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Abstract The canonical degree of a curve C on a surface X is K X · C . Our main result,
Theorem 1.1, is that on a surface of general type there are only finitely many curves with
negative self-intersection and sufficiently large canonical degree. Our proof strongly relies
on results by Miyaoka. We extend our result both to surfaces not of general type and to
non-negative curves, and give applications, e.g., to finiteness of negative curves on a general
blow-up of P2 at n ≥ 10 general points (a result related to Nagata’s Conjecture). We finally
discuss a conjecture by Vojta concerning the asymptotic behaviour of the ratio between the
canonical degree and the geometric genus of a curve varying on a surface. The results in this
paper go in the direction of understanding the bounded negativity problem.
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1 Introduction

Let C be a projective curve on a smooth projective complex surface X . By curve we mean
an irreducible, reduced 1-dimensional scheme. We denote by g = g(C) its geometric genus
and by p = pa(C) its arithmetic genus, i.e., C2 + K · C = 2pa − 2, where K = K X is a
canonical divisor of X . We set δ = δ(C) = p − g. We call a curve negative if C2 < 0. The
canonical degree of C is kC = K · C , often simply denoted by k. If g(C) �= 1, we set
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βC = kC

g(C) − 1
,

often simply denoted by β. For a surface X we set

aX = 3c2(X) − K 2
X ,

often simply denoted by a. If the Kodaira dimension κ = κ(X) is non-negative, one has
a ≥ 0.

The main result of this paper concerns negative curves with high canonical degree:

Theorem 1.1 (A) Let C be a negative curve not isomorphic to P
1 on a surface X with κ ≥ 0.

Then

kC ≤ 3(g − 1) + 3

4
a + 1

4

√
9a2 + 24a(g − 1), (1.1)

(we remark that in case a = 0, there are no curve with g = 0). Furthermore, if g > 1 then

βC ≤ 3 + 3

4
a + 1

4

√
9a2 + 24a ≤ 4 + 3

2
a. (1.2)

If, in addition, β = 3 + ε > 3, then

g ≤ 1 + 3a(ε + 1)

2ε2
. (1.3)

(B) Suppose κ(X) = 2. Then for each ε > 0 there are at most finitely many negative curves
C on X such that kC ≥ (3 + ε)(g − 1) > 0.

From (B) it follows that:

Corollary 1.2 Let X be a surface of general type. There is a function B(ε), defined for
ε ∈]0,∞[ such that for all negative curves C we have

kC ≤ (3 + ε)(g − 1) + B(ε) and − C2 ≤ (1 + ε)(g − 1) + B(ε).

AShimura surface X is a quotient of the bidisk by a torsion free discrete cocompact lattice.
It is of general type and on some Shimura surfaces there are infinitely many totally geodesic
curves (see [4]). Such a curve C is also called a Shimura curve and satisfies kC = 4(g − 1).
We thus obtain the following corollary of Theorem 1.1 (B), which was one of the main results
of [2]:

Corollary 1.3 On a Shimura surface, there exist finitely many (may be none) negative
Shimura curves.

The proof of Theorem 1.1, contained in Sect. 2, strongly relies on a result by Miyaoka’s
(see [11, Cor 1.4] stated as Theorem 2.1 below). In particular, the inequality (1.1) is very
similar to [11, formula (3)], which has a slightly lower growth in g, but applies only to
minimal surfaces.

In Sect. 3wemake an extension of Theorem1.1whichworks also in the case κ = −∞, and
we prove a finiteness result for negative curves on a general blow-up of P2 at n ≥ 10 general
points. This is a bounded negativity result which is reminiscent of the famous Nagata’s
Conjecture, predicting that there is no negative curve on such a surface except for (−1)-
rational curves.

In Sect. 4, again usingMiyaoka’s result, we prove a boundedness theorem for non-negative
curves of high canonical degree. In Sect. 5 we discuss a conjecture by Vojta concerning the
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asymptotic behaviour of kC/(g − 1) when C varies among all curves on a surface. We
introduce an invariant related to Vojta’s conjecture and we prove a bound for it.

