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Abstract
We study curves of negative self-intersection on algebraic surfaces. In contrast to
what occurs in positive characteristics, it turns out that any smooth complex projec-
tive surfaceX with a surjective nonisomorphic endomorphism has bounded negativity
(i.e., that C 2 is bounded below for prime divisors C on X ). We prove the same state-
ment for Shimura curves on quaternionic Shimura surfaces of Hilbert modular type.
As a byproduct, we obtain that there exist only finitely many smooth Shimura curves
on such a surface. We also show that any set of curves of bounded genus on a smooth
complex projective surface must have bounded negativity.

1. Introduction
In recent years there has been a lot of progress in understanding various notions and
concepts of positivity (see [18]). In the present article, we go in the opposite direction
and study negative curves on complex algebraic surfaces. By a negative curve we will
always mean a reduced, irreducible curve with negative self-intersection.

The results we present here were motivated by the study of an old folklore con-
jecture, sometimes referred to as the Bounded Negativity conjecture, which we state
as follows.

CONJECTURE 1.1 (Bounded Negativity conjecture)
For each smooth complex projective surface X there exists a number b.X/� 0 such
that C 2 ��b.X/ for every negative curve C �X .
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The origins of this conjecture are unclear, but it has a long oral tradition. (Michael
Artin mentioned it to the second author no later than about 1980, and we recently
learned that Federigo Enriques had mentioned the conjecture to his last student,
Alfredo Franchetta, who in turn mentioned it to his student, Ciro Ciliberto. Ciliberto
also recalls Franchetta discussing the problem with Enrico Bombieri during a trip to
Naples many years ago. For recent references to the conjecture, see [11], [14, Con-
jecture 1.2.1], and [15, Question, p. 24].) While the occurrence of smooth complex
surfaces having curves of arbitrarily negative self-intersection still remains mysteri-
ous, we present here related results that arose from our attempts to decide the validity
of the conjecture.

It has been known for a long time that there are algebraic surfaces with infinitely
many negative curves, the simplest examples being the projective plane blown up in
the base locus of a general elliptic pencil or certain elliptic K3 surfaces. In the first
example all negative curves have self-intersection �1, and in the second example the
self-intersection is �2, but in both cases all the negative curves are rational. In char-
acteristic p > 0, surfaces with negative curves of arbitrarily negative self-intersection
have also been known for some time (see [16, Exercise V.1.10]), but the curves in
these examples all have the same genus and result from surjective endomorphisms
(coming from powers of the Frobenius) of the surface containing them.

At this point, the following questions appear to be quite natural.
(1) Can one construct examples over the complex numbers of surfaces with sur-

jective endomorphisms that result in negative curves of arbitrarily negative
self-intersection?

(2) More generally, what happens if we replace endomorphisms by correspon-
dences?

(3) Is it possible to have a surface X with infinitely many negative curves C of
bounded genus such that C 2 is not bounded from below?

(4) For which d < 0 (or g � 0) is it possible to produce examples of surfaces X
with infinitely many negative curves C such that C 2 D d (or such that C has
genus g)?

(5) If there is a lower bound for the self-intersections of negative curves on a given
surface X , is there also a lower bound for the self-intersections of reduced but
not necessarily irreducible curves C on X? If so, how are the bounds related?

In Section 2, we answer the first and third questions. We show that over the
complex numbers a surface with a noninvertible surjective endomorphism must have
bounded negativity. In addition, we point out that bounding the genus of a set of
curves on a given complex surface of nonnegative Kodaira dimension immediately
leads to a lower bound on their self-intersections. (The latter result was first proved
in [6].)
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In Section 3, we study the second question in the arithmetic setting. Recall that a
Hilbert modular surface is a quotient of the second Cartesian power of the upper half-
plane H by a Hilbert modular group. Such surfaces, as is well known, carry a large
infinite algebra of Hecke correspondences. In this article, we look at certain variants
of Hilbert modular surfaces which arise from quaternionic algebras (see Section 3.1
for details). We call these surfaces quaternionic Shimura surfaces of Hilbert modular
type. We prove that the negativity of Shimura curves on quaternionic Shimura surfaces
of Hilbert modular type is bounded and that there exist only finitely many negative
Shimura curves. This implies immediately a result that seems to have escaped general
attention so far, namely, that there are only finitely many smooth Shimura curves on
any such Shimura surface (see Theorem 3.5).

