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Notations

A part of this talk is on a joint work with M. Artebani and C. Correa.

I X smooth complex projective K3 surface, K3 means:

KX ' OX and H1(X ,OX ) = 0.

I Examples: double cover branched over a sextic curve in P2, quartics
in P3, degree 6 complete intersection surface in P4...

I Let NS(X ) be the Néron-Severi group of X .
The Picard number of X is ρX = rank NS(X ).

I One has H2(X ,Z) ' Z22, thus h1,1 = 20 and

1 ≤ ρX ≤ 20.

I A smooth rational curve on the K3 surface X is called a (−2)-curve.
! We will often (by abuse) confuse a (−2)-curve and its class in
NS(X ). !

I ≡ denotes linear equivalence between divisors
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History: the Nikulin and Vinberg classification

I It is a classical result that the automorphism group of a smooth
curve is finite if and only if its genus is > 1.

I For surfaces there is also a classification according to the Kodaira
dimension, initiated by the Italian Algebraic Geometry school.
(Think to Cremona group for P2 vs surfaces of general type which
have finite number of birational maps).

I In the 70’s and early 80’s the K3 surfaces X with finite
automorphism group have been classified by
- Piatetski-Shapiro, Shafarevich (cases ρX = 1, 2)
- Nikulin (cases ρX ∈ {3, 5, ..., 19, 20})
- Vinberg (case ρX = 4)

This talk is on K3’s with finite automorphism group and ρX > 2

Xavier Roulleau On the geometry of K3 surfaces with finite automorphism group



The 118 families of K3 with finite Aut. group, Notations

The output of Nikulin-Vinberg classification is a list of 118 families of
such K3 surfaces.
Each family ML is characterised by the lattice L such that there is a
primitive embedding L ↪→ NS(X ) for each K3 surface X in the family
(with equality for the general K3).

Remark: It is a general result that the moduli ML of L-polarized K3
surfaces has dimension 20− Rank(L).

More notations
We denote by An,Dn,En the negative definite lattice associated to the
root system with same symbol.
For a symmetric integral matrix M let [M] be the lattice with Gram
matrix M.

By example the hyperbolic lattice is U =

[
0 1
1 0

]
.

L(m) means the lattice L with quadratic form multiplied by m.
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A few examples of lattices L among the 118

The K3 surfaces X with NS(X ) isomorphic to the lattices below have a
finite automorphism group:

S6,1,1 =

−14 2 2
2 −2 4
2 4 −8

 , L24 =


12 2 0 0
2 −2 1 0
0 1 −2 1
0 0 1 −2

 ,
L12 =

[
0 3
3 −2

]
⊕ A2

U(4)⊕ A⊕31 , U(2)⊕ A⊕71 , U ⊕D4 ⊕ A⊕51 , U ⊕ E8 ⊕ E8 ⊕ A1...
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Other viewpoints: Mori dream surfaces, rational curves

I Theorem (Nikulin) A K3 surface X with ρX > 2 has a finite
automorphism group if and only if X contains a finite non-zero
number of (−2)-curves.

I Recall that the Cox ring of a variety X is

Cox(X ) =
⊕

[D]∈Cl(X )

H0(X ,OX (D))

Theorem (Artebani-Hausen-Laface and indep. McKernan). For a K3
surface with ρX > 2, Cox(X ) is finitely generated (X is a ”Mori
dream surface”) if and only if the effective cone is polyhedral i.e.
there are a finite (6= 0) number of (−2)-curves on X .

I Theorem Any K3 surface contains infinitely many rational curves.
(Works of Mori, Mukai, Chen, Lewis, Bogomolov, Hasset, Tschinkel,
Tayou, Charles, Li, Chen, Gounelas, Liedke...).

The last indomitable cases that remained were K3 surfaces with
finite automorphism group, ρX = 4 and no elliptic fibrations.
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Aims: from the abstract lattices to equations

I Starting from the knowledge of the lattice L from Nikulin-Vinberg
classification, describe the (finite!) set of (−2)-curves on K3 surfaces
X such that L = NS(X ), by which we mean find their classes in
NS(X ) and give their intersection matrix or the dual graph.

