Let X = 0\H⇥H
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be a Shimura surface. We say that a curve C ,! X is a Shimura curve if it is a
totally geodesic submanifold of X .

The first main result we obtain is the following:

Theorem A. An automorphism of a smooth Shimura surface X = 0\H⇥H has
only finitely many fixed points or it is an involution whose fixed point set is a disjoint
union of smooth Shimura curves.

An automorphism of a quaternionic fake quadric X has only finitely many fixed
points. There exist quaternionic fake quadrics X with automorphism group isomor-
phic to

Z/2Z, (Z/2Z)2, D4, D6, D8, or D10,

where Dn is the dihedral group with order 2n.

Let us remark that the knowledge of surfaces of general type with pg = 0
and a large automorphism group can be interesting to check whether the Bloch
conjecture holds (see, for example, [Inose and Mizukami 1979]). The computations
in [Džambić 2013] lead us to the conjecture that the order of the automorphism
group of a quaternionic fake quadric is always less or equal 24 (see Section 4).

The second aim of this paper is to study the minimal desingularization of the
quotient of a quaternionic fake quadric by a group of automorphisms, in order to
obtain new surfaces with pg = 0.

Theorem B. Let X be a quaternionic fake quadric and G a finite group of auto-
morphisms of X. The minimal desingularization Z of the quotient X/G has the
following numerical invariants:

G c2
1(Z) c2(Z) Singularities on X/G Minimal (Z)

Z/2Z 4 8 4A1 yes 2
Z/3Z 2 10 2A3,1 + 2A2 ? 2
Z/6Z �4 16 2A6,1 + 2A5 no ?
Z/8Z �2 14 A8,3 + A8,5 no ?

Z/10Z �12 24 2A10,1 + 2A9 no ?
(Z/2Z)2 2 10 6A1 yes 2

D4 0 12 4A1 + A4,3 + A4,1 no � 1
D8 �1 13 4A1 + A8,3 + A8,5 no ?

Here,  indicates the Kodaira dimension of the surface Z.

We obtain also results and restrictions for the groups Z/4Z, Z/5Z and D3. We
note that the surfaces of general type we obtain have vanishing geometric genus
and could be therefore interesting from the point of view of the classification of
surfaces with pg = 0. We intend to study these surfaces more closely, regarding,
for instance, the fundamental groups in a future paper.
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A curve C on a surface is called nodal if C ' P1 and C2 = �2. A nodal curve
is the resolution of a nodal singularity. The surfaces Z we obtain as the quotient of
a fake quadric by an automorphism group (Z/2Z)n, n 2 {1, 2} have the maximum
number of nodal curves (the so-called Miyaoka bound [1984]). If minimal, the
surfaces obtained by taking a quotient by the groups Z/3Z and D3 have also the
maximum number of quotient singularities. Similarly to Keum’s construction of
fake projective planes, we can reverse the construction.

Proposition C. Let Z be a smooth minimal surface of general type with q = pg = 0.

(a) Suppose that c2
1 = 4, 2, or 1, Pic(Z) has no 2-torsion, and that there is a

birational map Z ! Y onto a surface containing 8 � c2
1 nodal singularities

A1. There exists a smooth minimal surface of general type S with invariants
c2

1 = 2c2 = 8 and a (Z/2Z)m-cover S ! Y ramified over the nodes, with m
such that 2m = 8/c2

1.

(b) Suppose that c2
1 = 2, Pic(Z) has no 3-torsion, and that there is a birational map

Z ! Y onto a surface with 2A3,1 + 2A2 singularities. There exist a smooth
surface S with invariants c2

1 = 2c2 = 8 and a (Z/3Z)-cover Z ! Y ramified
over the singularities of Y .

The proof of part (a) of this proposition uses mainly the results of Dolgachev,
Mendes Lopes, and Pardini [Dolgachev et al. 2002] and illustrates their theory. The
proof of part (b) is more original because it mixes two types of singularities.

The paper is structured as follows: We begin recalling the known facts on
quotients of surfaces (Section 2) and on quaternionic fake quadrics (Section 3).
In Section 4, we provide examples of fake quadrics having a large group of au-
tomorphisms, we then compute the quotients surfaces (Section 5) and reverse
the construction in the opposite direction: starting with a surface with the same
invariants as the quotient, we construct a surface with c2

1 = 2c2 = 8 (Section 6).

2. Generalities on quotients of a surface

In this section we recall results from the theory of quotient surface singularities and
their resolution. The main reference for these topics is [Barth et al. 2004]; see also
[Roulleau 2012].

Let S be a smooth algebraic surface and let G be a group of automorphisms
acting on S. We denote by S/G the quotient surface and by ⇡ : Z ! S/G the
minimal desingularization map. If G = h� i is cyclic, we will often write S/� to
denote the quotient S/h� i.
Proposition 2.4 (topological Lefschetz formula). Let � be an automorphism acting
on S and S� the fixed point set of � . We have
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e(S� ) =
j=4X

j=0

(�1) j Tr(� |Hi (S, Z)mt),

where Hi (S, Z)mt is the group Hi (S, Z) modulo torsion.

Note that for a fake quadric X we have q = pg = 0; thus

H 1(X, Z)mt = {0}, H 2(X, Z) ⌦ C = H 1(X,�X ).

Corollary 2.5. Let X be a fake quadric and � an automorphism of order n > 1
acting on G. We have e(X� ) = 2 or 4. If � = ⌧ 2 for an automorphism ⌧ (for
example, if n is prime to 2), we have e(X� ) = 4.

Proof. Since X is a fake quadric, the space H 1(X,�X ) is 2-dimensional and is
generated by the classes of 2-curves in the Néron–Severi group. As an automorphism
preserves the canonical divisor, the invariant subspace of H 1(X,�X ) is at least
one-dimensional. Therefore the trace of � on H 1(X,�X ) is 2 or 0. If we suppose
that this action is not trivial, then 2 divides the order of � , moreover we see that
the action of � 2 is always trivial. ⇤

Let ⇠ be a primitive n-th root of unity. Let us recall that for 1  q  n � 1
coprime to n, the quotient of C2 by the action of

(x, y) ! (⇠ x, ⇠q y)

has a unique singularity, called an An,q singularity. For n, m > 0 two numbers, we
write [n, m] for n � 1/m. The An,q singularity is resolved by a Hirzebruch–Jung
string (see [Barth et al. 2004]), that is, a chain of smooth rational curves C1, . . . , Ck
such that Ci intersects Ci±1 transversally in one point for 2  i  k�1 and C2

i =�ni
with integers ni � 2 determined by the relation

n
q

= [n1, [n2, . . . , [nk�1, nk] . . . ]].

As is conventional, we denote An,n�1 by An�1.
Let S be a surface with pg = q = 0 and let � be an automorphism of order n � 2

such that the fixed points of the � k, k = 1, . . . , n � 1 are isolated.

Proposition 2.6 (holomorphic Lefschetz fixed point formula [Atiyah and Singer
1968, p. 567]). Let S� be the fixed point set of � . Then

1 =
X

s2S�

1
det(1 � d� |TS,s)

,

where d�s |TS,s denotes the action of � on the tangent space TS,s .
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Suppose moreover that the automorphism � has prime order p. Let ⇠ be a
primitive p-th root of unity. Let ri be the number of isolated fixed points of �
whose image in S/� are Ap,i singularities.

Proposition 2.7 (Zhang’s formula [2001, Lemma 1.6]). We have

p�1X

i=1

ri ai (p) = 1

where

ai (p) = 1
p � 1

p�1X

j=1

1
(1 � ⇠ j )(1 � ⇠ i j )

.

In particular, we have

a1(p) = 1
12(5 � p), a2(p) = 1

24(11 � p), a3(5) = 1
4 , a4(5) = 1

2 .

Let 1  i < p and 1  k < p be such that ik ⌘ 1 mod p. As Ap,i = Ap,k ,
the notations for ri and rk in Zhang’s formula can be confusing. However, as
ai (p) = ak(p), there should be no trouble in taking the convention that ri + rk is
the total number of Ap,i = Ap,k singularities, rather that choosing a representative
i or k for every such pair (i, k).

Let us recall that an automorphism of a vector space is called a reflection if all
its eigenvalues but one are equal to 1. Let S be a surface and G an automorphism
group acting on S. Suppose that for every automorphism of G the fixed point set is
finite. Let s be a fixed point of G; recall (see [Barth et al. 2004]):

Lemma 2.8. The action of the group G on the tangent space TS,s is faithful and
contains no reflections.

In particular, if G is cyclic of order n, the singularity type of the image of the
fixed point s in the quotient S/G is always An,q with q prime to n.

Lemma 2.9. The Euler number of S/G is given by the formula

e(S/G) = 1
|G|(e(S) +

X

n�2

(n � 1)e(Sn)),

where Sn =
�
s 2 S

�� |Stab(G, s)| = n
 
. The Euler number of the minimal resolution

Z is the sum of e(S/G) and the number of irreducible components of the exceptional
curves of the resolution ⇡ : Z ! S/G.