The results in this paper go in the direction of understanding bounded negativity (see [2]).
The Bounded Negativity Conjecture (BNC) predicts that on a surface of general type over
C (and indeed on any smooth complex projective surface) the self-intersection of negative
curves is bounded below. Nagata’s conjecture, which we mentioned above, is also a sort of
bounded negativity assertion. As a general reference on both bounded negativity andNagata’s
conjecture, see [8]. Also Vojta’s conjecture is related to bounded negativity, as we discuss in
Sect. 5.

As a consequence of Theorem 1.1, we have the following information on negative curves
for surfaces with κ ≥ 0:

Corollary 1.4 Suppose BNC fails for X with κ(X) ≥ 0, so that there exists a sequence
(Cn)n∈N of negative curves of genus gn with lim C2

n = −∞. Then lim gn = ∞ and

lim sup
n

K · Cn

gn − 1
≤ 3.

Observe that if BNC fails for a surface Y with κ(Y ) < 0, by taking a suitable (e.g., double)
cover one obtain a surface X on which BNC fails with κ(X) ≥ 0.
In conclusion, the authors would like to thank B. Harbourne and J. Roé for useful exchanges
of ideas about the application to Nagata’s Conjecture in Sect. 3.

2 The proof of the main theorem

Our proof relies on the following result by Miyaoka (see [11, Cor 1.4]):

Theorem 2.1 Let C be curve on a surface X with κ ≥ 0. Then for all α ∈ [0, 1], we have:

α2(C2 + 3kC − 6g + 6) − 4α(kC − 3g + 3) + 2a ≥ 0. (2.1)

Suppose C is not isomorphic to P
1 and kC > 3(g − 1). Then

2(kC − 3g + 3)2 − a(C2 + 3kC − 6g + 6) ≤ 0. (2.2)

Suppose in addition K 2 > 0. Then
( c2

K 2 − 1
)

k2C +(4(g−1)+a)kC −2(g−1)(3(g−1)+a) ≥
(

c2
K 2 − 1

3

) [
k2C − C2K 2] ≥ 0.

(2.3)

Proof Inequality (2.1) is [11, Thm 1.3, (i)] and (2.2) is [11, Thm 1.3, (ii)]. As for (2.3) this is
[11, Thm 1.3, (iii)], which is stated there under the assumption that X is minimal of general
type and C �� P

1. However Miyaoka’s argument works more generally under the weaker
assumption K 2 > 0. �	

We are now ready for the:

Proof of Theorem 1.1 Let us prove (A). Let C be a negative curve on X not isomorphic to
P
1. Then −aC2 ≥ 0, with equality if and only if a = 0. If kC ≤ 3(g − 1), there is nothing

to prove. Let us suppose k = kC > 3(g − 1) and set g = g − 1. By (2.2), one has

P(k) := 2(k − 3g)2 − a(3k − 6g) ≤ 0, (2.4)

with strict inequality if a > 0.
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If a = 0 then Eq. 2.4 implies k = 3(g − 1), against the assumption that k > 3(g − 1),
thus this cannot occur. In the remaining cases, kC is less than or equal to the largest root of
P , whence we get (1.1).

Suppose g > 1. We obtain (1.2) directly from (1.1) by dividing by g − 1. For a curve C
with ε > 0, one has from (1.1)

ε(g − 1) ≤ 3

4
a + 1

4

√
9a2 + 24a(g − 1). (2.5)

This gives

4ε(g − 1) − 3a ≤
√
9a2 + 24a(g − 1),

and by squaring one gets (1.3), finishing the proof of (A).
Next we prove (B). Let β0 > 3. By (1.2) and (1.3), negative curves with β > β0 have

bounded genus g, therefore by (1.1) also kC is bounded, hence the arithmetic genus p is
bounded.

Suppose K is big. By [10, Cor.2.2.7] there exist m ∈ N
∗, an ample divisor A and an

effective divisor Z such that

mK ≡ A + Z .

Since Z is effective, the set of integers Z · C , when C varies among negative curves, is
bounded from below, therefore the degree A · C = (mK − Z) · C of these curves with
respect to the ample divisor A is bounded. Hence, by results of Chow–Grothendieck [7], [12,
Lecture 15], one has only finitely many components of the Hilbert scheme containing points
corresponding to such curves. Since they are negative, these components contain only one
curve, proving the assertion. �	

For the proof of Corollary 1.4, since K Cn + C2
n ≥ −2, one get lim K Cn = ∞. Since we

are on a surface with κ ≥ 0, we can apply (1.1), lim gn = ∞, thus the result.