In Section 4, we address the fourth question above; specifically, we verify that for
each integer m> 0 there is a smooth projective complex surface containing infinitely
many smooth irreducible curves of self-intersection �m (see Theorem 4.1, whose
genus can be prescribed when m� 2; see also Theorem 4.3).

Finally, in Section 5, we address the fifth question by giving a sharp lower bound
on the self-intersections of reduced curves for surfaces for which the self-intersections
of negative curves are bounded below.

2. Bounded negativity
In positive characteristic there exist surfaces carrying a sequence of irreducible curves
with self-intersection tending to negative infinity (see [16, Exercise V.1.10]). These
curves are constructed by taking iterative images of a negative curve under a surjective
endomorphism of the surface.

To give it more detail, the construction goes as follows. Let C be a curve of
genus g � 2 defined over an algebraically closed field k of characteristic p, and let
X D C � C be the product surface with � � X the diagonal. Furthermore, let F W
C ! C be the Frobenius homomorphism defined by taking coordinates of a point on
C to their pth powers. Then G D id � F is a surjective endomorphism of X . The
self-intersections in the sequence of irreducible curves �;G.�/;G2.�/; : : : tend to
negative infinity.

We now show that in characteristic zero it is not possible to construct a sequence
of curves with unbounded negativity using endomorphisms as above. In fact, we prove
an even stronger statement: the existence of a nontrivial surjective endomorphism
implies a bound on the negativity of self-intersections of curves on the surface.

PROPOSITION 2.1
Let X be a smooth projective complex surface admitting a surjective endomorphism
that is not an isomorphism. Then X has bounded negativity; that is, there is a bound
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b.X/ such that

C 2 ��b.X/

for every reduced irreducible curve C �X .

Proof
It is a result of Fujimoto and Nakayama (see [12] and [24]) that a surface X satisfying
our hypothesis is of one of the following types:
(1) X is a toric surface;
(2) X is a P1-bundle;
(3) X is an abelian surface or a hyperelliptic surface;
(4) X is an elliptic surface with Kodaira dimension �.X/ D 1 and topological

Euler number e.X/D 0.
In cases (1) and (2), the assertion is clear as the effective cone of X is finitely gener-
ated. This is trivial for a P1-bundle as the Picard number is 2 and was proved by Cox
[9] for toric varieties. Consequently X carries only finitely many negative curves. In
case (3), bounded negativity follows from the adjunction formula (see [6, Proposi-
tion 3.3.2]).

Case (4) requires a little bit more care. First, we establish the following general
fact.

CLAIM

Let f WX ! Y be a finite morphism between two smooth surfaces X and Y . If Con-
jecture 1.1 holds on X , then it holds on Y .

Indeed, let C be an arbitrary curve on Y . Then

C 2 D
1

deg.f /
.f �C/2 �

�b.X/

deg.f /
;

so the claim holds with b.Y /D b.X/=deg.f /.
Next we observe that if X D F � G is a product of two smooth curves with F

an elliptic curve, then X contains no negative curves at all. To this end, note that
F operates on X in the obvious manner (i.e., by translation on the first factor and
identity on the second factor). If C is a curve in X invariant under this operation, then
it is a fiber of the second projection; otherwise it sweeps out the whole surface X and
cannot be negative again.

