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It has been proved by Adler that there exists a unique cubic 
hypersurface X7 in P8 which is invariant under the action of 
the simple group PSL2(F19). In the present note we study 
the intermediate Jacobian of X7 and in particular we prove 
that the subjacent 85-dimensional torus is an Abelian variety. 
The symmetry group G = PSL2(F19) defines uniquely a 
G-invariant Abelian 9-fold A(X7), which we study in detail 
and describe its period lattice.
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Introduction

Let PSL2(Fq) be the projective special linear group of order 2 matrices over the finite 
field with q element Fq. There exist exactly two non-trivial irreducible complex represen-
tations W q−1

2
, W̄ q−1

2
of PSL2(Fq) on a space of dimension q−1

2 , each one complex conju-
gated to the other, see [8]. In [1], Adler proved that for any q a power of a prime p ≥ 7, 
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with p = 3 mod 8, there exists a unique (up to a constant multiple) PSL2(Fq)-invariant 
cubic form fq of W q−1

2
. We call the corresponding unique PSL2(Fq)-invariant cubic hy-

persurface

X q−5
2

= {fq = 0} ↪→ P(W q−1
2

)

the Adler cubic for q.
In the smallest non-trivial case, q = 11, the Adler cubic in P4 = P(W5) coincides with 

the Klein cubic threefold

X3 =
{
x2

1x2 + x2
2x3 + x2

3x4 + x2
4x5 + x2

5x1 = 0
}
.

This threefold has been introduced by Felix Klein when he studied the well known Klein 
quartic curve, the unique curve in the projective plane with symmetry group PSL2(F7), 
see [11]. In [15], the second author has proven that there exists a unique Abelian fivefold 
A(X3) with a PSL2(F11)-invariant principal polarization and he has explicitly described 
the period lattice of A(X3). In this case, A(X3) coincides with the Griffiths intermediate 
Jacobian J(X3) of the cubic threefold X3, with the principal polarization coming from 
the intersection of real 3-cycles on X3.

In this paper we study the next case – the Adler cubic for q = 19. By using the general 
descriptions from Theorem 4 of [1], one can find an equation of the Adler cubic X7:

f19 = x2
1x6 + x2

6x2 + x2
2x7 + x2

7x4 + x2
4x5 + x2

5x8 + x2
8x9 + x2

9x3 + x2
3x1

− 2(x1x7x8 + x2x3x5 + x4x6x9).

In the first section, we study a similar invariant principally polarized Abelian ninefold 
A(X7) defined uniquely by the Adler cubic sevenfold, and compute the period lattice 
and the first Chern class of the polarization of A(X7).

In the second section, we study the 85-dimensional Griffiths intermediate Jacobian

J(X7) =
(
H5,2 ⊕H4,3)∗/H7(X7,Z)

of X7. We prove that forgetting the natural polarization on J(X7), one can introduce 
another PSL2(F19)-invariant polarization which provides the complex torus subjacent to 
J(X7) with a structure of an Abelian variety.

In the third section, we study invariant properties of the Adler–Klein pencil of 
cubic sevenfolds, an analog of the Dwork pencil of quintics threefolds see e.g. [6]. 
Notice that from the point of view of variation of Hodge structure, the cubic seven-
folds can be considered as higher dimensional analogs of Calabi–Yau threefolds, see [2]
and [10].
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1. The invariant Abelian 9-fold of the Adler cubic 7-fold

We begin by some notations. Let e1, . . . , e9 be a basis of a 9-dimensional vector 
space V . Let τ ∈ GL(V ) be the order 19 automorphism defined by

τ : ej → ξj
2
ej ,

where ξ = e2iπ/19, i2 = −1. The order 9 automorphism σ ∈ GL(V ) is defined by its 
action on the coordinates ej , 1 ≤ j ≤ 9, as the permutation (6, 7, 1, 5, 8, 2, 4, 9, 3) of the 
indices. We denote by μ the order 2 automorphism given in the basis e1, · · · , e9 by the 
matrix:

μ =
(

i√
19

(
kj

19

)(
ξkj − ξ−kj

))
1≤k,j≤9

where (kj19 ) is the Legendre symbol. The group generated by τ, σ and μ is isomorphic to 
PSL2(F19) and defines a representation of PSL2(F19), see [8]. Let us define

vk = τk(e1 + . . . + e9)

= ξke1 + ξ4ke2 + ξ9ke3 + ξ16ke4 + ξ6ke5 + ξ17ke6 + ξ11ke7 + ξ7ke8 + ξ5ke9

(thus vk = vk+19) and

w′
k = 1

1 + 2ν (vk − 5vk+1 + 10vk+2 − 10vk+3 + 5vk+4 − vk+5),

where

ν =
k=9∑
k=1

ξk
2

= −1 + i
√

19
2 .

An endomorphism h of a torus A acts on the tangent space TA,0 by its differential dh, 
which we call the analytic representation of h. For the ease of the notations, we will use 
the same letter for h and its analytic representation.