I Obtain a geometric model of these surfaces, either as a double cover
of a known surface, or as a (maybe singular) surface in some Pn and
then, when possible, describe their equations, and the realizations of
the (−2)-curves as lines, conics etc...

I Study the unirationality of their moduli spaces ML.
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Plan of the remaining of the talk

No plan, rather a journey through the world of K3 surfaces with finite
automorphism groups.

I Explain some of the used tools

I A first series of examples

I A remark on Reid ”famous 95” families of K3 surfaces with a link to
K3 surfaces with finite automorphisms; unirationality

I Nikulin Star-Shaped lattices and K3 surfaces

I A table with some results

I More involved examples
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Tools, Sieve of Eratosthenes-Vinberg for K3’s

Let us describe Vinberg’s algorithm to find the (−2)-curves on K3’s.
Let L ' NS(X ) be the lattice of a K3 surface X .

We choose an ample class of X as any element P ∈ L such that P2 > 0
and the negative definite lattice P⊥ does not contain roots ie. elements
c such that c2 = −2.

For d ∈ N∗, define the (finite & computable) set of degree ≤ d roots:

R+
d = {c ∈ L = NS(X ) | 0 < P.c ≤ d , and c2 = −2}.

By Riemann-Roch Theorem, a root c ∈ R+
d is the class of an effective

divisor on X .
Let Nd⊂ R+

d be the set of ’primes’ i.e. classes of (−2)-curves up to
degree d . One can recognise these irreducible divisors as follows:

Let do be the first d ∈ N such that R+
d 6= ∅. If c ∈ R+

do
is not irreducible,

one may suppose that c = u + v with u, v effective, u2 = −2.
But then u is a root of degree 0 < P.u < P.c = do , a contradiction, thus
c ∈ R+

do
is irreducible, and Ndo = R+

do
.
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Tools, Sieve of Eratosthenes-Vinberg for K3’s

Let do be the first d ∈ N such that R+
d 6= ∅. If c ∈ R+

do
is not irreducible,

one may suppose that c = u + v with u, v effective, u2 = −2.
But then u is a root of degree 0 < P.u < P.c = do , a contradiction, thus
c ∈ R+

do
is irreducible, and Ndo = R+

do
.

Suppose that one knows the set Nd ⊂ R+
d of (−2)-curves up to degree d .

Let c ∈ R+
d+1 of degree d + 1. Suppose that ∀c ′ ∈ Nd , c .c

′ ≥ 0 and c is
not irreducible, then c =

∑
aici with ai > 0 and ci with ci .P < d + 1

and either c2i ≥ 0 or ci ∈ Nd . Then:
c2 = (

∑
aici )c =

∑
ai (ci .c) ≥ 0, which is absurd since c2 = −2.

Thus the set of (−2)-curves of degree d + 1 is

Nd+1 = Nd ∪ {c ∈ R+
d+1 | P.c = d + 1, ∀c ′ ∈ Nd , c .c

′ ≥ 0}.

The algorithm for finding the (−2)-curves among the (−2)-classes is thus
like the Erathostene sieve: if one knows the ’primes’ c of degree ≤ d ,
every root c ′ of degree d + 1 such that cc ′ < 0 must be discard, the
remaining roots of degree d + 1 are ’primes’ ie. (−2)-curves.

Xavier Roulleau On the geometry of K3 surfaces with finite automorphism group



Ernest Borisovich Vinberg (1937–2020)

(Picture from EMS Newsletter December 2016)

Xavier Roulleau On the geometry of K3 surfaces with finite automorphism group



Tools

On a K3 surface X with finite automorphism group, the effective cone is
polyhedral, and so is the dual cone, which is the Nef cone.

In order to check that one has the complete list of (−2)-curves, we use
the characterization (by Vinberg, but not formulated in that language,
and M. Artebani, C. Correa Diesler and A. Laface ):
Proposition The convex polyhedral cone generated by (−2)-curves
A1, . . . ,Am, (m ≥ ρX ) is the effective cone if and only if its facets are
demi-definite negative.