Let C1, . . . , Ck be the irreducible components of the one dimensional fibers of
⇡ : Z ! S/G. We have the relations K Z = ⇡⇤KS/G � Pi=k

i=1 ai Ci , for rational
numbers ai such that K Z Ck = �2�C2

k and Ck⇡
⇤KS/G = 0. Moreover, we have the
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equality K 2
S/G = K 2

S/|G|, where |G| is the order of G. As KS is ample, the canonical
Q-divisor KS/G is ample and ⇡⇤KS/G is nef. We remark also that K 2

Z  K 2
S/G .

Recall that the Kähler lemma implies that for a dominant rational map between
varieties, the pull back map among the spaces of sections of sheaves of holomorphic
forms are injective, therefore we obtain (see also [Roulleau 2012] for a proof in the
case of surfaces):

Lemma 2.10. Let S be a surface with q = pg = 0. The minimal resolution Z of the
quotient of S by a group G has also q = pg = 0.

Suppose that S is moreover minimal of general type and the fixed points of
automorphisms in G are isolated.

Lemma 2.11. If K 2
Z = 0, the surface Z has Kodaira dimension  � 1. If K 2

Z > 0,
the surface Z has Kodaira dimension  = 2.

Proof. (We follow the ideas from [Keum 2008].) The quotient surface has q = pg =0
and thus �(OZ ) = 1. Let m � 1 be an integer. Then

�mK Z⇡
⇤KS/G = �mK 2

S/G = � 8
|G|m < 0;

therefore H 0(Z , �mK Z ) = {0} for every m � 1. Let m � 2; then from the Serre
duality and Riemann–Roch we obtain

H 0(Z , mK Z ) = �(OZ ) + m(m � 1)

2
K 2

Z + h1(Z , mK Z ).

If K 2
Z > 0, it immediately follows that Z is of general type. If K 2

Z = 0, the surface
has h0(Z , 2K Z ) 6= 0 and cannot be rational by the Castelnuovo criterion. Moreover,
as � = 1 it cannot be a ruled surface. Suppose that Z is an Enriques surface. As
K 2

Z = 0, it is a minimal surface, but this is impossible because h0(Z , 3K Z ) 6= 0;
therefore  > 0. ⇤

3. Automorphisms of smooth Shimura surfaces and generalities on
quaternionic fake quadrics

Let us give a more detailed description of Shimura surfaces and quaternionic fake
quadrics. First, recall that a lattice 0 < PSL2(R) ⇥ PSL2(R) ⇠= Aut H ⇥ Aut H

is irreducible if it is not commensurable with a product 01 ⇥02 of two discrete
subgroups 01,02 ⇢ PSL2(R). Equivalently, the image of 0 under the projection
onto one of the factors PSL2(R) is a dense subgroup of PSL2(R). Irreducible
lattices in PSL2(R)⇥ PSL2(R) can be constructed arithmetically in the following
way. Let k be a totally real number field of degree g = [k : Q] � 2, and let
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B = (↵,�)k := h1, i, j, i jik , with i2 = ↵ 2 k, j2 = � 2 k, i j = � j i , be a quaternion
algebra over k such that

(3-1) B ⌦Q R =
Y

⇢2Hom(k,R)

B⇢ ⇠= M2(R) ⇥ M2(R) ⇥ HR ⇥ · · · ⇥ HR| {z }
g�2

.

Here, B⇢ = (↵⇢,�⇢)R and HR = (�1, �1)R denotes the skew field of Hamiltonian
quaternions. Let 2k be the ring of integers of k and O a maximal order in B, that
is, a maximal subring of B which is a complete 2k-lattice in B. Finally, let O1 be
the subgroup of all elements in O of reduced norm one.

The isomorphism (3-1) induces an embedding of O1 into SL2(R)⇥ SL2(R) by
taking the element � 2 O1 to the pair (� ⇢1, � ⇢2) 2 SL2(R)⇥ SL2(R), where � ⇢i is
the image of � in B⇢i . The group O1 then acts on H ⇥ H as a group of fractional
linear transformations. Namely, if (z, w) 2 H⇥H is a point and an element � 2O1

is identified with two matrices � ⇢1 and � ⇢2 2 SL2(R), then

� (z, w) = (� ⇢1 z, � ⇢2w).

After dividing out by the ineffective kernel, one considers the group

01
O = O1/{±1} ⇢ PSL2(R) ⇥ PSL2(R)

and it can be proven that 01
O is an irreducible lattice in PSL2(R)⇥PSL2(R). More-

over, this lattice is cocompact if and only if B is a division quaternion algebra (see
[Vignéras 1980, p. 104]). In general we say that a subgroup 0⇢PSL2(R)⇥PSL2(R)

is an arithmetic lattice if there exists k, B, ⇢1, ⇢2,O as above such that 0 is com-
mensurable with 01

O. Since PSL2(R) ⇥ PSL2(R) is a semisimple real Lie group
of real rank 2, the famous arithmeticity theorem of Margulis [1991, Theorem (A),
p. 298] (or see [Zimmer 1984, Theorem 6.1.2, p. 114]) states that any irreducible
lattice 0 in PSL2(R) ⇥ PSL2(R) is an arithmetic lattice.

Let 0 be irreducible and cocompact (arithmetic) lattice in PSL2(R)⇥ PSL2(R)

and X0 := 0\H⇥H be the orbit space of the discontinuous action of 0 on H ⇥ H.
Then, there is a natural structure of compact algebraic surface on X0 . Such a surface
X0 is called (compact) Shimura surface and can be seen as the compact analog of
a Hilbert modular surface. We know that X0 is smooth if 0 is torsion free. The
numerical invariants of a smooth X0 are computed in [Matsushima and Shimura
1963]; see also [Shavel 1978]. It follows that a smooth X0 is a fake quadric if and
only if c2(X0) = 4 (see [Shavel 1978]).

Let us now study automorphisms of smooth Shimura surfaces X0 = 0\H⇥H

where 0 is a cocompact and irreducible torsion-free lattice in Aut H ⇥ Aut H.
Let µ : H ⇥ H ! H ⇥ H be the involution exchanging the two factors. The group
Aut(H⇥H) is the semidirect product of Aut H⇥Aut H by the group generated by µ.
Let N0 (resp. N00) be the normalizer of 0 in Aut(H⇥H) (resp. in Aut H⇥Aut H);
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N00 is a subgroup of N0 of index 1 or 2. The following result is crucial for our
computations.

Theorem 3.12. The automorphism group of the smooth Shimura surface X0 is
(isomorphic to) N0/0. An automorphism has only finitely many fixed points or it
is an involution whose fixed point set is a union of smooth Shimura curves.

There exists an involution with a purely one-dimensional fixed point set if and
only if N0 6= N00.

An automorphism of a fake quadric has only finitely many fixed points.

Proof. Since H ⇥ H is the universal covering of X0 , every automorphism � of X0
lifts to an automorphism � of H ⇥ H; this � normalizes 0 and two elements � , � 0

both represent � if and only if ��1� 0 2 0. Hence, � defines an element �0 of the
group N0/0. Conversely, for a class �0 2 N0/0, the map � : X ! X defined
by � (0x) = �0x = �0��1� x = 0� x is an automorphism of X . We thus proved
that Aut(X) = N0/0.

We say that � 2 Aut(X) = N0/0, with � = �0 2 N0/0, is a factor preserving
automorphism if � is in N00.

Let us denote by F0 a fundamental domain in H ⇥ H of 0. Let � 2 Aut(X)

be a nontrivial factor preserving automorphism and let s be a fixed point, with
representative (z1, z2) in F0. Let � 2 N00 be a representative of � such that
� (z1, z2) = (� ⇢1 z1, �

⇢2 z2) = (z1, z2). The point s is an isolated fixed point of � if
and only if � has finitely many fixed points in F0.

Since (� ⇢1 z1, �
⇢2 z2) = (z1, z2), z1 is a fixed point of � ⇢1 and z2 is a fixed

point of � ⇢2 . The only automorphisms of H with fixed points in H are elliptic
transformations or the identity. An elliptic transformation has a unique fixed point
in H.

By Shimizu’s theorem [1963, Theorem 2], � ⇢1 is trivial if and only if � ⇢2 is
trivial. Since we supposed that � is nontrivial, at least one — and thus both — of
the � ⇢i are elliptic elements of PSL2(R). Thus the point (z1, z2) is the unique fixed
point of � in H ⇥ H, therefore the point s is an isolated fixed point of � .

Suppose now that � 2 Aut(X) is not a factor preserving automorphism. Let
� 0 2 N0 a representative of � 2 N0/0. There exists � = (�1, �2) 2 Aut H⇥Aut H

such that � 0 = �µ 2 Aut(H ⇥ H). Suppose that � has an infinite number of fixed
points. Then by the above discussion, the factor preserving automorphism � 2 (with
representative (�µ)2 = (�1�2, �2�1)) must be the identity and (�1�2, �2�1) must be
in 0. Let s = 0(z1, z2) be a fixed point of � . There exists � 2 0 such that

(�1z2, �2z1) = �(z1, z2).