In the present section, we will prove the following theorem:

Theorem 1. There exist:
(1) a 9-dimensional torus A = V/Λ, TA,0 = V such that the elements τ , σ of GL(V )

are the analytic representations of automorphisms of A. The torus A is isomorphic to 
the Abelian variety E9, where E is the elliptic curve C/Z[ν] (ν = −1+i

√
19

2 ).
(2) a unique principal polarization Θ on A which is invariant by the automor-

phisms σ, τ . The period lattice of A is then:

H1(A,Z) = Z[ν]
1 + 2ν w

′
0 + Z[ν]

1 + 2ν w
′
1 + Z[ν]

1 + 2ν w
′
2 + Z[ν]

1 + 2ν w
′
3 +

8⊕
k=4

Z[ν]vk,

and c1(Θ) = 2√
∑k=9

k=1 dxk ∧ dx̄k, where x1, . . . , x9 is the dual basis of the ej’s.
19
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In order to prove Theorem 1, we first suppose that such a torus A = V/Λ exists and 
find the necessary conditions for its existence. We then check immediately that these 
conditions are also sufficient, and that they give us the uniqueness of A.

Let Λ ⊂ V be a lattice such that τ and σ of GL(V ) are analytic representations of 
automorphisms of the torus A = V/Λ. Let

	k = ξkx1 + ξ4kx2 + ξ9kx3 + ξ16kx4 + ξ6kx5 + ξ17kx6 + ξ11kx7 + ξ7kx8 + ξ5kx9.

Let q be the endomorphism q =
∑j=8

j=0 σ
j . For z =

∑j=9
j=1 xjej , we have q(z) = 	0(z)v0, 

thus the image of q is an elliptic curve E contained in A.
The restriction of q ◦ τ : A → E to E ↪→ A is the multiplication by ν = 	0(τv0). Thus 

the endomorphism group EndE of E contains the ring Z[ν]; since this is a maximal order, 
we have EndE = Z[ν]. We remark that the ring Z[ν] is one of the 9 rings of integers 
of quadratic fields that are Principal Ideal Domains, see [13]. Since Z[ν] is a PID and 
H1(A, Z) ∩ Cv0 is a rank one Z[ν]-module, there exists a constant c ∈ C

∗ such that

H1(A,Z) ∩ Cv0 = Z[ν]cv0.

Up to normalization of the ej ’s, we can suppose that c = 1.
Let Λ0 ⊂ V be the Z-module generated by the vk, k ∈ Z/19Z. The group Λ0 is stable 

under the action of τ and Λ0 ⊂ H1(A, Z) = Λ.

Lemma 2. The Z-module Λ0 ⊂ H1(A, Z) is equal to the lattice:

R0 =
k=8∑
k=0

Z[ν]vk.

Proof. We have νv0 =
∑k=9

k=1 vk2 hence νv0 is an element of Λ0. This implies that the 
vectors νvk = τkνv0 are elements of Λ0 for all k, hence: R0 ⊂ Λ0. Conversely, we have:

v9 = v0 + (1 + ν)v1 − 2v2 + (1 − ν)v3 + (3 + ν)v4 + (−2 + ν)v5 − (2 + ν)v6 + 2v7 + νv8

and similar formulas for v10, . . . , v17. This proves that the lattice R0 contains the vectors 
vk = τkv0 generating Λ0, thus: R0 = Λ0. �

Now we construct a lattice that contains H1(A, Z). Let be k ∈ Z/19Z. The image of 
z ∈ V by the endomorphism q ◦ τk : V → V is

q ◦ τk(z) = 	k(z)v0.

Let be λ ∈ H1(A, Z). Since H1(A, Z) ∩ Cv0 = Z[ν]v0, the scalar 	k(λ) is an element of 
Z[ν]. Let

Λ8 =
{
z ∈ V | 	k(z) ∈ Z[ν], 0 ≤ k ≤ 8

}
.
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Lemma 3. The Z-module Λ8 ⊃ H1(A, Z) is the lattice:

k=7∑
k=0

Z[ν]
1 + 2ν (vk − vk+1) + Z[ν]v0.

Moreover τ stabilizes Λ8.

Proof. Let 	∗0, . . . , 	∗8 be the basis dual to 	0, . . . , 	8. By definition, the Z[ν]-module Λ8 is ⊕i=8
i=0 Z[ν]	∗i . By expressing the 	∗i in the basis v0, . . . , v8 we obtain the lattice Λ8. Using 

the formula:

v9 − v8 = v0 + (1 + ν)v1 − 2v2 + (1 − ν)v3 + (3 + ν)v4

+ (ν − 2)v5 − (2 + ν)v6 + 2v7 + (ν − 1)v8,

one can check that v9 − v8 is a Z[ν]-linear combination of (2ν + 1)v0 and the vk − vk+1
for k = 0, . . . , 7. Therefore τ( 1

2ν+1 (v8 − v7)) = 1
2ν+1 (v9 − v8) is in Λ8 and Λ8 is stable 

by τ . �
We denote by φ : Λ8 → Λ8/Λ0 the quotient map. The ring Z[ν]/(1 + 2ν) is the finite 

field with 19 elements. The quotient Λ8/Λ0 is a Z[ν]/(1 + 2ν)-vector space with basis 
t1, . . . , t8 such that ti = 1

1+2ν (vi−1 − vi) + Λ0.
Let R be a lattice such that: Λ0 ⊂ R ⊂ Λ8. The group φ(R) is a vector subspace of 

Λ8/Λ0 and:

φ−1φ(R) = R + Λ0 = R.