We conclude showing that all surfaces in case (4) are dominated by a product
(the elliptic fibration must be isotrivial in that case) and the assertion follows then
from the claim above. More specifically, let � WX!B be an elliptic fibration, where
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B is a smooth curve, and let F be the class of a fiber of � . By the properties of
e.X/ of a fibered surface (see [2, Chapter III, Proposition 11.4 and Remark 11.5]),
the only singular fibers of X are possible multiple fibers, and the reduced fibers are
always smooth elliptic curves. In particular, X must be minimal, and its fibers do not
contain negative curves. After a finite base change, we can resolve all multiple fibers
and obtain an elliptic fibration with smooth fibers only (see [8, Lemma VI.7]). Taking
another finite cover if necessary, we obtain a fibration with smooth fibers and level n
structure (n � 3). Such a fibration is trivial since the moduli space of elliptic curves
with level n structure is affine (see [8, Proposition VI.8]).

We now consider question 3 of the introduction. The first general result known
to us that answers this question is due to Bogomolov. It says that, on a surface X of
general type with c21.X/ > c2.X/, curves of a fixed geometric genus lie in a bounded
family. This implies, of course, that their numeric invariants, in particular their self-
intersections, are bounded. An effective version of Bogomolov’s result was obtained
by Lu and Miyaoka in [19, Theorem 1(1)]. Their proof relies on Corollary 2.3. We
state here a more general result due to Miyaoka [21, Theorem 1.3(i)–(ii)], as we need
it anyway in the next section. In fact, Theorem 3.5 is a nice application of this most
general known version of Miyaoka’s theorem. We do not know of a proof of Theo-
rem 3.5 in which Corollary 2.3 would suffice.

THEOREM 2.2
Let X be a surface of nonnegative Kodaira dimension, and let C be an irreducible
curve of geometric genus g on X . Then

˛2

2
.C 2C 3CKX � 6gC 6/� 2˛.CKX � 3gC 3/C 3c2 �K

2
X � 0 (1)

for all ˛ 2 Œ0; 1�.
Moreover, if C 6' P1 and KXC > 3g � 3, then

2.KXC � 3gC 3/
2 � .3c2 �K

2
X /.C

2C 3CKX � 6gC 6/� 0: (2)

Putting ˛D 1 in (1), we recover the classical logarithmic Miyaoka–Yau inequal-
ity (see also [6, Appendix] for a complete direct proof ).

COROLLARY 2.3 (Logarithmic Miyaoka–Yau inequality)
Let X be a smooth projective surface of nonnegative Kodaira dimension, and let C
be a smooth curve on X . Then

c21
�
�1X .logC/

�
� 3c2

�
�1X .logC/

�
;

equivalently .KX CC/2 � 3.c2.X/� 2C 2g.C //.
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We recall here a statement that is numerically slightly weaker than the result
of Lu and Miyaoka [19, Theorem 1(1)] but which has a simpler proof. This result
appeared first in [6, Proposition 3.5.3], and we refer to that article for a more detailed
exposition.

THEOREM 2.4 ([6, Proposition 3.5.3])
Let X be a smooth projective surface with �.X/ � 0. Then for every reduced, irre-
ducible curve C �X of geometric genus g.C /, we have

C 2 � c21.X/� 3c2.X/C 2� 2g.C /: (3)

The proof is a combination of Corollary 2.3 and the following simple lemma on
the behavior of (3) under blowups.

LEMMA 2.5
Let X be a smooth projective surface, let C � X be a reduced, irreducible curve
of geometric genus g.C /, and let P 2 C be a point with m WD multP C � 2. Let
� W eX!X be the blowup ofX at P with the exceptional divisorE . Let eC D ��.C /�
mE be the proper transform of C . Then the inequality

eC 2 � c21.eX/� 3c2.eX/C 2� 2g.eC/
implies that

C 2 � c21.X/� 3c2.X/C 2� 2g.C /:

Proof
This follows by direct computation using the facts that C 2 D eC 2 C m2, c21.X/ D
c21.

eX/C 1, c2.X/D c2.eX/� 1, and g.C /D g.eC/.
Proof of Theorem 2.4
Taking an embedded resolution f W eX ! X of C and applying Lemma 2.5 to every
step, we reduce to proving the assertion for C smooth.