After the change of the representative � 0 by ��1� 0, we can assume that �= 1, thus
z2 = �2z1, �1�2z1 = z1 and �1�2z2 = z2. Since (�1�2, �2�1) is in the group 0 in
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which a nontrivial element has no fixed points, we obtain that �2�1 = �1�2 = 1.
Since �1�2 = 1, the point (t, �2t) (for t 2 H) satisfies

� 0(t, �2t) = (t, �2t),

therefore there are no isolated fixed points for � and its fixed point set is purely
one-dimensional. The image of the disk 1 = {(t, �2t) | t 2 H} in X is a smooth
Shimura curve (see, for instance, [Granath 2002, Chapter 7]) fixed by � .

Assume now that X0 is a quaternionic fake quadric and that the fixed locus C
of � is a smooth curve. The topological Lefschetz formula (see Corollary 2.5)
implies that the genus of the irreducible components of C is negative, thus the
automorphism has only a finite number of fixed points. ⇤

Remark 3.13. Note that according to Theorem 3.12 and the proof of Corollary 2.5,
the quotient of a quaternionic fake quadric by a group G is a Q-homology quadric
if and only if each automorphism � 2 G has 4 fixed points, otherwise this quotient
is a Q-homology projective plane. All the cyclic groups G which we will study in
Section 5 give examples of Q-homology quadrics, with the only possible exception
for automorphisms of order 4.

4. Quaternionic fake quadrics with nontrivial automorphism groups

As already mentioned, a series of examples of quaternionic fake quadrics has been
constructed in [Shavel 1978]. There, the author concentrates on arithmetic lattices
0 ◆ 01

O which are defined by quaternion algebras over real quadratic fields of class
number one. More recently, in [Džambić 2013], more examples of quaternionic
quadrics associated with quaternion algebras over quadratic fields have been found.
In this section we will give examples of some known quaternionic fake quadrics
together with their automorphism groups. We refer the reader to [Vignéras 1980]
and [Deuring 1968] for generalities on arithmetic theory of quaternion algebras.

Let us first make a few general observations, before we discuss the exam-
ples in detail. For technical reasons it is more practical to consider the group
PGL+

2 (R) ⇥ PGL+
2 (R), where PGL+

2 (R) = GL+
2 (R)/R⇤ and GL+

2 (R) is the group
of all 2⇥2 matrices with positive determinant, instead of PSL2(R)⇥PSL2(R). We
identify PGL+

2 (R) ⇥ PGL+
2 (R) with the group Aut H ⇥ Aut H of factor preserving

holomorphic automorphisms.
From the point of view of Theorem 3.12 we will be interested only in automor-

phism subgroups G  N0/0 = Aut(X0) of factor preserving automorphisms, that
is, with N0 = N00 < Aut H ⇥ Aut H, which we will do in the following. In all the
considered examples the normalizers N0 will be normalizers of maximal orders
and all such lattices can be described arithmetically as follows (see [Borel 1981]).
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If X0 is a quaternionic fake quadric, there is an associated tuple (k, ⇢1, ⇢2, B,O)

as described in Section 3. The quaternion algebra B is for fixed ⇢1, ⇢2 uniquely de-
termined (up to isomorphism) by the reduced discriminant dB = v1 · · · vr , the formal
product over finite places vi of k where B is ramified, that is, B ⌦k kvi � M2(kvi ).
This is a special case of H. Hasse’s deep classification theorem for simple algebras
over number fields (see [Deuring 1968, VII.5, Satz 9, p. 119] or [Vignéras 1980,
Chapitre III, Théorème 3.1, p. 74] ). Hence, (k, ⇢1, ⇢2, B,O) = (k, ⇢1, ⇢2, dB,O).
In the following we will often abbreviate such a datum which determines the quater-
nion algebra B with B(k, dB) or B(k, v1 · · · vr ). Let us fix a datum B(k, v1 · · · vr )

and let B+ be the group of all x 2 B⇤ such that the reduced norm Nrd(x) is totally
positive. It is known that

(4-1) N0+
O = {x 2 B+ | xOx�1 = O}/k⇤

is a maximal lattice. N0+
O contains 01

O and 01
O is normal in N0+

O with N0+
O/01

O ⇠=
(Z/2Z)l an elementary abelian 2-group with l � r and r is the number of ramified
places in B (see [Shavel 1978], for instance). If the class number of k is one (as
will be the case in all the considered examples) there is an alternative description
of N0+

O as

(4-2) N0+
O =

�
↵ = %

✏1
1 · · · %✏r

r �⌧ 2 B⇤ �� Nrd(↵) totally positive,

⌧ 2 k⇤, � 2 O⇤, ✏i 2 {0, 1}, Nrd(%i ) divides dB
 
/k⇤

(see [Shavel 1978, p. 223]). It follows that a quaternionic fake quadric X0 with
0 ◆ 01

O will have an elementary abelian 2-group as the automorphism group
Aut(X0). All Shavel’s examples will provide such automorphism groups.

A fake quadric with automorphism group Z/2Z. There are examples of quater-
nionic fake quadrics X0 whose automorphism group is Z/2Z and, as mentioned
above, they already appear in [Shavel 1978].

For example, let k = Q(
p

2) and let B = B(k, p3p7) be the (unique) quaternion
algebra over k which is ramified exactly at the two finite primes p3 and p7 of k
lying over the rational primes 3 and 7 respectively. Since k has the class number
one, there is the unique (up to conjugation) maximal order O in B. Consider the
group 01

O. By [Shavel 1978, Proposition 4.7], X01
O

is smooth. By the already
mentioned general result of Matsushima and Shimura [1963], q(X01

O
) = 0. The

Chern number c2(X01
O
) is computed via the volume formula of Shimizu (see [Shavel

1978, Theorem 3.1]). Since the prime 3 is inert and 7 is decomposed in k, this
formula gives c2(X01

O
) = 8. The normalizer of 01

O is N0+
O and by [Shavel 1978,

Proposition 1.3 and Proposition 1.4], we have

Aut(X01
O
) ⇠= L1/L2 = h[p3], [p7]i ⇠= (Z/2Z)2,
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where L1 is the group of principal fractional ideals of type (p3)(p7)I 2 (I a principal
fractional ideal) for which one can find a totally positive generator and L2 consists
of all principal ideals of type (a2) with a 2 k (see also [Shimura 1967, Section 3.12]).
Let 0p3 be the kernel of the canonical homomorphism

N0+
O �! L1/L2 �! h[p7]i.

By Shavel’s criterion [1978, Theorem 4.11], 0p3 is torsion free and as [0p3 :01
O]= 2,

X0p3
is a fake quadric with Aut(X0p3

) ⇠= Z/2Z.

A fake quadric with automorphism group (Z/2Z)2
. Consider again k = Q(

p
2)

and now the quaternion algebra B = B(k, p2p5) over k which is ramified exactly
at the two finite places p2 and p5. Again there is the unique maximal order O in
B and as in the previous example, Shavel’s results show that X01

O
is smooth. The

prime 2 is ramified and 5 is inert in k and therefore Shimizu’s volume formula gives
c2(X01

O
) = 4. Hence X01

O
is a fake quadric. With the same arguments as in the

previous example Aut(X01
O
) is isomorphic to (Z/2Z)2.

A fake quadric with automorphism group of order 20. Consider k = Q(
p

5) and
the quaternion algebra B = B(k, p2p5) over k which is ramified exactly at the
primes p2 and p5. In this case the group 01

O (where O is again a maximal order
in B), contains torsion elements of order 5 and no other torsions (see [Shavel 1978,
Proposition 4.7 and Theorem 4.8]).1 Volume formula of Shimizu gives in this case
c2(X01

O
) = 4/5. Let us now give a torsion-free subgroup 0 < 01

O of index 5. The
corresponding surface X0 will be a fake quadric. Since p2 is ramified in B, there is
a prime ideal P2 in O lying over p2 and satisfying P2

2 = p2O. Let

O1(P2) = {x 2 O1 | x ⌘ 1 mod P2}
and 01

O(P2) the image of O1(P2) in 01
O. The group 01

O(P2) is a normal subgroup
in01

O and the index can be computed via the localization of B at p2. Namely, observe
first that01

O/01
O(P2) is isomorphic to the factor group O1/O1(P2). This is because

�1 is in O1(P2). Let Op2 be the maximal order in Bp2 , that is, Op2 = O⌦2k 2kp2
,

where 2kp2
is the ring of integers in kp2 . Its maximal ideal bP2 is the topological

closure of P2. By the strong approximation property, O1/O1(P2) ⇠=O1
p2

/O1
p2

(bP2).
Note that B1

p2
= O1

p2
, since Op2 is the subring of Bp2 consisting of elements whose

reduced norm is less or equal 1. We use a theorem of C. Riehm [1970, Theorem 7]
by which

O1
p2

/O1
p2

(bP2) ⇠= ker
�
(Op2/

bP2)
⇤ Nr�! (2kp2

/p2)
⇤� ⇠= ker

�
F⇤

16
Nr�! F⇤

4
� ⇠= Z/5Z

1In Theorem 4.8 of [Shavel 1978], the symbol
�

p
�

for p = 2 should be read as the Kronecker
symbol; that is,

� d
2
�
= 1 , d ⌘ ±1 mod 8 and = �1 , d ⌘ ±3 mod 8.
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(Here Nr is the surjective homomorphism of multiplicative groups arising from
the norm map for the field extension F16/F4.) Since 01

O(P2) is embedded in
O1

p2
(bP2)/ ± 1 and the latter group is a pro-2-group (again by [Riehm 1970]) it

cannot contain elements of order 5. Therefore, 01
O(P2) is a torsion-free group

and X01
O(P2) is a fake quadric. Since 01

O contains a 5-torsion and 01
O normalizes

01
O(P2), X01

O(P2) contains an automorphism of order 5. In order to determine
the full automorphism group Aut(X01

O(P2)) we first need to find the normalizer
of 01

O(P2). By definition, elements of N0+
O normalize O, that is, xOx�1 = O.