Knowing the Nef cone, one can then easily compute interesting nef or
ample classes, which classes we use in order to obtain projective models
of the surface X .
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Classical tool: double covers and (−2)-curves

Let X be a K3 surface. A base point free linear system |D2| where
D2

2 = 2 defines a double cover f : X → P2 of the plane branched over a
sextic curve C6.
f contracts the (−2)-curves A such that D2A = 0 to ADE singularities of
the curve C6.

Proposition i) Suppose D2 ≡ A1 + A2 with A1,A2 two (−2)-curves and
D2A1 = D2A2 = 1.
Then there exists a line L ↪→ P2 such that D2 ≡ f ∗L. The line is
tritangent to the branch locus C6.
ii) Suppose 2D2 ≡ A1 + A2 with A1,A2 two (−2)-curves and
D2A1 = D2A2 = 2.
Then there exists a conic C ↪→ P2 such that 2D2 ≡ f ∗C . The conic C is
6-tangent to the branch locus C6.
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Example 1. The case S6,1,1

Let X be a K3 surface with Néron-Severi group

NS(X ) ' S6,1,1 =

−14 2 2
2 −2 4
2 4 −8

 .
There are 4 (−2)-curves A1, . . . ,A4 on X , with intersection matrix

−2 4 2 2
4 −2 2 2
2 2 −2 10
2 2 10 −2


The curves A1,A2,A3 generates NS(X ). The divisor D4 = A1 + A2 has
square 4 and 2D4 = A3 + A4.
Proposition i) The surface X is a quartic in P3 with a hyperplane section
which is the union of two conics, and a quadric section which is the union
of two degree 4 smooth rational curves.
ii) The moduli MS6,1,1 of K3 surfaces X with NS(X ) ' S6,1,1 is
unirational.

Xavier Roulleau On the geometry of K3 surfaces with finite automorphism group



Example 1. The case S6,1,1

Proposition i) The surface X is a quartic in P3 with an hyperplane
section D4 such that D4 = A1 + A2 and 2D4 ≡ A3 + A4.
ii) The Moduli MS6,1,1 of K3 surfaces with NS(X ) ' S6,1,1 is unirational.

Proof. i) One has D4A1 = D4A2 = 2, D4A3 = D4A4 = 4, thus D4 is
ample. The very-ampleness is verified using Saint-Donat’s criterias.

ii) Let Q4 ↪→ P3 be a generic quartic that contains a conic C1 and a
degree 4 rational curve C3 in P3 such that Degree(C1 ∩ C3) = 2.

The plane containing the conic C1 cuts Q4 into a residual conic C2.

One can prove that there is a unique quadric Q2 ⊂ P3 containing C3.
Thus the intersection Q4 ∩Q2 splits as H = C3 + C4 where C4 has degree
4. We have 8 = C3.2H = C3.(C3 +C4) = −2 +C3C4 thus C3C4 = 10 and
computing (C3 + C4)2, one get C 2

4 = −2. (C1C3 = C2C3 = C1C4 = 2).

Therefore the surface Q4 is such that S6,1,1 ⊂ NS(Q4), and one has
equality by genericity assumption.
Thus to construct such a surface is the same as constructing the curves
C1,C3 with C1C3 = 2 and taking a quartric in the linear system
containing them, that construction is made using rational parameters. �
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Ex.2, one construction, 2 lattices: twin cases L12 and L24

Let X , X ′ be two K3 surfaces with respective Néron-Severi group:

L12 =

[
0 3
3 −2

]
⊕ A2, L24 =


12 2 0 0
2 −2 1 0
0 1 −2 1
0 0 1 −2

 .
Proposition There are exactly 6 (−2)-curves on X and X ′. One can
order these 6 curves so that their intersection matrices are respectively:
−2 3 0 1 0 1
3 −2 1 0 1 0
0 1 −2 3 1 0
1 0 3 −2 0 1
0 1 1 0 −2 3
1 0 0 1 3 −2

 ,


−2 3 0 1 0 1
3 −2 1 0 1 0
0 1 −2 3 0 1
1 0 3 −2 1 0
0 1 0 1 −2 3
1 0 1 0 3 −2

 .
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Ex.2, one construction, 2 lattices: twin cases L12 and L24