The latter case easily follows from Corollary 2.3. Indeed, our assumption �.X/�
0 implies that K eX C eC is Q-effective. Hence we have

c21.X/C 2C � .KX CC/�C
2 D c21

�
�1X .logC/

�
� 3c2

�
�1X .logC/

�
D 3c2.X/� 6C 6g.C /:

Rearranging terms and using the adjunction formula, we arrive at (3).
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A closer analysis of Corollary 2.3 allows one to ease the assumption of X being
of nonnegative Kodaira dimension by the assumption of X being of nonnegative log-
arithmic Kodaira dimension (see [20, Corollary 1.2]).

ASIDE 2.6 (Strong Logarithmic Miyaoka–Yau inequality)
Let X be a smooth projective surface, and let C be a smooth curve on X such that the
adjoint line bundle KX C C is Q-effective (i.e., there is an integer m > 0 such that
h0.m.KX CC// > 0). Then

c21
�
�1X .logC/

�
� 3c2

�
�1X .logC/

�
;

and equivalently

.KX CC/
2 � 3

�
c2.X/� 2C 2g.C /

�
:

So one gets the same bound (3) as in Theorem 2.4, for all curves C such that
KX CC is Q-effective.

3. Negativity of Shimura curves on quaternionic Shimura surfaces of Hilbert
modular type

3.1. Smoothness of Shimura curves and Hecke translates
A Hilbert modular surface is a quotient of a product of two copies of the upper half-
plane H by a lattice group. Here we are interested in quotients of H � H by a co-
compact arithmetic subgroup of GL.2;R/ � GL.2;R/. Such quotients are compact
surfaces (there are no cusps) and they are called Shimura surfaces of Hilbert modular
type.

In this section, we give a criterion for a Shimura curve on a Shimura surface of
Hilbert modular type to be smooth. We indicate also why its Hecke translates might
fail to remain smooth. In the next section, we will show that the worst scenario actu-
ally happens.

We recall first how quaternionic Shimura surfaces of Hilbert modular type are
defined. (For a complete reference on their construction, see [10]; for particularly
interesting examples, see [13] and [25].) Let A be a ramified quaternion algebra over
a totally real number field k. Let OA be a maximal order of A, and let

�.1/D
®
	 2OA W nr.	/D 1

¯
;

where nr denotes the reduced norm. Suppose that A splits over exactly two places
in R—that is, there exist two embeddings �i W k! R such that the tensor products
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A˝k�i R over these places are isomorphic to M2.R/, while for all the other embed-
dings the tensor product is isomorphic to the Hamiltonian quaternions.

We fix such isomorphisms, giving rise to a representation,


 W A!M2.R/�M2.R/

	 ! .	1; 	2/:

The morphism 
 maps A� into GL2.R/2. Let AC be the subgroup of elements 	 of
A such that det.	i / > 0 for i D 1; 2. The group AC acts on H�H by

	 � .z1; z2/D .	1 � z1; 	2 � z2/;

where, for 	i D
�
a b
c d

�
, we have

	i � z D
azC b

czC d
:

Let us denote by � a subgroup of AC commensurable to �.1/ (i.e., �.1/\� has
finite index in both �.1/ and �). With these hypotheses, the quotient X DH�H=�

is a compact algebraic surface (see [10]).
Let us suppose, in addition, that � is torsion-free, or equivalently, that X is

smooth. The surface X is then minimal of general type with c21 D 2c2; q D 0. We
denote by � WH�H!X the quotient map.

A Shimura curve is, in particular, a totally geodesic curve in X . Let C 01 be such a
Shimura curve on X , and let

H1 � �
�1C 01 �H�H

be a subspace isomorphic to H so that

ƒ1 D ¹	 2 � W 	H1 DH1º

is a lattice in Aut.H1/. Then C1 DH1=ƒ1 is a smooth compact curve whose image
under the generically one-to-one map C1!X we call C 01.

PROPOSITION 3.1
The Shimura curve C 01 is smooth if and only if H1 \ 	H1 D; for all 	 2 � nƒ1.