3 Surfaces not of general type

We want to deduce from Theorem 1.1 a result valid for any smooth surface. Let Y be any
smooth projective surface. Let η ∈ Pic(Y ) be such that η2 > 0, |KY + η| is big and |2η|
contains a base point free linear system of positive dimension. Let be β0 > 3.

Theorem 3.1 Then there are at most finitely many negative curves D on Y such that

kD ≥ β0(g − 1) + β0 − 2

2
D · η. (3.1)

Proof Under the hypotheses there is a smooth curve B ≡ 2η intersecting every negative
curves of X only at smooth points with intersection multiplicity 1. Let us make a double
cover f : X → Y branched along B. Then for every negative curve D of Y , C = f ∗(D)

is irreducible, negative and g(C) = 2g(D) − 1 + η · D by the Hurwitz formula. Now, if
one has any sequence of distinct curves Dn such that η · Dn is bounded, then the curves
Dn belong to finitely many components of the Hilbert scheme. Since the curves Dn are
negative, they are isolated, so they belong to different components of the Hilbert scheme,
and therefore η · D goes to +∞. By Hurwitz formula, g(C) goes to infinity as well. Since
f∗(K X ) = KY ⊕ (KY + η), then κ(X) = 2 and we finish by applying (B) of Theorem 1.1
to X and to C = f ∗(D). �	
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As an application, we take Yn to be the plane blown up at n general points. Then Pic(Yn) ∼=
Z

n+1 is generated by the classes of the pull-back L of a line and of minus the exceptional
divisors E1, . . . , En over the blown up points. We write D = (d, m1, . . . , mn) to denote
the class of a curve with components d, m1, . . . , mn with respect to this basis. We may use
exponential notation to denote repeated mi ’s. Thus −K = (3, 1n).

Proposition 3.2 Fix β0 > 3. There are at most finitely many irreducible curves of class
D = (d, m1, . . . , mn) on Yn such that

D2

d
≤ 2 − β0

β0

(
1 + M

d

)
, where M =

n∑

i=1

mi . (3.2)

Proof We apply Theorem 3.1, by taking η = 4L . Indeed K +η = (1,−1n) is big. Moreover
(3.2) is equivalent to kD ≥ β0(p − 1) + β0−2

2 D · η (where p is the arithmetic genus of D),
which implies (3.1) (where g is the geometric genus of D). �	

Recall that

εn = inf

{
d

M
, for all effective D = (d, m1, . . . , mn), such that M > 0

}

is the Seshadri constant of Yn . Nagata’s Conjecture (see [13]) is equivalent to say that
εn = 1/

√
n if n ≥ 10 (see [9]).

Remark 3.3 Proposition 3.2 can be seen as a weak form of Nagata’s Conjecture. Indeed, let
us look at the homogeneous case D = (d, mn) with n ≥ 10. Nagata’s Conjecture predicts
that, if the n blown up points are in very general position, there is no irreducible such curve
with D2 < 0 (see [5,13]), i.e., with d <

√
nm. The conclusion of Proposition 3.2 is not

absence of curves, but finiteness of their set, under a stronger assumption than Nagata’s. Let
us look at the difference between the two assumptions. In the (m, d)-plane (3.2) applies to
pairs (m, d) in the first quadrant below the hyperbola with equation

β0d2 + d(β0 − 2) − nβ0m2 + (β0 − 2)nm = 0 (3.3)

drawn in black in Fig. 1. One of its asymptotes (the lower line of Fig. 1) is parallel to the
Nagata line d = √

nm (the upper line of Fig. 1).
Since for all effective divisor D = (d, m1, . . . , mn) one has d/M ≥ εn , one has approx-

imations d/M ≥ en to Nagata’s conjecture for any lower approximation en of εn . The best
known in general is the one in [9]

εn ≥ en =
√
1

n

(
1 − 1

f (n)

)
(3.4)

where f (n) is, formost n, an explicitly given quadratic function of n (see [9, Corollary 1.2.3]).
For n = 10 in the homogeneous case the best result is e10 = 228/721 (see [14]).