Let � 2 01
O(P2). Since the class number of k is one, every two-sided O-ideal is

principal and we can choose 52 2 O such that 52O = P2. Moreover, as P2 is
uniquely determined by the property that the 2k-ideal Nrd(P2) is p2, we can choose
52 such that Nrd(52) = 2. Then � = ±(1 + m52) with m 2 O. For x 2 N0+

O we
have x� x�1 = 1 + xm52x�1 = 1 + m0x52x�1 with some m0 2 O. The element
x52x�1 lies in O and Nrd(x52x�1) = Nrd(52) = 2. Since P2 = h52i is the
unique prime ideal over 2, x52x�1 2 P2 and x� x�1 2 01

O(P2). It follows that the
normalizer of 01

O(P2) is N0+
O. This leads to an exact sequence

(4-3) 1 �! 01
O/01

O(P2) �! N0+
O/01

O(P2) �! N0+
O/01

O �! 1

which we can write abstractly as

1 �! Z/5Z �! Aut(X01
O(52)

) �! Z/2Z ⇥ Z/2Z �! 1.

Let � 2 O1 satisfy �5 = �1, that is, � gives rise to a 5-torsion in 01
O. Then �

satisfies the equation �2 � 1+
p

5
2 �+ 1 = 0 over k. We can assume that � generates

01
O/01

O(P2). Let g = �+ 1. The reduced norm of g is Nrd(g) = (�+ 1)(�̄+ 1) =
Nrd(�) + Trd(�) + 1 = 2 + 1+

p
5

2 = 5+
p

5
2 , where Trd is the reduced trace and

x 7! x̄ is the standard involution of first kind on B. Since 5+
p

5
2 is a totally positive

generator of the prime ideal over 5, g defines an element of N0+
O (see (4-2)). On

the other hand g2 = (�+ 1)2 = �2 + 2�+ 1 =
� 1+

p
5

2 �� 1
�
+ 2�+ 1 =

� 5+
p

5
2

�
�.

This shows that g has order 10 in N0+
O and hence gives an element of order 10

in N0+
O/01

O(P2). Moreover the image of g in N0+
O/01

O is not trivial. Using the
computer algebra system PARI, we can check that both ramified primes p2 and
p5 are not split in k(

p
�2). This implies that k(

p
�2) ⇢ B (see [Shavel 1978,

Proposition 4.5]) and we can take
p

�2 as the generator 52 of P2. Hence, 52,
considered as an element of N0+

O, is of order 2 and the images of g and 52 in
N0+

O/01
O generate this group.

Lemma 4.14. Let g and 52 be elements constructed above. Then in N0+
O we have

the relation 52g52 = g�1 modulo 01
O(P2).

Proof. The element 52 generates P2. Consider g and 52 as the elements of the
localization Bp2 of B at p2. This is a division quaternion algebra over kp2 and has a
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representation
Bp2 = Lp2 �52Lp2,

where Lp2 is the unique unramified quadratic extension of kp2 (see [Vignéras 1980,
p. 34]). For every t 2 Lp2 we have t52 =52 t̄ , where t̄ is the Galois-conjugate of
t in Lp2 . The element g lies in kp2(�) = kp2(⇠5) which is an unramified quadratic
extension of kp2 , so Lp2 = kp2(�). Therefore g 2 Lp2 and g52 =52ḡ. Because gḡ
is in k⇤ we have that ḡ = g�1 considered as an element of N0+

O ⇢ B⇤
p2

/k⇤
p2

. This
gives a relation

52g52 = g�1

in N0+
O, since 52

2 = 1 in N0+
O. Also, g and 52g52 = g�1 are not equal modulo

01
O(P2) because this would imply that g2 201

O(P2). But as 01
O(P2) is torsion-free

and g2 is of finite order, this is impossible. ⇤
Proposition 4.15. With above notations we have

Aut(X01
O(P2)) ⇠= D10.

Proof. By the above discussion, Aut(X01
O(P2)) is of order 20 and is generated by

elements g of order 10 and 52 of order 2 satisfying 52g52 = g�1. The only group
of order 20 with these relations is D10. ⇤

A fake quadric with automorphism group of order 8. We consider k = Q(
p

5)

and B = B(k, p2p11), the unique quaternion algebra ramified exactly at the primes
p2 and p11. Since 2 is inert and 11 is decomposed in k, Shimizu’s volume formula
gives c2(X01

O
) = 4

5·12(4 � 1)(11 � 1) = 2 as the value of the second Chern number
of the quotient X01

O
, where again 01

O is the norm-1 group of a maximal order in B.
As before, results of [Shavel 1978] show that 01

O contains only torsion elements of
order 2 and no other torsions (Here, observe that 2 is split in Q(

p
�15), hence, by

[Shavel 1978, Theorem 4.8] there are no elements of order 3 in 01
O, and note that

there are no elements of order 5 because 11 ⌘ 1 mod 5 which implies that p11 is
split in k(⇠5) ). Since p11 is ramified in B, there is the unique prime ideal P11 in O
such that P2

11 = p11O. Consider the principal congruence subgroup

O1(P11) = {x 2 O1 | x ⌘ 1 mod P11}

and 0O(P11) its image in 01
O. It is a normal subgroup in 01

O. The quotient
01
O/01

O(P11) is isomorphic to O1/±O1(P11) because �1 /2O1(P11). In order to
compute the latter quotient we change over to the localization at the prime p11. Let

Bp11 = B ⌦k kp11 = B ⌦k Q11.

This is the unique division quaternion algebra over Q11. We write Op11 =O⌦2k Z11
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for its maximal order. As in the previous example let bP11 denote the prime ideal
of Op11 . We have

O1/O1(P11) ⇠= O1
p11

/O1
p11

(bP11)

by the strong approximation theorem. By Riehm’s result [1970, Theorem 7],

O1
p11

/O1
p11

(bP11) ⇠= ker
�
(Op11/

bP11)
⇤ Nr�! (2kp11

/p11)
⇤� ⇠= ker

�
F⇤

121 �! F⇤
11
�
.

Since F121 = F11(⇠12), where ⇠12 denotes a primitive twelfth root of unity we
conclude that O1

p11
/O1

p11
(bP11) is isomorphic to µ12 = h⇠12i. Hence

01
O/01

O(P11) ⇠= O1
p11

/ ±O1
p11

(bP11) ⇠= µ6 = h⇠6i.

Let us now define an intermediate group

0 = {x 2 01
O | x mod P11 2 h⇠ 2

6 i ⇢ µ6}.

0 < 01
O is a subgroup of index 2, hence c2(X0) = 4. Moreover, 0 is torsion-free

since it cannot contain elements of order 2. For if an order-two element x is in 0,
then its image x mod P11 in 01

O/01
O(P11) lies in a cyclic group h⇠ 2

6 i of order three,
hence it must be the identity. But this means that x is in 01

O(P11). On the other
hand 01

O(P11) is torsion-free because it embeds in a pro-11 group O1
p11

(bP11)/ ± 1.
This contradicts the assumption on x . All this shows that X0 is a fake quadric.

Proposition 4.16. Let N0+
O be defined as in (4-1). Then N0+

O is the normalizer of
0 and N0+

O/0 is isomorphic to D4.

