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Abstract
Surfaces of general type with positive second Segre number are known to have big
cotangent bundle. We give a new criterion, ensuring that a surface of general type
with canonical singularities has a minimal resolution with big cotangent bundle.
This provides many examples of surfaces with negative second Segre number and
big cotangent bundle.

1. Introduction
Projective varieties with positive cotangent bundle have attracted a lot of attention
because of the strong geometric properties they have. In particular, they are Kobayashi-
hyperbolic and algebraically hyperbolic (see [7] for an introduction).

Surfaces of general type with ample cotangent bundle are known to have positive
second Segre class s2 WD c21�c2 > 0 (see [8]). In fact, Bogomolov [1] proved that ifX
is a surface of general type with positive second Segre class, then the family of curves
on X of fixed geometric genus is bounded. The numerical positivity ensures that
these surfaces have many symmetric tensors; in other words, their cotangent bundle
is big. More recent generalizations of these results have been obtained, including
the algebraic degeneracy of entire curves in surfaces of general type with positive
second Segre class by McQuillan [15] and effective results on the canonical degree of
irreducible curves of genus g in such surfaces by Miyaoka [18]. Many examples of
surfaces with positive second Segre class are known: complete intersection surfaces
in sufficiently big projective spaces, surfaces with ample cotangent bundle, and so on
(see, e.g., [16]).

On the other hand, among surfaces with negative second Segre class, we know
rather few examples that have big cotangent bundle. Smooth surfaces in P3 are well
known to have no symmetric tensors [21], but Bogomolov and De Oliveira [3] made
the interesting observation that minimal resolutions of singular surfaces may provide
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such examples. In [3], nodal surfaces are considered and a numerical condition on the
number of nodes is given to ensure that the resolution will have big cotangent bundle.
Unfortunately, this statement turns out not to be completely correct (see Section 4.1
below for details).

In this article, we would like to give a new general criterion, ensuring that a
surface of general type has big cotangent bundle. Let us describe our result.

Recall that if we take a minimal model Y of a surface of general type (i.e., smooth
with KY nef and big), then the curves E with KY :E D 0 form bunches of .�2/-
curves and can be contracted to canonical singularities (also known as ADE or Du
Val singularities in the case of surfaces; see, e.g., [19] or [13]).

Let X be a canonical surface, that is, a projective surface with positive canonical
divisor KX and at worst canonical singularities. In dimension 2, canonical singular-
ities are known to be quotients of C2 by finite subgroups of SL.2;C/. Therefore we
can attach two objects to the surface X . On the one hand, we consider Y !X to be
its minimal resolution. On the other hand, we let X! X be the orbifold (or stack)
attached to X .

We denote by s2.Y /D c21.Y /� c2.Y / and s2.X/D c21.X/� c2.X/ the second
Segre numbers of Y and X, respectively.

THEOREM 1
Let X be a canonical surface, let Y !X be its minimal resolution, and let X!X

be the orbifold associated to X . If

s2.Y /C s2.X/ > 0;

then the cotangent bundle of Y is big. In particular, Y has only finitely many rational
or elliptic curves.

Thanks to the work of McQuillan [15], this result also provides surfaces of gen-
eral type satisfying the Green–Griffiths–Lang conjecture, since entire curves in such
surfaces will be contained in a proper algebraic subvariety.

As applications, we obtain many examples of surfaces with big cotangent bundle
and negative second Segre number. Among them, we have the following results.

THEOREM 2
Let X � P3 be a hypersurface of degree d with ` singularities Ak , and let Y !X be
its minimal resolution. If

` >
4.kC 1/

k.kC 2/
.2d2 � 5d/;

then Y has big cotangent bundle.
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As a consequence, we obtain the existence of surfaces with big cotangent sheaf
for all degrees d � 13. In the following application of Theorem 2, the singularities of
the surface considered are Ad�1.