The hyperbola (3.3) meets the line d = enm, therefore Proposition 3.2 gives some infor-
mation in an unlimited region where the above approximations to Nagata do not work.

Remark 3.4 Proposition 3.2 implies that there are finitely many irreducible curves of class
D = (d, m1, . . . , mn) on Yn such that

D2

d
≤ 2 − β0

β0

(
1 + 1

εn

)
, (3.5)
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Fig. 1 The hyperbola, its
asymptote and the Nagata line

where εn can be replaced by en in Harbourne–Roé’s approximation (3.4). This result is not
surprising. Indeed, J. Roé pointed out to us an easy argument which shows that there is no
irreducible curve of class D = (d, m1, . . . , mn) on Yn such that

D2

d
< − 1

nεn

which is better than (3.5), and the difference

β0 − 2

β0

(
1 + 1

εn

)
− 1

nεn

tends to β0−2
β0

∼ 1
3 for n → ∞.

4 A boundedness result for non-negative curves

With the usual notation, for a curve C on the surface X with C2 �= 0, we set xC := δC
C2 , with

the usual convention that the index C can be dropped if there is no ambiguity.

Theorem 4.1 Consider real numbers x0 > 1
2 and β0 > 3. Let C be a curve on X, with

κ(X) ≥ 0, satisfying the following conditions:

(1) C2 > 0, kC = β(g − 1) with β > β0 and g > 1;
(2) xC > x0.

Then

g ≤ a
(β − 2)

(β − 3)2
3x0 − 1

2x0 − 1
+ 1, (4.1)

kC ≤ a
(β − 2)

β(β − 3)2
3x0 − 1

2x0 − 1
, (4.2)

kC ≤ 2(g − 1) + a
(β − 2)2

(β − 3)2
· 3x0 − 1

2x0 − 1
. (4.3)
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If κ(X) = 2, then the Hilbert scheme of curves on X satisfying (1) and (2) has finitely many
irreducible components.

Proof One has

kC − 2(g − 1) = 2δ − C2 = (β − 2)(g − 1) > 0.

Hence by (2.1), we have

P(α) := α2 (
3δ − C2) + α

2(β − 3)

β − 2

(
C2 − 2δ

) + a ≥ 0 (4.4)

for α ∈ [0, 1]. Since the coefficient of the leading term of P is positive, the minimum of
P(α) is attained for

α0 = (β − 3)
(
2δ − C2

)

(β − 2)
(
3δ − C2

) .

Since β > 3, we have α0 ∈]0, 1[, and, by (4.4) we have

P(α0) = − (β − 3)2
(
2δ − C2

)2
(β − 2)2

(
3δ − C2

) + a ≥ 0

Thus

a

μ
≥

(
2δ − C2

)2
(
3δ − C2

) where μ = (β − 3)2

(β − 2)2
,

hence

a

μ
· 3δ − C2

2δ − C2 ≥ 2δ − C2.

We have

3δ − C2

2δ − C2 = 3x − 1

2x − 1
<

3x0 − 1

2x0 − 1

because 3x−1
2x−1 is decreasing for x > x0 > 1

2 , hence

(β − 2)(g − 1) = kC − 2(g − 1) = 2δ − C2 ≤ a

μ
· 3x0 − 1

2x0 − 1
,

which implies (4.1), (4.2) and (4.3). Moreover both g and kC are bounded from above and,
if κ(X) = 2, we conclude with the same argument at the end of the proof of Theorem 1.1.

�	
Corollary 4.2 Let β0 be greater than 3 and let (Cn)n∈N be a sequence of curves on X with
κ ≥ 0 such that kCn > β0(g(Cn) − 1), C2

n > 0 and lim g(Cn) = ∞. Then

lim
n

δCn

C2
n

= 1

2
, (4.5)

moreover limn
g(Cn)
δCn

= limn
K ·Cn
δn

= 0.
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Proof LetC be a curve with kC = (3+ε)(g−1), ε > 0. Since (1+ε)(g−1) = 2δ−C2, we
get δ

C2 − 1
2 = (1+ε)

g−1
2C2 ≥ 0. Therefore lim infn

δn
C2

n
≥ 1

2 . On the other hand, using inequality

(4.1) of Theorem 4.1 which holds for surface with κ ≥ 0, we obtain lim supn
δn
C2

n
≤ 1

2 . The

remaining limits are readily computed, using inequalities (4.1) and (4.2), respectively, and
the fact that δ ∼ C2/2. �	
Example 4.3 For Shimura curves on Shimura surfaces, we have K · C = 4(g − 1) and, if
there is one, there are infinitely many of them (see [1]). We suppose that this is the case. By
Theorem 1.1 (B), all but a finite number of Shimura curves C satisfy C2 > 0. By Theorem
4.1, the geometric genus of a sequence of such curves goes to ∞. For such a sequence, one
gets lim δC

C2 = 1
2 from Corollary 4.2 (this example is used in [15, Section 4.1]).