Let X , X ′ be two K3 surfaces with respective Néron-Severi group:

L12 =

[
0 3
3 −2

]
⊕ A2, L24 =


12 2 0 0
2 −2 1 0
0 1 −2 1
0 0 1 −2

 .
Proposition There are exactly 6 (−2)-curves on X and X ′. One can
order these 6 curves so that their intersection matrices are respectively:
−2 3 0 1 0 1
3 −2 1 0 1 0
0 1 −2 3 1 0
1 0 3 −2 0 1
0 1 1 0 −2 3
1 0 0 1 3 −2

 ,


−2 3 0 1 0 1
3 −2 1 0 1 0
0 1 −2 3 0 1
1 0 3 −2 1 0
0 1 0 1 −2 3
1 0 1 0 3 −2

 .
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Ex.2, one construction, 2 lattices: twin cases L12 and L24

Proposition 1.Let A1, . . . ,A6 be the 6 (−2)-curves on X (resp. X ′).
i) The divisor D2 = A1 + A2 is ample, of square 2, and

D2 ≡ A3 + A4 ≡ A5 + A6.

ii) The linear system |D2| defines a double cover of P2 branched over a
smooth sextic curve C6.
The 3 curves A1 + A2, A3 + A4, A5 + A6 are mapped onto 3 lines in P2,
which lines are tritangent to C6.
iii) Conversely, let Y be the double cover of P2 branched over a smooth
sextic curve which has three tritangent lines. Suppose that ρY = 4.
Then either NS(Y ) ' L12 or NS(Y ) ' L24.
iv) (Recall that X is such that NS(X ) ' L12). The branch locus C6 of
the double cover X → P2 has the form

`1`2`3g − f 2 = 0,

where the `j are linear forms, and f , g are cubic forms.
v) The moduli space ML12 of K3’s X with NS(X ) ' L12 is unirational.
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Ex.2, one construction, two lattices: twin cases L24 and L12

Here is an example of a K3 surface Y with NS(Y ) ' L24:

Example 1.Let `1, `2, q4, f be the forms

`1 = x + y + 2z , `2 = −3x + 2y + z ,
q4 := 8x4 + x3y + x2y2 + 3xy3 − 2y4 − 20x3z − 2x2yz − xy2z + 3y3z

−12x2z2 + xyz2 + 4yz3,
f = 5x3 − 3x2y + xy2 + 4y3 + 2x2z − 3xyz − 3y2z + 5xz2 + 4yz2.

The smooth sextic curve C6 = {`1`2q4 − f 2 = 0} has three tritangent
lines which are `1 = 0, `2 = 0 and the line {y = 0}. Let Y → P2 be the
double cover branched over C6. One has L(24) ↪→ NS(Y ). Using its
reduction modulo 13, point counting and the Artin-Tate formula, one
obtains that the Picard number of Y is 4, thus NS(Y ) ' L24.

Remark: 1. A K3 surface X ′ such that NS(X ′) ' L24 has no elliptic
fibrations, contrary to X .
2. Aut(X ′) ' Z/2Z for X ′ (Kondo).
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Ex.3 U(2)⊕ A⊕7
1 , 120 conics, degree 1 Del Pezzo surfaces

Using lattice theoretic considerations, Kondo proved that the generic K3
surface X with NS(X ) ' U(2)⊕ A⊕71 has automorphism group (Z/2Z)2.
Let σ1, σ2 ∈ Aut(X ) be the non-symplectic involutions.

One construction of such surface X is natural, but there is a second
unexpected construction:

Proposition i) The quotient surface X/σ1 is a del Pezzo surface Z of
degree 1 and the quotient map f1 : X → Z is branched over a genus 2
curve C . There exist a blow-down map Z → P2 such that the image of C
is a sextic curve with 8 nodes, each at the 8 contracted (−1)-curves.
ii) Conversely, starting with a sextic plane curves having 8 nodes in
general position, the minimal desingularisation of the double cover is a
K3 surface with Néron-Severi group U(2)⊕ A⊕71 .
The K3 surface X contains 240 (−2)-curves, these are the pull back of
the 240 (−1)-curves of the del Pezzo surface.
iii) The pull back on X of the pencil | − KZ | gives another double cover
f2 : X → P2 = X/σ2. Its branch locus is a smooth sextic curve C6 to
which 120 conics are tangent at every intersection points with C6. These
120 conics are the images of the 240 (−2)-curves on X .
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Some remarks on the ”famous 95”

Reid and independently Yonemura classified K3 surfaces which are
anticanonical divisors with at most Gorenstein singularities in weighted
projective threefolds WP3 = WP3(ã).