THEOREM 3
Let X � P3 be the ramified cover of P2 of degree d D

P
dj , branched along the

normal crossing divisor D D
SjDk
jD1Dj � P2, where Dj is a curve of degree dj .

Suppose that di � c for i D 1; : : : ; k and

k.k � 1/ >
8d2.2d � 5/

c2.d2 � 1/
I

then the minimal resolution Y !X has big cotangent bundle.

This result provides examples of hypersurfaces with big cotangent bundle for all
degrees d � 15.

The main technical difference with the approach developed in [3] using reflexive
sheaves is that here we follow a “stacky” approach. Our work is also inspired by the
orbifold techniques of Campana [5], though his notion of orbifolds is more general
than the one we adopt here.

The paper is structured as follows. In Section 2 we present the orbifold setting
and the results we will use. In Section 3 we prove our main theorem (Theorem 1).
In Section 4 we give applications proving Theorem 2 and Theorem 3. Section 5 is
devoted to the geography of surfaces of general type with big cotangent bundle.

2. Orbifold basics
For the reader’s convenience, we recall in this section the basic facts on orbifolds
(referring to [20] for details) that will be used in the proof of Theorem 1.

2.1. Orbifolds and canonical singularities
We define orbifolds as a particular type of log pairs. The data .X;�/ are a log pair if
X is a normal algebraic variety (or a normal complex space) and �D

P
i diDi is an

effective Q-divisor, where the Di ’s are distinct, irreducible divisors and di 2Q.
For orbifolds, we need to consider only pairs .X;�/ such that � has the form

�D
P
i .1�

1
mi
/Di , where the Di ’s are prime divisors and mi 2N�.

Definition 4
An orbifold chart on X compatible with � is a Galois covering ' W U ! �.U /�X

such that
(1) U is a domain in Cn and '.U / is open in X ;
(2) the branch locus of ' is d�e \ '.U /;
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(3) for any x 2 U 00 WD U n '�1.Xsing [�sing/ such that '.x/ 2Di , the ramifica-
tion order of ' at x verifies ord'.x/Dmi .

Definition 5
An orbifold X is a log pair .X;�/ such that X is covered by orbifold charts compat-
ible with �.

Definition 6
Let .X;�/, �D

P
i .1�

1
mi
/Ci , be a pair where X is a normal surface and KX C�

is Q-Cartier. Let � W QX ! X be a resolution of the singularities of .X;�/, so that
the exceptional divisors Ei and the components of Q� (the strict transform of �) have
normal crossings and K QX C Q�D �

�.KX C�/C
P
i aiEi .

We say that .X;�/ has canonical singularities if ai � 0 for every exceptional
curve Ei .

If �D 0, then canonical singularities of X are the same as Du Val singularities
(or ADE singularities), which are quotient singularities (see [13] for details). As a
consequence,X has an orbifold structure X. Moreover, their minimal resolution Y !
X is such that KY D f �KX .

2.2. Chern classes
Let � WX! .X;�/ be a 2-dimensional orbifold for which �D 0 and the singulari-
ties are ADE. Let an (resp., dn, en) be the number of An (resp., Dn;En) singularities
on X , and let Y !X be its minimal resolution.

PROPOSITION 7 (see [20])
The Chern numbers of X are c21.X/D c

2
1.X/D c

2
1.Y / and

c2.X/D c2.Y /�
X

.nC 1/.anC dnC en/

C
X an

nC 1
C

dn

4.n� 2/
C
e6

24
C
e7

48
C

e8

120
: (2.1)

The denominators 4.n� 2/, 24; 48, and 120 are the order of the binary dihedral
BD4.n�2/, the binary tetrahedral, the binary octahedral, and the binary icosahedral
group, respectively.