Proof
The map C1!X is an immersion because the map H1!X is so. Thus singularities
on C 01 can occur if and only if there are two distinct points ƒ1t;ƒ1u on C1 (with
u; t 2H1) mapped onto the same point by the generically one-to-one map C1! C 01.
For such points, we have �t D �u (i.e., there exist 	 2 � such that t D 	u). As
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ƒ1t 6D ƒ1u, we have 	 2 � �ƒ1, and the intersection of the upper half-planes H1

and 	H1 is not empty. Conversely, if the intersection of the upper half-planes H1 and
	H1 is not empty, there are two distinct points on C1 that have the same image on
C 01, and thus there is a singularity on C 01.

For h 2AC, set Hh WD h.H1/ and let

ƒh D ¹� 2 � W �Hh DHhº:

The group ƒh is equal to the lattice hƒ1h�1 \ � . Let Ch D Hh=ƒh, and let C 0
h

be
the image of Ch in X under the natural map. Again, C 0

h
is a Shimura curve.

PROPOSITION 3.2
Suppose that the curve C 01 is smooth. Then the Shimura curve C 0

h
is smooth if and

only if H1 \ 	H1 D; for all 	 2 h�1�h n � .

Proof
We apply Proposition 3.1 to C 0

h
. The curve C 0

h
is smooth if and only if Hh\	Hh D;

for all 	 2 � nƒh. Suppose that the curve C 0
h

is singular. Then there exist z1; z2 2
H1 (whence hz1; hz2 2 Hh) and 	 2 � n ƒh such that hz1 D 	.hz2/. Then z1 D
h�1	hz2. AsC 01 is smooth, we have two possibilities: either h�1	h 2ƒ1 and h�1	h …
� , or for 	 0 D h�1	h 2 h�1�h n � we have H1 \ 	H1 6D ;. The first possibility is
impossible because ƒh D hƒ1h�1 \ � and we assumed that 	 2 � nƒh. Therefore,
the second possibility holds. For the converse statement, we remark that all the above
arguments are in fact equivalences.

As we will remark below, each element h of AC defines a Hecke correspondence
Th, and the curve C 0

h
is an irreducible component of the image of C 01 by Th. We

have Th D Th0 if and only if �hD �h0. When varying �h in � nAC, we see by the
above Proposition 3.2 that in order to keep C 0

h
smooth, the half-plane H1 must avoid

more and more half-planes 	H1. Our next result (Theorem 3.5) shows that this is only
possible in finitely many cases.

Let us now explain how Hecke correspondences come into the game here. For
h 2AC, let

�h D � \ h
�1�h;

which is a subgroup of finite index m in � . Let t1 D 1; t2; : : : ; tm be a full set of
coset representatives of G with respect to �h. Denote by Xh the Shimura surface
Xh DH�H=�h.
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There are two étale maps of degree m,

Xh
�1

�2

X

X

where �1.�h:z/ D �:z and �2.�h:z/ D �h:z. We need to check that �2 is well
defined. Let � WD h�1	h 2 �h, with 	 2 � and z0 WD �z. Then

�h:z0 D �h�:z D �hh�1	h:z D �	h:z D �h:z;

and therefore the map �2 does not depend on the choice of a representative in �h:z.
The Hecke operator Th is defined by Th D �2���1 . We have ��11 �z D �ht1:zC � � �C

�htm:z and

Th.�:z/D �ht1:zC � � � C �htm:z:

It follows that ThC 01 D C
0
h
C Y2C � � � C Yt for some irreducible curves Y2; : : : ; Yt .

Remark 3.3
Let X be a smooth Picard surface (i.e., X D B2=� is a quotient of the unit com-
plex two-dimensional ball B2 by a cocompact torsion-free group � � PU.2; 1/). It
is possible to obtain the same results (smoothness criteria, smoothness of the Hecke
translates) for a Shimura curve C D B1=ƒ onX . Again, the main idea is that, in order
for an irreducible component of the translate ThC of a Shimura curve to be smooth,
the ball hB1 must avoid more and more balls when h varies.