There are 95 families of such surfaces, called the ”famous 95”, classified
according to the 95 possible weights ã of WP3(ã).
Belcastro studied the Néron-Severi group of these surfaces and the
Néron-Severi group of their mirrors. We remark that

Remark i) The ”95 famous” moduli spaces are unirational (check that
the linear system | − KPW3 | contains all the K3 surfaces of the family).
Among the 95 famous families, 25 are such that the K3 surfaces have
finite automorphism group.
ii) Among the mirror surfaces, 7 families are K3 with finite automorphism
group and are not listed among the 95.

We obtain in that way that 25 modulus among the 118 modulus of K3’s
with finite automorphism group are unirational.
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The star shaped lattices of Nikulin: list of (−2)-curves

Proposition (Nikulin) Let X be a K3 surface such that NS(X ) ' U ⊕ K .
i) There is an elliptic pencil π : X → P1 with a section; a fiber and the
section generate the lattice isomorphic to the hyperbolic lattice U.
ii) Suppose K =

⊕
Gi with the lattices Gi are among the lattices

Al , Dm, En. Then the non-irreducible fibers of the fibration π are of
Kodaira Néron type G̃i , where Ãl , B̃m, Ẽn are the extended Dynkin
diagram.

The dual graph formed by the(−2)-curves of the singular fibers and by
the section of the fibration is called the star of the lattice U ⊕

⊕
Gi .

By example the star of NS(X ) = U ⊕ A2 ⊕ A⊕21 is

• •
•

•

•

• •

•
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The star shaped lattices of Nikulin: list of (−2)-curves

Theorem (Nikulin) Let X be a K3 surface with Néron-Severi group
isomorphic to U ⊕ K , where K is among the following 29 lattices:

A2; A1 ⊕ A2,A3; A⊕21 ⊕ A2,A
⊕2
2 ,A1 ⊕ A3,A4;

A1 ⊕ A⊕22 ,A⊕21 ⊕ A3,A2 ⊕ A3,A1 ⊕ A4,A5,D5;
A⊕32 ,A⊕23 ,A2 ⊕ A4,A1 ⊕ A5,A6,A2 ⊕D4,A1 ⊕D5,E6; A7,
A3 ⊕D4,A2 ⊕D5,D7,A1 ⊕ E6; A2 ⊕ E6; A2 ⊕ E8; A3 ⊕ E8.

Then the K3 surface has finite automorphism group and the star of
U ⊕ K is the dual graph of all the (−2)-curves on X .

That result gives a way of constructing these K3 surfaces, and knowing
their (−2)-curves, by searching for a Weierstrass model of the natural
fibration.

Nikulin also gives the number and configuration of (−2)-curves for some
other cases, in particular when the Picard number is ρX = 3.
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The classification table

In order to understand the tables in the next page, we explain the
notations here:
These tables give the number of (-2)-curves: this is a lower bound if
there is the sign † in the next column, it is the exact number otherwise,

An aleph ℵ means that the lattice is among the 95 famous families,

an angle ∠ means that the lattice is a mirror of one of the 95 famous,
but not one of these 95,

A star ? means that their (−2)-curves configuration is predicted by
Nikulin as star shaped lattices,

A u means unirational moduli space ; at least 60 modulis among the 118
are unirational. Unless for rank ρX = 3, 4, we have not systematically
searched if the moduli spaces were unirational. It is very likely that,
except perhaps a few cases, all are unirational.