2.3. Orbifold Riemann–Roch
Let L be an orbifold line bundle on the orbifold X of dimension n. We will use
Kawasaki’s orbifold Riemann–Roch theorem (see [10]) or Toën’s for Deligne–
Mumford stacks (see [25]), using intersection theory on stacks.
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THEOREM 8 (see [25])
Let X be a Deligne–Mumford stack with quasiprojective coarse moduli space and
which has the resolution property (i.e., every coherent sheaf is a quotient of a vector
bundle). Let E be a coherent sheaf on X. Then

�.X;E/D

Z
X

ech.E/fTd.TX/:
From this, we obtain the asymptotic formula

�.X;Lk/D
c1.L/

n

nŠ
knCO.kn�1/;

using orbifold Chern classes.
We will apply this result to orbifold surfaces X of general type associated to

canonical surfaces. Then

�.X; Sm�X/D
m3

6
.c21 � c2/CO.m

2/;

where c1 and c2 are the orbifold Chern classes of X.

2.4. Vanishing theorems
In the case of smooth minimal surfaces of general type Y , thanks to the semistability
of the cotangent bundle �Y with respect to KY , we have Bogomolov’s vanishing
theorem (see [2]):

H 0.Y;SmTY ˝K
p
Y /D 0; (2.2)

for m� 2p > 0.
Now, let us consider an orbifold surface X of general type associated to a canon-

ical surface X . Then Bogomolov’s vanishing theorem easily extends to this situa-
tion:

H 0.X; SmTX ˝K
p

X
/D 0; (2.3)

for m� 2p > 0.
Indeed, X can be equipped with an orbifold Kähler–Einstein metric (see [11],

[24]), and the standard Bochner identities apply (see [12]).
As a corollary, if s2.X/ WD c21.X/� c2.X/ > 0, then

H 0.X; Sm�X/�
s2.X/

6
m3CO.m2/:

2.5. Logarithmic differentials and extension of sections
Let X be a complex manifold with a normal crossing divisor D.
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The logarithmic cotangent sheaf �X .logD/ is defined as the locally free sub-
sheaf of the sheaf of meromorphic 1-forms on X , whose restriction to X nD is �X
and whose localization at any point x 2D is given by

�X .logD/x D
lX
iD1

OX;x
dzi

zi
C

nX
jDlC1

OX;x dzj ;

where the local coordinates z1; : : : ; zn around x are chosen such that D D ¹ z1; : : : ;
zl D 0º.

Let X be a projective surface with canonical singularities, and let Y !X be the
minimal resolution with E the exceptional divisor and X!X the orbifold.

Sections of H 0.X; Sm�X/ do not give a priori sections of H 0.Y;Sm�Y /; they
give only sections of H 0.Y n E;Sm�Y /. Nevertheless, in the case of quotient sin-
gularities, we have the following extension theorem of Miyaoka [17] (see also [9,
Corollary 3.2]):

H 0.Y nE;Sm�Y /ŠH
0
�
Y;Sm�Y .logE/

�
: (2.4)

3. Proof of Theorem 1
In this section we prove Theorem 1, the main result of this paper.

THEOREM 9
Suppose that s2.Y /C s2.X/ > 0. Then

h0.Y;Sm�Y /�
s2.Y /C s2.X/

12
m3CO.m2/I

in particular, the cotangent bundle of Y is big.

For m 2N�, let us consider the following exact sequence:

0! Sm�Y ! Sm�Y .logE/!Qm! 0: (3.1)

The quotient sheafQm is supported by the divisor E that is the sum of the excep-
tional components of the map Y ! X . Since the singularities of X are ADE, there
exists a neighborhood U of E such that the canonical sheaf of Y is trivial: .KY /jU '

.OY /jU . Therefore multiplying by ˝K˝.1�m/Y , we get the following exact sequence:

0! Sm�Y ˝K
˝.1�m/
Y ! Sm�Y .logE/˝K˝.1�m/Y !Qm! 0: (3.2)

The proof will distinguish two cases according to the value of lim h0.Qm/

m3
.