3.2. Finiteness of smooth Shimura curves
Let X be a quaternionic Shimura surface of Hilbert modular type. As we will see,
the self-intersection of a smooth Shimura curve C on X is very negative, in partic-
ular, C 2 D �.2g.C / � 2/ < 0. On the other hand, the set of Shimura curves on X
is preserved by Hecke correspondences. It is therefore very natural to hope to obtain
a counterexample to the bounded negativity conjecture by taking the images of a
Shimura curve by Hecke correspondences. We will see however that there is only a
finite number of Shimura curves (smooth or not) with C 2 < 0.

Let C be a curve on X of geometric genus g. The difference

ıD
1

2
.KX �C CC

2 � 2gC 2/; (4)

whereKX is the canonical divisor ofX , is a positive integer. If the curve is nodal, then
this equals the number of nodes on C . We recall the following important result from
[4], for which we refer to the discussion on pages 265–266 (Section B.3.D) of [4].
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THEOREM 3.4 (Hirzebruch–Höfer proportionality theorem)
For a Shimura curve C on a quaternionic Shimura surface of Hilbert modular type
X , we have

KXC D 4.g � 1/ and KXC C 2C
2 D 4ı:

Although we will not use this fact, it is interesting to notice that the curve C in
Theorem 3.4 is nodal.

The main result of this section is the following.

THEOREM 3.5
For a Shimura curve C on X , we have the following inequalities:

g � 1C c2C

q
c22 C c2ı and C 2 ��6c2:

In particular, if C is smooth, then g � 1C 2c2.
Moreover, there is only a finite number of Shimura curves with C 2 < 0, since for

ı � 3c2, the curve C satisfies C 2 � 0.

Proof
The idea is to show that for ı � 3c2, the Shimura curve C satisfies C 2 � 0. Comput-
ing g from (4) and inserting it into (1), we obtain

P.˛/D ˛2.3ı �C 2/C ˛.CKX C 3C
2 � 6ı/C 3c2 �K

2
X � 0

for 0 � ˛ � 1. Using the second equality in Theorem 3.4, and since K2X D 2c2 for
compact Hilbert modular surfaces, we get

P.˛/D ˛2.3ı �C 2/C ˛.C 2 � 2ı/C c2 � 0:

If C 2 � 2ı, then obviously C 2 � 0. If C 2 < 2ı, then the minimum of P.˛/ is attained
for

˛0 D
2ı �C 2

2.3ı �C 2/
:

Note that 0 < ˛0 < 1. Evaluating the condition P.˛0/� 0, we obtain

2c2C 2

q
c22 C ıc2 � 2ı �C

2 � 2c2 � 2

q
c22 C ıc2: (5)

For C 2 < 2ı, we get the lower bound

C 2 � 2ı � 2c2 � 2

q
c22 C ıc2:

Hence, if ı � 3c2, we indeed have C 2 � 0.
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Suppose now that C 2 < 0. Then ı < 3c2, and therefore �2
q
c22 C ıc2 > �4c2.

We get from (5) that

C 2 � 2ı � 2c2 � 2

q
c22 C ıc2 � 2.ı � 3c2/

and, consequently, C 2 ��6c2.
Miyaoka’s formula (2) with C 2CKXC D 2g � 2C 2ı implies that

.KXC � 3gC 3/
2 � c2.KXC C ı � 2gC 2/� 0:

As KXC D 4g � 4, we get

.g � 1/2 � 2c2.g � 1/� c2ı � 0

and therefore

g � 1� c2C

q
c22 C c2ı:

Now for C 2 < 0, we know that ı < 3c2, and thus we have g � 3c2C1. SinceKXC D
4g � 4, the intersection number KXC is bounded from above. An infinite number of
Shimura curves with bounded geometric genus g and bounded intersection with KX
must be in a finite number of families of curves, and thus these Shimura curves must
deform and satisfy C 2 � 0, and therefore the number of Shimura curves with C 2 < 0
must be finite.