Proof. As a subgroup of index 2 in 01
O the group 0 is normal in 01

O. On the other
hand, for the same reason as in the previous example, 01

O(P11) as well as 01
O is

normal subgroup in N0+
O. This already implies that 0 is normal in N0+

O because
any conjugate of 0 will be a subgroup between 01

O(P11) and 01
O of index 2 in 01

O.
There is only one such group, namely 0, since 01

O/01
O(P11) ⇠= Z/6Z. Similar

exact sequence as (4-3) now shows that Aut(X0) is an extension of Z/2Z by the
Klein’s four group. Since the 2-torsions in 01

O come from embeddings of fourth
roots of unity into O there is � 2 O1 such that �2 = �1. Let g = �+ 1. Then, as
Trd(�) = 0, we have Nrd(g) = (�+ 1)(�̄+ 1) = 2 and also g2 = (�+ 1)2 = 2�
which implies that g defines an element of order 4 in N0+

O and hence an element
of order 4 in N0+

O/0. Moreover, the image of g in N0+
O/01

O is not trivial. Since
both prime divisors 2 and ⇡11 of the reduced discriminant do not split in k(

p�⇡11)

(as can be checked using PARI, for instance), the element511 = p�⇡11 is in B and
moreover 511 defines an element of N0+

O of order 2 such that the images of 511
and g in N0+

O/01
O generate this group. Same argument as in Lemma 4.14 gives a

relation between 511 and g: consider 511 as the generator of the prime ideal P11.
Locally, Bp11 can be written as Bp11 = Lp11 �511Lp11 , where Lp11 = kp11(⇠12) is



106 AMIR DŽAMBIĆ AND XAVIER ROULLEAU

the unique unramified quadratic extension of kp11
⇠= Q11 with the multiplication

rule t511 = 511 t̄ for all t 2 Lp11 . The element g is in Lp11 , namely g = 1 + ⇠ 3
12.

Then g511 =511ḡ =511(1+⇠12
3) =511(1+⇠ 9

12). In N0+
O the relations ḡ = g�1

and 52
11 = 1 hold, hence 511g511 = g�1 in N0+

O. Also g 6= g�1 modulo 0,
since otherwise g2 would be in 0 which is not possible because g2 is torsion and
0 torsion-free. N0+

O/0 is isomorphic to D4 which is the only group of order
8 generated by two elements 511 of order 2 and g of order 4 with h 6= g2 and
511g511 = g�1. ⇤

Remark 4.17. Considering k = Q(
p

13), the quaternion algebra B = B(k, p2p3),
and 0 = 01

O(P3), the arguments as in the examples before will show that X01
O(P3)

is a fake quadric whose automorphism group is isomorphic to D4.

A fake quadric with automorphism group D6. This time we consider the quadratic
field k = Q(

p
2) and the quaternion algebra B = B(k, p2p3). The norm-1 group

01
O of a maximal order in B contains torsion elements of order 3, but no elements

of order 2, because p3 is decomposed in k(
p

�1). The second Chern number of
the quotient X01

O
is c2(X01

O
) = (9 � 1)/6 = 4/3. Let 01

O(P2) be the principal
congruence subgroup corresponding to the prime ideal P2 ⇢ O, defined by the
relation P2

2 = p2O. Again by Riehm’s theorem and with arguments as in Section 4,
01
O(P2) is torsion-free normal subgroup in 01

O of index 3, hence X01
O(P2) is a fake

quadric. The automorphism group Aut(X01
O(P2)) is isomorphic to the factor group

N0+
O/01

O(P2).

which is an extension of 01
O/01

O(P2) ⇠= Z/3Z by N0+
O/01

O ⇠= Z/2Z ⇥ Z/2Z.

Proposition 4.18. We have Aut(X01
O(P2)) ⇠= D6.

Proof. Let � 2 O1 be an element with �3 = �1 and g = �+ 1. Such � exists since
01
O contains 3-torsions. We can take ±� to be the generator of 01

O/01
O(P2). Since

Trd(�) = 1, we have Nrd(g) = 3 which implies that g defines an element in N0+
O.

Additionally g2 = �2 + 2�+ 1 = 3� which means that g has order 6 considered
as an element of N0+

O. The totally positive element ⇡2 = 2 +
p

2 2 k generates
p2 and since neither ⇡3 = 3 nor ⇡2 are split in k(

p�⇡2), 52 = p�⇡2 lies in B
and defines an element in N0+

O of order 2 such that the classes of g and 52 in
N0+

O/01
O generate this group. In particular, 52 is a generator of P2. Locally

Bp2 = Lp2 �52Lp2 , where Lp2 = Q2(⇠6) is the unramified quadratic extension of
kp2

⇠= Q2. As in previous examples, g lies in Lp2 and 52g52 = ḡ = g�1 in N0+
O.

This gives a relation 52g52 = g�1 in N0+
O/01

O(P2). As 52 is not a power of g,
the finite group generated by g and 52 is isomorphic to D6. ⇤
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Automorphism groups of order 16 and 24. There are more examples of quater-
nionic fake quadrics with a nontrivial automorphism group. For instance, all exam-
ples in Shavel’s paper have Z/2Z or (Z/2Z)2 as the full group of automorphisms.
As in previous examples we show

Proposition 4.19. Let B(Q(
p

2), p2, p7) be the indefinite quaternion algebra over
k = Q(

p
2) with reduced discriminant dB = p2p7 and 01

O(P7) the congruence
subgroup in 01

O corresponding to a maximal order O in B with respect to the prime
ideal P7 of O lying over the ramified prime p7. Then X01

O(P7)
is a fake quadric

with the automorphism group Aut(X01
O(P7)

) ⇠= D8.

Proof. The proof goes along the same lines as in the examples before. By Riehm’s
Theorem, 01

O/01
O(P7) ⇠= Z/4Z and we obtain c2(X01

O(P7)
) = 4 by Shimizu’s

formula. By Shavel’s criterion for the existence of torsions, we find that the
maximal order O contains a primitive eighth root of unity � which leads to an
element of order 4 in 01

O. We can take � as a generator of this quotient. As in the
examples before take g = 1 + �. Then, as � satisfies �2 �

p
2�+ 1 = 0 over k,

Nrd(g) = Nrd(�+ 1) = 2 +
p

2, hence g defines an element in N0+
O. We have

g2 = �2 + 2�+ 1 =
p

2�+ 2�= (2 +
p

2)�. Hence, g is an element of order 8 in
N0+

O and its image in N0+
O/01

O is not trivial. The rational prime 7 is split in k, so
there are two possible choices of p7. Fix a prime p7 = h⇡7i (⇡7 = 3+

p
2 say). Both

⇡7 as well as ⇡2 are ramified in k(
p�⇡7), hence

p�⇡7 2 B defines an element
57 2 B which defines an order-2 element in N0+

O. As in the previous examples we
have 57g57 = ḡ because locally in Bp7 , 57 = p�⇡7 generates the unique prime
ideal of the maximal order Op7 and g lies in the unramified quadratic extension
Lp7 = Q7(⇠8). This gives a relation 57g57 = g�1 in N0+

O/01
O(P7). Also 57 is

not a power of g modulo 01
O(P7) since the reduced norms of57 and g are different

primes. The only group of order 16 with these relations is D8. ⇤
Let us finally sketch the construction of a fake quadric with an automorphism

group of order 24.

Proposition 4.20. Let B(Q(
p

3), p2, p3) be the indefinite quaternion algebra over
k = Q(

p
3) ramified over the prime ideals p2 and p3 and let 01

O(P2P3) G 01
O

be the principal congruence subgroup with respect to the principal ideal P2P3
of a maximal order O ⇢ B lying over p2p3. Then X01

O(P2P3)
is a fake quadric

with |Aut(X01
O(P2P3)

)| = 24. The automorphism group Aut(X01
O(P2P3)

) contains a
cyclic subgroup of order 12.

Remark 4.21. The full automorphism group in this case has order 24. To our
knowledge, this is the largest known automorphism group of a fake quadric. The
precise abstract group structure of Aut(X01

O(P2P3)
) is not known to us, since the

local method, used in previous examples does not apply directly in this case.
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Proof. That X01
O(P2P3)

has the correct numerical invariants follows again from
Riehm’s Theorem, Shimizu’s formula and the observation that for the index we
have [01

O : 01
O(P2P3)] = [01

O : 01
O(P2)][01

O : 01
O(P3)]. By Shavel’s criterion,

B contains k(⇠12) where ⇠12 is a primitive twelfth root of unity, hence there is an
element � 2 O with �6 = �1. To show that 01

O(P2P3) is torsion-free we have to
exclude the existence of 6-torsions in 01

O(P2P3). But since the reduced trace of �
is ±

p
3 which is not congruent 2 modulo p2p3, � is not contained in 01

O(P2P3).
The element g = �+ 1 has norm Nrd(g) = 2 +

p
3 which is a totally positive unit

of 2k unit, hence g lies in 0+
O = O+/2⇤

k , where O+ denotes the group of all units
whose reduced norm is totally positive. The group 0+

O is an index-2-extension of
01
O since the fundamental unit 2 +

p
3 is totally positive. Also g2 = (2 +

p
3)�

which shows that g has order 12 in 0+
O G N0+

O. The image of g in N0+
O/01

O is
not trivial and the discussion in [Shavel 1978, pp. 223–224] shows that N0+

O/0⇤
O

is generated by the class of an element 5 2 N0+
O with Nrd(5) = ⇡2⇡3 where

p2 = h⇡2i, p3 = h⇡3i (note that the generators ⇡2 and ⇡3 cannot be chosen totally
positive). Therefore, Aut(X01

O((P2P3))
) is of order 24 and is an extension of Z/6Z

by the Klein’s four group. ⇤

5. Computations of the quotient surfaces

Let S be a quaternionic fake quadric, G a group of automorphisms of S, S/G the
quotient surface and let ⇡ : Z ! S/G be the minimal desingularization map.