Let us first suppose that

lim
h0.Qm/

m3
�
s2.X/� s2.Y /

12
:
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As explained above, the Riemann–Roch Theorem 8 and Bogomolov’s vanishing
property (2.3) give

lim
1

m3
h0.X; Sm�X/�

s2.X/

6
:

Combined with the extension property (2.4), this implies that

lim
1

m3
h0
�
Y;Sm�Y .logE/

�
�
s2.X/

6
:

Then the exact sequence (3.1) implies that

lim
h0.Sm�Y /

m3
� lim

1

m3
h0
�
Y;Sm�Y .logE/

�
� lim

h0.Qm/

m3

�
s2.X/

6
�
s2.X/� s2.Y /

12

D
s2.X/C s2.Y /

12
:

Let us suppose now that

lim
h0.Qm/

m3
>
s2.X/� s2.Y /

12
:

The extension property (2.4), combined with the triviality ofKY on U , and Serre
duality give

h0
�
Y;Sm�Y .logE/˝K˝.1�m/Y

�
Š h0.Y nE;Sm�Y ˝K

˝.1�m/
Y /

Š h0.X; Sm�X ˝K
˝.1�m/
X

/

Š h2.X; Sm�X/:

The latter dimension being zero by Bogomolov’s vanishing property (2.3), we
obtain

h0
�
Y;Sm�Y .logE/˝K˝.1�m/Y

�
D 0:

Thus, by the exact sequence (3.2), we obtain

h0.Qm/� h
1.Y;Sm�Y ˝K

˝.1�m/
Y /:

Serre duality again implies that

h1.Y;Sm�Y ˝K
˝.1�m/
Y /D h1.Y;Sm�Y /:
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Since h2.Y;Sm�Y / D 0 by Bogomolov’s vanishing property (2.2), we get by
Riemann–Roch

lim
1

m3
h0.Y;Sm�Y /D lim

1

m3

�
�.Sm�Y /C h

1.Y;Sm�Y /
�

�
s2.Y /

6
C
s2.X/� s2.Y /

12
;

and therefore

lim
1

m3
h0.Y;Sm�Y /�

s2.X/C s2.Y /

12
:

In any of the two above cases, we get

lim
1

m3
h0.Y;Sm�Y /�

s2.X/C s2.Y /

12
;

and therefore the cotangent sheaf of Y is big.

4. Applications

4.1. Surfaces with Ak singularities
As a corollary of Theorem 1 we obtain the following.

THEOREM 10
Let X � P3 be a hypersurface of degree d with ` singularities Ak , and let Y !X be
its minimal resolution. If

` >
4.kC 1/

k.kC 2/
.2d2 � 5d/;

then Y has big cotangent bundle.

Proof
Applying Proposition 7 and the Brieskorn resolution theorem (see [4]), easy compu-
tations give

s2.Y /D 10d � 4d
2; s2.X/D 10d � 4d

2C
�
kC 1�

1

kC 1

�
`:

We apply Theorem 1 with these values.

COROLLARY 11
If d � 13, then there exist nodal surfaces in P3 of degree d whose minimal resolution
has big cotangent bundle.
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Proof
The condition on the number ` of nodes is ` > 8

3
.2d2 � 5d/. In [22], Segre con-

structed nodal hypersurfaces with ` � 1
4
d2.d � 1/ nodes. For d � 20, we have

1
4
d2.d � 1/ > 8

3
.2d2� 5d/, and thus we obtain examples of hypersurfaces of degree

d � 20 with symmetric differentials.
Chmutov [6] (see also [14, p. 58]) constructed surfaces of degree d with the

number �.d/ of A1 singularities as follows:

d 13 14 15 16 17 18 19

�.d/ 732 949 1155 1450 1728 2097 2457

Œ 8
3
.2d2 � 5d/�C 1 729 859 1001 1153 1315 1489 1673

Therefore we also obtain examples for d in the range 13� d � 19.