COROLLARY 3.6
There are only finitely many smooth Shimura curves on a quaternionic Shimura sur-
face of Hilbert modular type.

Proof
This follows immediately from Theorem 3.5, as smooth Shimura curves have a neg-
ative self-intersection by the second equality in Theorem 3.4. Indeed, the canonical
divisor is in this situation ample by [23, Proposition 3.4(b)] (see also [1]).

Remark 3.7
It is easy to see that the compactness of X was not used in the course of the proof
of Theorem 3.5. The same statement holds therefore for Hilbert modular surfaces
with cusps. We refrain from stating the precise formula to avoid becoming repetitive.
The main point, however, is the proportionality theorem (Theorem 3.4). In fact, this
theorem holds also for modular curves (i.e., those passing through the cusps of a
Hilbert modular surface; see [22, Theorems 0.1 and 0.2]); hence the statement of
Theorem 3.5 remains valid for such curves.
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Since the numerics are different for ball quotients, such as KX �C D 3.g � 1/ in
that case, our method using Miyaoka’s theorem does not give any numerical bounds.
We do not know whether there are also only finitely many smooth Shimura curves,
but we suspect that is the case.

4. Surfaces with infinitely many negative curves of fixed self-intersection
The well-known example of P2 blown-up at nine points shows that there are surfaces
containing infinitely many .�1/-curves. Along similar lines, we point out here that
one can exhibit surfaces with infinitely many negative curves of any given (fixed)
negative self-intersection.

THEOREM 4.1
For every integer m > 0 there are smooth projective complex surfaces containing
infinitely many smooth irreducible curves of self-intersection �m.

Proof
Let E be an elliptic curve without complex multiplication, and let A be the abelian
surface E � E . We denote by F1 and F2 the fibers of the projections and by � the
diagonal in A. It is shown in [7, Proposition 2.3] that every elliptic curve on A that is
not a translate of F1;F2, or � has numerical equivalence class of the form

Ec;d WD c.cC d/F1C d.cC d/F2 � cd�;

where c and d are suitable coprime integers, and, conversely, that every such numeri-
cal class corresponds to an elliptic curve Ec;d on A. In our construction we will make
use of a sequence .En/ of such curves, for instance, taking En DEn;1 for n� 2. No
two of the curves En are then translates of each other.

Fix a positive integer t such that t2 �m. For each of the elliptic curves En, the
number of t -division points on En is t2, and these points are among the t -division
points of A. (Actually, the latter is only true if En is a subgroup of A, but this can
be achieved by using a translate of En passing through the origin.) Since the number
of t -division points on A is finite—there are exactly t4 of them—there must exist a
subsequence of .En/ having the property that all curves En in the subsequence have
the same set of t -division points, say ¹e1; : : : ; et2º.

Consider now the blowup f W X ! A at the set ¹e1; : : : ; emº. The proper trans-
form Cn of En is then a smooth irreducible curve on X with

C 2n DE
2
n �mD�m;

as claimed.
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Remark 4.2
Note that the proof yields a one-dimensional family of surfaces and that the con-
structed surfaces are of Picard number mC 3.

For each m� 1, the proof above gives a surface X with infinitely many curves of
genus 1 of self-intersection �m. This raises the question of whether, for each m� 1
and each g � 0, there is a surface X with infinitely many curves of genus g of self-
intersection �m. We now show that the answer is yes at least for m > 1. This is
probably well known to specialists, but we enclose the proof for the lack of a refer-
ence.

THEOREM 4.3
For eachm> 1 and each g � 0 there exists a smooth projective complex surface con-
taining infinitely many smooth irreducible curves of self-intersection�m and genus g.

Proof
Let f WX!B be a smooth complex projective minimal elliptic surface with section,
fibered over a smooth base curve B of genus g.B/. Then X can have no multiple
fibers, so that by Kodaira’s well-known result (see [2, Chapter V, Corollary 12.3]),
KX is a sum of a specific choice of 2g.B/�2C
.OX/ fibers of the elliptic fibration.
Let C be any section of the elliptic fibration f . By adjunction, C 2 D�
.OX /.