ML unirational means in practice that one knows how to construct all
the surfaces of the family.
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The classification table

See last pages of the Atlas paper:
https://arxiv.org/abs/2003.08985
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Example 4. The lattice U ⊕D4 ⊕ A⊕5
1

A K3 surface X with NS(X ) ' U ⊕D4 ⊕ A⊕51 contains 90 (−2)-curves.
The 20 first curves A1, . . . ,A20 have the following dual graph

•

••••••••
••

A1

A12A11A10A9A8A7A6A5

•

••••••••

A3

A20A19A18A17A16A15A14A13A4 A2

where a thin edge between two curves mean intersection number 1, a
bold edge means intersection 2. For k ∈ {5, . . . , 12}, we have

F = A2 + A4 ≡ Ak + Ak+8 = Fk ,

these divisors F ,Fk , k = 5, ..., 12 are 9 singular fibers of a fibration with
sections A1,A3.
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The divisor
D2 = A1 + 2A2 + A3 + A4

is nef of square 2, with D2A1 = D2A2 = D2A3 = 0, D2Aj = 1 for
j ∈ {5, . . . , 20} and D2Aj = 2 for j = 4 or j > 20.
The linear system |D2| defines is a double cover X → P2 branched over a
sextic curve C6 which has a a3 singularity q. Using the fibration, we get:

D2 ≡ A1 + A2 + A3 + Ak + Ak+8, ∀k ∈ {5, . . . , 12}.

The curves A1,A2,A3 are contracted to q, the curve A4 is mapped onto
the ’tangent’ L of C6 at singularity q, the curves Ak ,Ak+8 with
k ∈ {5, . . . , 12} are mapped to 8 lines Lk going through q and which are
tangent to the sextic at any other intersection points.
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Example 4. The lattice U ⊕D4 ⊕ A⊕5
1

For any subset J = {i , j , k , l} of {5, . . . , 11} of order 4 (35 such choices),
let us define:

AJ = 2A1 − A4 +
∑

t∈J At

BJ = 4A2 + 2A3 + 3A4 −
∑

t∈J At .

The classes AJ and BJ are the classes of the remaining 70 (−2)-curves
A21, . . . ,A90. Moreover we see that

2D2 ≡ AJ + BJ , ∀J = {i , j , k , l} ⊂ {5, . . . 12}, #{i , j , k, l} = 4

and therefore there exists 35 conics that are 6-tangent to C6.
Let J, J ′ be two subsets of order 4 of {5, . . . , 11}. The configuration of
curves AJ ,AJ′ ,BJ ,BJ′ is as follows:

AJAJ′ = BJBJ′ = 6− 2#(J ∩ J ′),
AJBJ′ = −2 + 2#(J ∩ J ′).
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Example 5. The lattice U(4)⊕ A⊕3
1

A K3 surface X with NS(X ) ' U(4)⊕ A⊕31 contains 24 (−2)-curves.
The surface X is a double cover X → P2 branched over a smooth sextic
curve C6. There exists 12 conics which are tangent to C6 at all
intersection points. The 24 (−2)-curves on X are irreducible components
of the pull-back of these 12 conics.
There exists a partition of the 24 (−2)-curves into 3 sets S1,S2,S3 of 8
curves each, such that for curves B,B ′ in two different sets S ,S ′, one
has BB ′ = 0 or 4. In the following graph, red vertices are curves in S ,
blue vertices are curves in S ′ and an edge links a red curve to a blue
curve if and only if their intersection is 4:

•
• •

•

•

•

•

•
•

•

•

• •
•

•

•

•

•
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Example 5. The lattice U(4)⊕ A⊕3
1

•
• •

•

•

•

•

•
•

•

•

• •
•

•

•

•

•

Proposition i) Up to a projective transformation, there exist a projective
model of X as a quartic surface with a node at point (1 : 1 : 1 : 1) and
with equation

xyzt − q2q
′
2 = 0,

where q2, q
′
2 are quadrics.

ii) The moduli space MU(4)⊕A⊕3
1

is rational.

Each hyperplane section x = 0, y = 0, z = 0, t = 0 is union of two conics.
It seems difficult to find the other (−2)-curves.
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•
• •

•

•

•

•

•
•

•

•

• •
•

•

•

•

•

Thank you !
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