Remark 12
In [3], the result of Corollary 11 was claimed for hypersurfaces of degree d � 6.
However, the proof uses the results of [3, Lemma 2.2], which turns out to be false. Let
us explain this briefly in more details, using the notations of the proof of Theorem 1.
In [3, p. 94, Lemma 2.2], it is claimed that

dim
�
H 0.Y nE;Sm�Y /=H

0.Y;Sm�Y /
�
D
1

4
`m3CO.m2/;

where ` is the number of nodal singularities on X .
To compute this dimension, the authors exhibit symmetric differentials of Y nE

nonzero in the quotient but do not verify the linear independence. In fact, one can
verify that

dim
�
H 0.Y nE;Sm�Y /=H

0.Y;Sm�Y /
�
D

11

108
`m3CO.m2/:

This computation is done independently in [23], deriving slightly better bounds
in the case of nodes. In particular, the existence of a surface of degree 10 with big
cotangent sheaf is obtained.

4.2. Ramified covers of the plane
In this section we give applications of Theorem 1 for cyclic covers of the plane.

LetD D
SjDk
jD1Dj � P2, whereDj is a smooth curve of degree dj and such that

D has nodal singularities. For n > 1 dividing d D
PjDk
jD1 dj , there exists an n-cyclic

covering X! P2 branched along D.
Since locally a singularity s of D has equation x2C y2 D 0, the singularity in X

above s has equation zn D x2C y2 and is a An�1 singularity.
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The Chern numbers of the desingularization Y of X are

c21 D n
�
�3C

�
1�

1

n

�
d
�2
;

c2 D 3nC .n� 1/.d
2 � 3d/;

and Y has general type unless .d;n/D .2; 2/; .4; 2/; .6; 2/; .3; 3/; .4; 4/, cases we dis-
regard from now on. We remark that the surface Y is minimal. Such ramified cover-
ings provide a family where the number of symmetric differentials may jump.

First, one should note that in the smooth case there is no symmetric differentials
at all.

PROPOSITION 13
Suppose that X is smooth. Then

H 0.X;Sm�X /D 0;

for all m> 0.

Proof
Let us denote by W ! P2 the cyclic degree d cover branched over the smooth
curve D. There is a cyclic degree vD d

n
cover g WW !X making the diagram

W
g��� X
& #

P2

commute. Since W is a smooth hypersurface in P3, the space H 0.W;Sm�W / is 0
(see [21]). That implies H 0.X;Sm�X /D 0.

4.2.1. Criteria for nD d and arbitrary Dj
Let us consider the case when the cover has degree nD d . This gives us a hypersur-
face X � P3 of degree d with Ad�1 singularities over the singularities of D, that is,
the intersection points of the Dj ’s.

THEOREM 14
Suppose that di � c for i D 1; : : : ; k and

k.k � 1/ >
8d2.2d � 5/

c2.d2 � 1/
:

Then the minimal resolution Y !X has big cotangent bundle.
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Proof
The Chern numbers of the minimal desingularization Y of X are c21 D d.d � 4/

2 and
c2 D d.d

2 � 4d C 6/. The Chern numbers of the orbifold X are c21.X/D c
2
1 and

c2.X/D c2 �
�
d �

1

d

��X
i<j

didj

�
:

Thus

s2.Y /C s2.X/D 4d.5� 2d/C
�
d �

1

d

��X
i<j

didj

�

> 4d.5� 2d/C
k.k � 1/

2

�
d �

1

d

�
c2:

As a corollary, we obtain many examples of surfaces in P3 with big cotangent
bundle.

Example 4.1
For every d � 15, the degree d covering of d lines in P2 has big cotangent sheaf.