Let us first study the case where G is generated by an involution � .

Proposition 5.22. An involution � has 4 fixed points. The invariants of Z are

K 2
Z = 4, c2 = 8, q = pg = 0, h1,1 = 5.

The surface Z is minimal of general type.

Proof. By Lefschetz’s formula (Proposition 2.6), 1 = P
s=� (s)

1
4 , therefore � has 4

fixed points. Their images in S/� are 4 A1 singularities, resolved by 4 (�2)-curves
on Z . The invariants of Z are easy to compute.

The surface Z is of general type and is minimal because K Z is the pullback of
the nef divisor KS/G . ⇤

Proposition 5.23. Let G = h� i ⇠= Z/3Z. The singularities of the quotient surface
S/G are 2A3,1 + 2A3,2. The resolution Z has general type, and

K 2
Z = 2, c2=10, q = pg = 0.

Proof. We use the notations of Zhang’s formula (Proposition 2.7). In this case this
formula gives r1 + r2 = 4. An A3,1 singularity is resolved by a (�3)-curve, and
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we have

K 2
Z = 8

3
� r1

3
.

Therefore r1 = 2 and r2 = 2. The singularities of S/G are 2A3,1 +2A3,2. Moreover,
as q = pg = 0, we have c2 = 10. Z is of general type by Lemma 2.11. ⇤

Proposition 5.24. There is no quaternionic fake quadric S with G = (Z/3Z)2 ⇢
Aut S.

Proof. Let �1, �2 be the two generating elements of G. Let p be one of the 4 fixed
points of �1 (see Proposition 5.23). Since �1 and �2 commute, the set of fixed
points of �1 is sent to itself by �2, indeed there are two orbits of 2 elements because
of the different local type of the action of �1. Now �2 has order three, hence it
acts trivially on these 2 orbits and the conclusion is that there are 4 fixed points for
the action of the whole group G. The faithful action of G on the tangent space of
p can be diagonalized, hence there are elements with one eigenvalue equal to 1,
contradicting Lemma 2.8 and Theorem 3.12. ⇤

Proposition 5.25. Let G =Z/4Z. The singularities of the quotient S/G are 2A4,1+
2A4,3 or A1 + 2A4,3. The invariants of the resolution Z are

K 2
Z = 0, c2 = 12, q = pg = 0

in the first case, and in the second case Z is minimal and satisfies

K 2
Z = 2, c2 = 10, q = pg = 0.

Remark 5.26. Proposition 5.34 gives an example of the first case.

Proof. Let s be a fixed point of an order 4 automorphism � acting on S. As the
involution � 2 has only isolated fixed points, the eigenvalues of � acting on TS,s
cannot be (i, �1) or (�i, �1). Let a, b, c be the number of fixed points such that
the eigenvalues of � are (i, i), (�i, �i) and (i, �i) respectively. The Lefschetz
holomorphic fixed point formula implies

� a
2i

+ b
2i

+ c
2

= 1 and a + b + c = 4 or 2,

thus there are two cases:

(1) a = b = 1 and c = 2. The singularities of S/G are 2A4,1 + 2A4,3.

(2) a = b = 0 and c = 2. In this case, the singularities of S/G are A1 + 2A4,3
because � 2 has 4 fixed points.
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An A4,1 singularity is resolved by a (�4)-curve Ck and an A4,3 singularity is
resolved by a chain of three (�2)-curves and we have

K Z = ⇡⇤KS/� �
k=2X

k=1

1
2Ck,

thus K 2
Z = 8

4 � 2 = 0 in the first case. Additionally,

e(S/� ) = 1
4(4 + (4 � 1)4) = 4,

thus c2(Z) = 4 + 8 = 12. The invariants in the second case are computed in a
similar way. ⇤
Proposition 5.27. Let G = Z/5Z. The singularities of S/G are 4A5,2 or A5,1 +
2A5,2 + A5,4 or 2A5,1 + 2A5,4. The invariants of the surface Z are, respectively,

K 2
Z = 0

c2 = 12
or

K 2
Z = �1

c2 = 13
or

K 2
Z = �2

c2 = 14,

and in any case q = pg = 0.

Remark 5.28. (1) In Proposition 5.31 below, we give an example of a surface such
that the quotient by an order 5 automorphism has 2A5,1 + 2A5,4 singularities.

(2) By the same kind of arguments as for (Z/3Z)2 (see Proposition 5.24), there is
no fake quadric S with (Z/5Z)2 ⇢ Aut S.

Proof. Using the notations of Proposition 2.7, the number of fixed points r1 + r2 +
r3 + r4 equals 4. As e(S/� ) = 1

5(4 + (5 � 1)4) = 4, Zhang’s formula yields

(a1, . . . , a4) =
�
0, 1

4 , 1
4 , 1

2

�
,

with X
4airi = r2 + r3 + 2r4 = 4.

Thus r1 = r4. Therefore the possibilities for (r1, r2, r3, r4) are (0, i, j, 0) with
i + j = 4, or (1, i, j, 1) with i + j = 2, or (2, 0, 0, 2). The singularities on the
quotient are, respectively,

4A5,2 or A5,1 + 2A5,2 + A5,4 or 2A5,1 + 2A4.

A singularity A5,i (i = 1, . . . , 4) contributes (respectively)

� 9
5 , �2

5 , �2
5 , 0

to K 2
Z . Thus the self-intersection number is

K 2
Z = 1

5(8 � 9r1 � 2(r2 + r3)),
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and according to the possible tuples (r1, . . . , r4) as above: K 2
Z = 0, or K 2

Z = �1,
or K 2

Z = �2. As e(S/G) = 4, we get c2 = 12, 13, or 14 according to the three
possible singular loci.

Let us justify our computation of K 2
Z . An A5,1-singularity is resolved by a

(�5)-curve C5, thus we have to add � 3
5C5 to the canonical divisor. This contributes�

�3
5C5

�2 = �9
5 to K 2

Z . On the other hand, an A5,2-singularity is resolved by a chain
of two curves C2, C3 with C2

k = �k. We have to add � 2
5C3 � 1

5C2 to ⇡⇤KS/G , and
the contribution to K 2

Z is
�2

5C3 + 1
5C2

�2 = � 2
5 .

Finally, note that A5,3 = A5,2, and the A5,4-singularity does not contribute to K 2
Z . ⇤

Proposition 5.29. If G = Z/6Z, then S/G has singularities 2A6,1 + 2A6,5. The
minimal resolution Z has invariants

K 2
Z = �4, c2 = 16, q = pg = 0.

Proof. Let s be a fixed point of an order 6 automorphism � . Let ↵ be a primitive third
root of unity. By Lemma 2.8, the action of � on TS,s has eigenvalues (�↵, (�↵)a) or
(�↵2, (�↵2)a) with a = 1 or 5. Let r1, r2 and r3 be respectively the number of fixed
points of � with eigenvalues (�↵, �↵), (�↵2, �↵2) and (�↵, �↵5). Lefschetz
fixed point formula (Proposition 2.6) implies the relation

r1

(1 +↵)2 + r2

(1 +↵2)2 + r3 = 1,

therefore r1 = r2 and �r1 +r3 = 1. By Corollary 2.5, � has 2 or 4 fixed points. The
only possibility for (r1, r3) is therefore (1, 2). The singularities are 2A6,1 + 2A6,5
and the minimal resolution Z of S/� has K 2

Z = 8
6 � 2 · 8

3 = �4. Moreover e(Z) =
1
6(4 + 5 · 4) + 2 + 2 · 5 = 16. ⇤

Let us study the case G = Z/8Z.

Proposition 5.30. Let � be an order 8 element acting on S. The singularities of
S/� are 2A8,3 + 2A8,5. The resolution Z of the quotient surface is a surface with

K 2
Z = �2, c2(Z) = 14, q = pg = 0.

Proof. Let p be a fixed point of � and let ⇠(p) be a primitive eighth root of unity
such that � acts on TS,p with eigenvalues ⇠(p) and ⇠qp

(p) for qp 2 {0, . . . , 7}. There
are no reflections, so we have ⇠ j

(p) 6= 1 and ⇠ jqp
(p) 6= 1 for j = 1, . . . , 7, thus qp is

prime to 2: qp 2 {1, 3, 5, 7}. Let a1, a3, a5 and a7 be the number of fixed points p
with qp = 1, 3, 5 or 7 respectively. We have

P
ai = 2 or 4. By summing over the

powers � k for k = 1, . . . , 7 in the formula of the holomorphic Lefschetz theorem,
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we get

7 =
X

p2S�

k=7X

k=1

1
det(1 � d� k |TS,p)

,

and thus

7 =
u=3X

u=0

k=7X

k=1

a2u+1

(1 � ⇠ k)(1 � ⇠ k(2u+1))
= 7

4a1 + 5
4a3 + 9

4a5 + 21
4 a7.