5 On a conjecture by Vojta

The results in Sect. 4 are reminiscent of the following conjecture (see [1]), which predicts
that curves of bounded geometric genus on a surface of general type form a bounded family:

Conjecture 5.1 Let X be a smooth projective surface. There exist constants A, B such that
for any curve C we have

kC ≤ A(g − 1) + B.

If this conjecture is satisfied for X with κ(X) = 2, then X contains finitely many curves
of genus 0 or 1. This is known to hold for minimal surfaces with big cotangent bundle (see
[3,6]).

A stronger version of Conjecture 5.1 is the following conjecture by Vojta (see again [1]):

Conjecture 5.2 For any real number ε > 0, we can take A = 4 + ε in Conjecture 5.1 (and
B = B(ε) a function of ε).

An even stronger, more recent version, predicts that A = 2 + ε (see [1]).

Remark 5.3 If C is a smooth curve on X , then kC = 2(g − 1) − C2, therefore if BNC
holds, then Vojta’s conjecture holds for smooth curves with A = 2. This suggests a close
relationship between Vojta’s conjecture and BNC.

Miyaoka proves in [11] that Conjecture 5.1 also holds if K 2 > c2 and he gives explicit
values for A and B, but they are far away from the ones predicted byConjecture 5.2.Moreover
Miyaoka proves that kC ≤ 3(g − 1) for (smooth) compact ball quotient surfaces on which
the equality is attained by an infinite number of curves, i.e., Shimura curves, if they exist.

In [1] one proves that for surfaces whose universal cover is the bi-disk, one has

kC ≤ 4(g − 1).

This is sharp since for Shimura curves on Shimura surfaces, one has kC = 4(g − 1).
For X a surface, we define

�X = sup
(Cn)n∈N

{
lim sup

n

K · Cn

gn − 1

}

where (Cn)n∈N varies among all sequences of curves Cn in X of genus gn = g(Cn) > 1 with
limn gn = ∞. Conjecture 5.1 says that �X < ∞.
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If X has trivial canonical bundle, then �X = 0. Apart from this case, and the aforemen-
tioned cases studied in [1,11], nothing is known about �X . The following result gives us a
piece of information:

Theorem 5.4 Let X be a surface of Kodaira dimension κ > 0. Let L be a very ample divisor
on X, and let γ be the arithmetic genus of curves in |L|. Then

�X ≥ K · L

γ − 1 + L2 > 0.

Proof Look at the surface X embedded in P
r , with r ≥ 3, via L . Then take a general

projection π : X → P
2. Consider a general rational curve of degree n in P

2 and let Cn be its
pull-back via π . Then Cn ∈ |nL|.

By Hurwitz formula, the ramification divisor R of π is such that K ≡ π∗(KP2)+ R, thus
R ≡ K + 3L . The ramification divisor of the restriction of π to Cn is R · Cn . So Hurwitz
formula for curves implies that the geometric genus gn of Cn satisfies

2gn − 2 = nL · K + (3n − 2)L2.

Therefore

K · Cn

gn − 1
= 2nL · K

n(L · K + L2) + (2n − 2)L2 = L · K

γ − 1 + (
1 − 1

n

)
L2

and this proves the left-hand side inequality. Since X has Kodaira dimension κ > 0, we get
K · L > 0 and �X > 0. �	
Example 5.5 Suppose that, in the setting of Theorem 5.4, one has K = mL , with m > 0.
Then

�X ≥ 2m

m + 3
.

So there are sequences (Xn)n∈N of surfaces, e.g., complete intersections of increasing degree
in projective space, with m → ∞, and therefore �Xn → 2 (from below).
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