Take X to be rational, and take f to have infinitely many sections; for example,
blow up the base points of a general pencil of plane cubics. Then 
.OX /D 1, so that
C 2 D�1 for any section C .

Pick any g � 0 and any m � 2. Then, as is well known (see [17]), there is a
smooth projective curve C of genus g and a finite morphism h W C !B of degree m
that is not ramified over points of B over which the fibers of f are singular. Let Y D
X �B C be the fiber product. Then the projection p W Y ! C makes Y into a minimal
elliptic surface, and each section of f induces a section of p. By the property of the
ramification of h, the surface Y is smooth and each singular fiber of f pulls back to
m isomorphic singular fibers of p. Since e.Y / is the sum of the Euler characteristics
of the singular fibers of p (see, e.g., [2, Chapter III, Proposition 11.4], we obtain from
Noether’s formula that 
.OY /D e.Y /=12Dme.X/=12Dm
.OX /Dm. Therefore,
for any section D of p, we have D2 D �m; that is, Y has infinitely many smooth
irreducible curves of genus g and self-intersection �m.

Remark 4.4
Somewhat more abstractly, one can prove Theorem 4.3 using the fact that, given an
elliptic rational surface with infinite Mordell–Weil group, one can perform a base
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change of degreem with a curve of genus g to obtain a surface with 1�gCpg Dm.
Then there are also infinitely many elements in the Mordell–Weil group of the new
surface, and they all satisfy the numerical requirements of the theorem.

Question 4.5
Is there for each g > 1 a surface with infinitely many .�1/-curves of genus g?

5. Negativity of reducible curves
When asking for bounded negativity of curves, it is necessary to restrict attention to
reduced curves. Irreducibility, however, is not an essential hypothesis, since by [6,
Proposition 3.8.2], bounded negativity holds for the set of reduced, irreducible curves
on a surface X if and only if it holds for the set of reduced curves on X . Here we
improve this result by obtaining a sharp bound on the negativity for reducible curves,
given a bound on the negativity for reduced, irreducible curves.

PROPOSITION 5.1
Let X be a smooth projective surface (over an arbitrary algebraically closed ground
field) for which there is a constant b.X/ such that C 2 � �b.X/ for every reduced,
irreducible curve C �X . Then

C 2 ��
�

.X/� 1

�
� b.X/

for every reduced curve C �X , where 
.X/ is the Picard number of X .

Proof
Consider the Zariski decomposition C D P CN of the reduced divisor C . Then we
have C 2 D P 2CN 2 �N 2, as P is nef and P and N are orthogonal. So the issue is
to bound N 2. The negative part N is of the form N D a1C1C � � � C arCr , where the
curves Ci are among the components of C and the coefficients ai are positive rational
numbers. Note that ai � 1 for all i , because C is reduced. Since the intersection
matrix of N is negative definite, we have r � 
.X/� 1. Thus

C 2 �N 2 � a21C
2
1 C � � � C a

2
rC

2
r ��r � b.X/��

�

.X/� 1

�
� b.X/;

as claimed.

Example 5.2
Here is an example of a surface of higher Picard number, for which equality holds
in the inequality C 2 � �.
.X/ � 1/ � b.X/ that was established above. Consider a
smooth Kummer surface X � P3 with 16 disjoint lines (or with 16 disjoint smooth
rational curves of some degree) as in [3] or in [5]. The generic such surface has
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.X/ D 17, we have b.X/ D �2, and if C is the union of the 16 disjoint curves,
then C 2 D 16 � .�2/.

Example 5.3
A more elementary example is given by the blowup X of P2 at n� 8 general points,
so 
.X/D nC1. Since �KX is ample, it follows by adjunction for any reduced, irre-
ducible curve C that C 2 ��1, so b.X/D 1. But if E is the union of the exceptional
curves of the n blown-up points, then E2 D�nD�.
.X/� 1/ � b.X/.
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