The possibilities for (a1,. . .,a4) are (4,0,0,0), (2,1,1,0), (1,0,0,1) and (0,2,2,0).
For t2 of order 4, we have seen that the singularities of S/� 2 are 2A4,1 + 2A4,3

or A1 + 2A4,3. Thus the only possibility for (a1, . . . , a4) is (0, 2, 2, 0), and the
singularities of S/� are 2A8,3 + 2A8,5. The Euler number of S/� is

e(S/� ) = 1
8(4 + 7 · 4) = 4.

Since 8
3 = 3 � 1

3 and 8
5 = 2 � 1

3� 1
2

we get

e(Z) = 4 + 2 · 2 + 2 · 3 = 14.

It is easy to check that a singularity A8,3 decreases K 2
Z by 1 and a singularity A8,5

decreases K 2
Z by 1

2 , thus we obtain K 2
Z = 8

8 � 2 · 1 � 2 · 1
2 = �2. ⇤

Proposition 5.31. Let S be a fake quadric with G = Z/10Z ⇢ Aut(S). The singu-
larities of the quotient surface S/G are 2A10,1 + 2A10,9. The resolution Z has the
invariants

K 2 = �12, c2 = 24, q = pg = 0.

Proof. Let � be an automorphism of order 10 acting on S. It has 2 or 4 fixed points.
As the involution � 5 has 4 fixed points, � cannot have 2 fixed points. Therefore

e(S/G) = 1
10

(4 + (10 � 1)4) = 4.

Let ⇠ be a primitive fifth root of unity and p a fixed point. There exist a = a(p) and
b = b(p) integers invertible mod 5 such that the action of � on TS,p has eigenvalues
(�⇠a, �⇠ ba). The Lefschetz holomorphic fixed point formula yields

1 =
X

p2S�

1
(1 + ⇠a)(1 + ⇠ab)

.

For b = 1, 2, 3, 4, the sum

c(b) =
a=4X

a=1

1
(1 + ⇠a)(1 + ⇠ab)
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is equal to �4, 1, 1, 6, respectively. Recall again that A10,3 = A10,7. For k 2 {1, 3, 9},
let rk be the number of points in S� giving an A10,k singularity. The Lefschetz fixed
point formula gives

4 = �4r1 + r3 + 6r9.

Taking care of the relation r1 + r3 + r9 = 4, we have the following possibilities for
(r1, r3, r9): (0, 4, 0), (1, 2, 1) and (2, 0, 2).

The resolution of an A10,3-singularity is a chain of 3 curves C2, C 0
2, C4 with

intersection numbers (�2)� (�2)� (�4). We have to add � 1
5(C2 + C 0

2 + C4) to
⇡⇤KS/G . Each singularity contributes (� 1

5(C2 + C 0
2 + C4))

2 = � 6
5 to K 2

Z .
Similarly, the resolution of an A10,1-singularity is a (�10)-curve C10. An A10,1-

singularity decreases K 2
S/G by (� 8

10C10)
2 = � 32

5 .
When the singularities of S/G are respectively 4A10,3, A10,1 + 2A10,3 + A10,9

and 2A10,1 +2A10,9, we have: K 2
Z = 8

10 �4 · 6
5 = �4, K 2

Z = 8
10 � 32

5 �2 · 6
5 �0 = �8

and K 2
Z = 8

10 � 2 · 32
5 = �12, respectively. The Euler number of Z is respectively

4 + 4 · 2 = 12, 4 + 1 + 2 · 2 + 9 = 18 and 4 + 2 + 2 · 9 = 24. Only the last case is
possible because 12 has to divide K 2

Z + e(Z). ⇤
Proposition 5.32. Let G = (Z/2Z)2. The quotient surface S/G contains 6 A1
singularities. The surface Z is minimal of general type and has the invariants

K 2
Z = 2, c2 = 10, q = pg = 0.

Proof. A faithful representation of G on a 2-dimensional space contains reflections,
therefore by Lemma 2.8, there are no points fixed by the whole G. The group G
contains 3 involutions. Each of these involutions has 4 isolated fixed points whose
image in X are 2A1 singularities. Thus there are 6A1 singularities on S/G and we
have

e(Z) = e(S/G) + 6 = 1
4(4 + 12) + 6 = 10.

Moreover, K Z = ⇡⇤KS/G is nef and K 2
S/G = K 2

S/4 = 2. By Lemma 2.10, we have
q = pg = 0. ⇤
Remark 5.33. (a) Fabrizio Catanese and Miles Reid pointed out to us that a mini-

mal surface of general type with c2
1 = 2c2 = 8, pg = 0 and automorphism group

containing G = (Z/2Z)3 such that each involution has only isolated points
must deform, therefore (Z/2Z)3 cannot be a subgroup of the automorphism
group of a quaternionic fake quadric, which is a rigid surface. The complete
argument is as follows: The minimal resolution Z of the quotient Y = X/G
of a fake quadric X by G would be a numerical Godeaux surface, that is, a
surface with c2

1 = 1 and with the maximal number of nodal curves, being equal
to 7. We do not know whether such a surface exists, but from coding theory
one would have a covering S ! Y with group G ramified only over the nodes.
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The covering surface S would have c2
1 = 8, pg = 0. However, the Kuranishi

family of deformations for the surface Z has dimension greater or equal to
the expected dimension, which is 8 = 10� � 2c2

1, and the 7 nodes impose at
most 1 condition each, because of the morphism of the global deformation
space to the local deformation space of the singularities. Therefore this family
of 7-nodal numerical Godeaux surfaces would have 1 modulus, and therefore
also the above surfaces S would vary in moduli. However, quotients of the
bidisk by an irreducible subgroup are rigid, for instance, by a theorem of Jost
and Yau.

(b) For G = Z/4Z ⇥ Z/2Z, the quotient surface S/G has singularities 2A1 + 2A3
and the desingularization Z has invariants K 2

Z = 1, c2 = 11, q = pg = 0. We
do not know if a fake quadric S with such automorphism subgroup exists.

Proposition 5.34. Let G = D4 acting on the fake quadric S. The singularities of
S/G are 4A1 + A4,3 + A4,1. The resolution Z of the quotient surface has invariants

K 2
Z = 0, c2(Z) = 12, q = pg = 0.

The elements of order 4 in D4 have 4 fixed points.

Proof. Let t and a be the generators of D4 such that t4 = 1, a2 = 1 and at = t3a.
The elements of order 4 are t and t3. The elements of order 2 are a, ta, t2a, t3a
and t2.

There cannot be a point of S that is fixed by the whole group G because any faith-
ful 2-dimensional representation of G contains a reflection (x, y) ! (x, �y) and
thus such a point would lie on a curve fixed by an involution, but an automorphism
of S has only isolated fixed points.

First case: Suppose that t has 4 fixed points, Fix(t) = {p1, ap1, p2, ap2}. The
Euler number of S/G is

e(S/G) = 1
8(4 + (2 � 1)(4 · 4) + (4 � 1)4) = 4.

The singularities on S/G are 4A1 + A4,3 + A4,1 and therefore

e(Z) = 4 + 4 + 3 + 1 = 12.

Moreover K 2
Z = 8

8 + (� 1
2)2(�4) = 0.

Second case: Suppose that t has 2 fixed points, Fix(t) = {p1, ap1}. The Euler
number of e(S/G) would be

1
8(4 + (2 � 1)18 + (4 � 1)2) = 7

2 ,

but this is not an integer. ⇤
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Proposition 5.35. Suppose that the dihedral group D8 of order 16 acts on fake
quadric S. The singularities of S/D8 are 4A1 + A8,3 + A8,5. The resolution Z of
the quotient surface has invariants

K 2
Z = �1, c2(Z) = 13, q = pg = 0.

Proof. Let t and a be generators of D8 such that t8 = a2 = 1 and at = t7a. Order 8
elements in G are t, t3, t5, t7; order 4 elements are t2, t6; order 2 elements are a,
ta, t2a, t3a, t4a, t5a, t6a, t7a and t4.

By the discussion on order 8 elements, t has 4 fixed points, say p1, ap1, p2, ap2.
Let p be a fixed point of an involution � 6= t4. The orbit of p under G consists of
8 elements, each is a fixed point of an involution 6= t4. The quotient surface has
1
8 · 8 · 4A1 + A8,3 + A8,5 singularities. We have

e(S/G) = 1
16(4 + 1 · (8 · 4) + 7 · 4) = 4,

and e(Z) = 4 + 4 + 2 + 3 = 13. Moreover K 2
Z = 8

16 � 1 � 1
2 = �1. ⇤

6. Reconstruction of a surface knowing its quotient

Miyaoka [1984] gives a bound on the number of disjoint (�2)-curves on a minimal
smooth surface Y . This implies in particular that if c2

1 = 4, 2 or 1 and �(OY ) = 1,
there are at most 4, 6 and 7 such curves respectively. The surfaces with c2

1 = 4, 2
we obtained as quotient of quaternionic fake quadrics reach that bound. For the
cases c2

1 = 2 these surfaces seem to be the first known ones with that property.
Dolgachev, Mendes Lopes, and Pardini [2002] study rational surfaces with the

maximal number of (�2)-curves. For that aim they use and develop the theory of
(Z/2Z)n-covers ramified over A1 singularities. Using their results, we obtain:

Proposition 6.36. Let Y be a smooth minimal surface of general type with q =
pg = 0 and 2Pic(Y ) = 0.