4.2.2. Criteria when the Dj are lines and for n dividing d
Let us consider the case when all the curvesDi are lines and the degree n of the cover
divides d . Thus d D k and the number ` of An�1 singularities is d.d � 1/=2. Since
s2.Y /C s2.X/D 2s2.X/C `.n�

1
n
/, we get

s2.Y /C s2.X/D 2n
�
6� .n� 1/.3vC v2/

�
C
1

2
.nv � 1/.n2 � 1/v;

where d D nv. For a cover of degree nD 2 and nD 3, we get, respectively, s2.X/C
s2.X/D 24�

27
2
�v2 and s2.X/Cs2.X/D 36�40v; this is always negative (for v �

2) and we cannot apply Theorem 1. For the remaining cases, a simple computation
gives the following.

THEOREM 15
For a cyclic cover of degree n � 4 branched over the union of d D vn > 4 lines in
general position, we have s2.Y /C s2.X/ > 0, except for the following finite number
of cases for the couples .v; n/:

v 1 2 3 4� v � 6 7� v� 12

n �14 �8 �6 4;5 4
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4.3. Remarks when s2.Y / > 0
We close this section by remarking that Theorem 1 also has an application to surfaces
with s2.Y / > 0. Let us consider a surface Y with ample cotangent bundle. Form� 0,
we have hi .Y;Sm�Y /D 0; i D 1; 2, and thus

h0.Y;Sm�Y /D
s2.Y /

6
m3CO.m2/:

Suppose that Y has a deformation Y0 which is a surface containing one .�2/-curve
(examples of such surfaces can be obtained, for instance, as a complete intersection
of ample divisors in an Abelian variety). Then the space of symmetric differentials
jumps:

h0.Y0; S
m�Y0/�

�s2.Y /
6
C
1

8

�
m3CO.m2/ > h0.Y;Sm�Y /:

This is another illustration of the importance of the presence or absence of .�2/-
curves for the geometry of a surface.

5. On the geography of the surfaces with big cotangent bundle

5.1. A Chern classes inequality
As mentioned in the Introduction, surfaces of general type with ample cotangent bun-
dle are known to satisfy the Chern classes inequality c21 > c2 (see [8]). A natural
question to ask is if surfaces of general type with big cotangent bundle satisfy a
Chern classes inequality. We investigate here the case of a surface that satisfies the
hypothesis of Theorem 1.

PROPOSITION 16
If a surface Y satisfies s2.Y /C s2.X/ > 0, then we have

c21.Y / >
3

5
c2.Y /: (5.1)

Proof
Since s2.Y /C s2.X/ > 0, dividing this inequality by c21.X/D c

2
1.Y /, we obtain

2�
c2.Y /

c21.Y /
�
c2.X/

c21.Y /
> 0:

One of the main results of [17], translated into the language of orbifolds, is the orb-
ifold Bogomolov–Miyaoka–Yau inequality for surfaces with quotient singularities:

c21.X/� 3c2.X/:
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Applying this inequality, we obtain

c2.X/

c21.Y /
>
1

3

and

c2.X/

c21.Y /
<
5

3
:

Remark 17
As mentioned above, the existence of a surface of degree 10 in P3 with big cotangent
sheaf is obtained in [23]. This shows that the inequality (5.1) is not satisfied by all
such surfaces.

Remark 18
Recall that for minimal surfaces of general type, we have the Noether inequality:

c21.Y /�
1

5
.c2 � 36/:

The surfaces that are on the Noether line c21 D
1
5
.c2 � 36/ are called Horikawa sur-

faces. As a consequence, it is hopeless to get in that way the proof of the existence of
(higher) symmetric forms for Horikawa surfaces with canonical singularities.

Remark 19
Since we suppose that s2.Y /C s2.X/ > 0, an immediate computation gives

c2.Y /C c2.X/

c21.Y /
D
c2.Y /

c21.Y /
C
c2.X/

c21.X/
< 2:

Therefore a ratio
c2
1
.Y /

c2.Y /
close to 3

5
forces the ratio

c2
1
.X/

c2.X/
to be close to the Miyaoka

bound 3. Examples of orbifolds with s2.Y / < 0 and
c2
1
.X/

c2.X/
close to 3 are rather rare

(see [20] for some references).
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