(a) If c1(Y )2 = 4, c2(Y ) = 8 and Y contains 4 disjoint (�2)-curves C1, . . . , C4,
then there exists a double cover of Y ramified over the curves Ci . The minimal
model of this covering has invariants c2

1 = 2c2 = 8 and q  1.

(b) If c1(Y )2 = 2, c2(Y ) = 10 and Y contains 6 disjoint (�2)-curves C1, . . . , C6,
then there exists a bidouble cover of Y ramified over the curves Ci . The
minimal model of this covering has invariants c2

1 = 2c2 = 8 and q  2.

(c) If c1(Y )2 = 1, c2(Y ) = 11 and Y contains 7 disjoint (�2)-curves C1, . . . , C7,
then there exists a (Z/2Z)3-cover of Y ramified over the curves Ci . The
minimal model of this covering has invariants c2

1 = 2c2 = 8 and q  2.
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Let F2 be the field with 2 elements. Let C1, . . . , Ck be k (�2)-curves on a
smooth surface Y . Let

 : F2
k ! Pic(Y ) ⌦ F2

be the homomorphism sending v = (v1, . . . , vk) to
P

vi Ci . We say that the curve
C j appears in the kernel ker if there is a vector v = (v1, . . . , vk) in ker such
that v j = 1. For v in ker , we denote by Lv an element of Pic(Y ) such that
2Lv = P

vi Ci (we sometimes identify elements of F2 with 0, 1 in Z). We have:

Proposition 6.37 [Dolgachev et al. 2002, Proposition 2.3]. Suppose that 2Pic(Y ) is
zero. There exists a unique smooth connected Galois cover ⇡ : Z ! Y such that the
Galois group of ⇡ is G = Hom(ker , Gm), the branch locus of ⇡ is the union of the
Ci appearing in ker and the surface Z obtained by contracting the (�1)-curves
over the (�2)-curves in Y has invariants

K 2
Z = 2r K 2

Y c2(Z) = �(OZ ) = 2r�(OY ) � k2r�3 and (Z) = (Y ),

where r = dim V .

Proof of Proposition 6.36. We have to prove that for our surface Y , ker has
the required dimension and that all the curves appear in ker . For c2

1(Y ) = 4
and 2, we have b2(Y ) = h1,1(Y ) = 6, 8 and 9 respectively. As we supposed that
2Pic(Y )= 0, the space Pic(Y )⌦F2 is h1,1-dimensional. As pg = 0, it has moreover a
nondegenerate intersection pairing and therefore the dimension of a totally isotropic
space in Pic(Y ) ⌦ F2 is at most

⇥
h1,1/2

⇤
= 3, 4, and 4 dimensional respectively.

The image of  is the totally isotropic space generated by the curves Ci , therefore
the dimension r of ker is at least 1, 2 and 3 respectively.

A smooth double cover of a surface with n nodes can exist only if n is divisible
by 4 (see [Dolgachev et al. 2002]). Therefore the vectors v = (v1, . . . , vk) in ker 
(of dimension  7) have weight 4, that is, the number of indices j such that v j = 1
is 4.

In case (a), ker is one-dimensional, generated by w1 = (1, 1, 1, 1). For (b),
as every vector in ker has weight 4, by [Beauville 1980, Lemme 1], we have
k � 2r � 1 and thus r  2 and r  3 respectively. Moreover, it is easy to check that
in the case (b), the space ker is (up to permutation of the basis vectors) generated
by w1 = (1, 1, 1, 1, 0, 0) and w2 = (1, 1, 0, 0, 1, 1).

In case (c) [Beauville 1980, Lemme 1] implies that ker is (up to permuta-
tion) generated by w1 = (1, 0, 0, 1, 1, 0, 1), w2 = (0, 1, 0, 1, 0, 1, 1) and w3 =
(0, 0, 1, 0, 1, 1, 1).

The surface Z obtained by contracting the (�1)-curves over the (�2)-curves Ci
is minimal because no surface with c2

1 = 3c2 = 9 has an order 2 automorphism. ⇤
Let us give a bound on the irregularity.
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Lemma 6.38. Let Y be a surface of general type with � = 1 and q = 0 containing
a 2-divisible set of 4 (�2)-curves. Let Y 0 ! Y be the double cover. Then q(Y 0)  1.

Proof. As q(Y ) = 0, the involution � on Y 0 given by the cover Y 0 ! Y acts as
multiplication by �1 on H 0(Y 0,�Y 0). Therefore, � acts trivially on

V2 H 0(Y 0,�Y 0).
As pg(Y ) = 0, the map

V2 H 0(Y 0,�Y 0) ! H 0(Y 0,
V2
�Y 0) must be 0. Let Y 0 ! Y 00

be the blow-down map of the 4 (�1)-curves over the 4 nodal curves of Y . If
q(Y 00) � 1, Castelnuovo–De Franchis Theorem implies that there is a fibration
onto a curve B of genus q(Y 00). By [Zucconi 2003], we get that q(Y 00)  2 and if
q(Y 00) = 2, then Y 00 is an étale bundle of genus 2 fibers onto a genus 2 curve B and
K 2

Y 00 = 8. In that case, there is a commutative diagram

Y 00 ! X
# #
B ! P1

where the vertical maps are genus 2 fibrations and X is the surface obtained by
contracting the 4 (�2)-curves on Y . This diagram is obtained from B ! P1 by
taking base change and normalizing. Since Y 00 ! X is unramified in codimension 1,
the 6 fibers of X ! P1 occurring at the 6 branch points of B ! P1 are double.
Since X has only 4 singular points, X ! P1 has at least two double fibers contained
in the smooth locus of X, but a multiple fiber on a genus 2 fibration cannot exist
(because of the adjunction formula). Thus q  1. ⇤

Let us now consider a smooth minimal surface of general type Z with K 2 = 2,
c2 = 10, q = pg = 0 such that there is a birational map onto a surface Y with
singularities 2A3,1 + 2A3,2.

Proposition 6.39. Suppose that 3Pic(Z) = 0. There exists a smooth triple cover X
of Y ramified precisely over the singularities of Y . The surface X is of general type
and has invariants c2

1 = 2c2 = 8.

Proof. Let D1, D2 be the (�3)-curves over the singularities A3,1 and let D3, . . . , D6
be the (�2)-curves over the singularities A3,2, with indices satisfying D3 D4 =
D5 D6 = 1. Let W ! Y be the blow-up at the intersection points of D3, D4 and of
D5, D6. Let C1, . . . , C6 be the strict transforms of the Di in W . Let

 : F3
6 ! Pic(W ) ⌦ F3 = H 2(W, F3)

be the homomorphism sending v = (v1, . . . , vk) to
P

vi Ci . The image of  is a
totally isotropic subspace in H 2(W, F3). As b2(W ) = 10, this image is at most
5-dimensional and therefore dim ker � 1. Let v = (v1, . . . , v6) 2 ker , v 6= 0.
We choose the representatives of F3 in {0, 1, 2}. There exists a unique invertible
sheaf L such that

3L =
X

vi Ci .
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Let T be the triple cover of W ramified over the r curves Ci such that vi 6= 0.
The surface T is smooth outside the curves Ci with vi = 2. Let R be the minimal
resolution of T and let f : R ! W be the composite map. By [Urzúa 2010,
Propositions 2.2, 4.1 and 4.3], the invariants of R are

K R =num f ⇤�KW + 2
36

�
, c2(R) = 3c2(W ) � 4r, �(OR) = 3�(OW ) � 1

3r,

where 6 is the sum of the r curves Ci such that vi 6= 0. Therefore r = 3 or 6 and

K 2
R = 0, c2(R) = 36 � 4r, �(OW ) = 3 � 1

3r.

As there are at least 3 curves Ci in the branch locus, one of the curves C3, . . . , C6 is
in that branch locus. Say it is C3. Let E be the exceptional curve going through C3.
As C3 E = C4 E = 1 and E

P
vi Ci is divisible by 3, it forces C4 to be also in

the branch locus and thus r = 6 (and dim ker = 1). The inverse image of the 6
(�3)-curves are (�1)-curves. By the formula giving K R , the inverse image of the
two exceptional curves are (�3)-curves meeting two (�1)-curves. We can therefore
effectuate 8 blow-downs and we obtain a fake quadric. It has general type because
Y has general type, it is minimal because the quotient of a fake plane by an order 3
automorphism with 4 isolated fixed points has 4A2 singularities. ⇤
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