The set of such lattices R corresponds bijectively to the set of vector subspaces of Λ8/Λ0.
Because the automorphism τ preserves Λ0, it induces an automorphism τ̂ on the 

quotient Λ8/Λ0 such that φ ◦ τ = τ̂ ◦ φ. As τ stabilizes H1(A, Z), the vector subspace 
φ(H1(A, Z)) is stable by τ̂ . Let

w8−k = (−1)k
j=k∑
j=0

(
k

j

)
(−1)jtj+1, k = 0 . . . 7.

Then wi−1 = τ̂wi −wi for i > 1 and τ̂w1 = w1. The matrix of τ̂ in the basis w1, . . . . , w8
is the size 8 × 8 matrix: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The sub-spaces stable by τ̂ are the spaces Wj , 1 ≤ j ≤ 8, generated by w1, . . . , wj and 
W0 = {0}. Let Λj be the lattice φ−1Wj . It is easy to check that, as a lattice in C9, the 
Λj are all isomorphic to Z[ν]9. Since Λ = H1(A, Z) is stable by τ , we have proved that:

Lemma 4. The torus A = V/Λ exists, it is an Abelian variety isomorphic to E9. There 
exists j ∈ {0, 1, · · · , 8} such that Λ = Λj.

Let w′
0, . . . , w

′
3 be the vectors defined by:

w′
0 = 1

1 + 2ν (v0 − 5v1 + 10v2 − 10v3 + 5v4 − v5) = 1
1 + 2ν (1 − τ)5v0

and w′
k = τkw′

0 (we have φ(w′
0) = w4). Let us suppose that A = V/Λ has moreover a 

principal polarization Θ that is invariant under the action of τ and σ. Then:

Lemma 5. The lattice H1(A, Z) is equal to Λ4, and

Λ4 = Z[ν]
1 + 2ν w

′
0 + Z[ν]

1 + 2ν w
′
1 + Z[ν]

1 + 2ν w
′
2 + Z[ν]

1 + 2ν w
′
3 +

8⊕
k=4

Z[ν]vk.

The Hermitian matrix associated to Θ is equal to 2√
19I9 in the basis e1, . . . , e9 and 

c1(Θ) = i√
19

∑k=9
k=1 dxk ∧ dx̄k.

Proof. Let H be the matrix of the Hermitian form of the polarization Θ in the basis 
e1, . . . , e9. Since τ preserves the polarization Θ, this implies that:

tτHτ̄ = H

where τ̄ is the matrix whose coefficients are complex conjugates of τ . The only Hermitian 
matrices that verify this equality are the diagonal matrices. By the same reasoning with σ

instead of τ , we obtain that these diagonal coefficients are equal, and:

H = a
2√
19

I9,

where a is a positive real (H is a positive definite Hermitian form). As H is a polar-
ization, the alternating form c1(Θ) = m(H) takes integer values on H1(A, Z), hence 
m(tv2Hv̄1) = a is an integer.

Let c1(Θ) = m(H) = i a√
19

∑
dxk ∧ dx̄k be the alternating form of the principal 

polarization Θ. Let λ1, . . . , λ18 be a basis of a lattice Λ′. By definition, the square of the 
Pfaffian PfΘ(Λ′) of Λ′ is the determinant of the matrix

MΛ′ =
(
c1(Θ)(λj , λk)

)
1≤j,k≤18.

Since Θ is a principal polarization on A, we have PfΘ(H1(A, Z)) = 1.
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For j ∈ {0, . . . , 8}, it is easy to find a basis of the lattice Λj . We compute that

P 2
j = a18198−2j

where Pj its Pfaffian of Λj . As a is positive, the only possibility that Pj equals 1 is j = 4
and a = 1. Moreover since all coefficients of the matrix MΛ4 are integers, the alternating 
form i√

19
∑

dxk ∧ dx̄k defines a principal polarization on A, see [5, Chap. 4.1]. �
Theorem 1 follows from Lemmas 4 and 5.

Remark 6. One can compute that the involution μ acts on the principally polarized 
Abelian variety (A, Θ), and therefore that Aut(A, Θ) contains the group PSL2(F19).

Remark 7. In [4], Beauville proves that the intermediate Jacobian of the S6-symmetric 
quartic threefolds F is not a product of Jacobians of curves (see also [3]). That implies, 
using Clemens–Griffiths results for threefolds, the irrationality of F . Using the arguments 
at the end of [4], one can see that the principally polarized Abelian ninefold (A, Θ) is 
not a product of Jacobians of curves.

2. Intermediate Jacobians of the Adler cubic sevenfold

2.1. Intermediate Jacobian

For a smooth algebraic complex manifold X of dimension n = 2k + 1, let Hp,q(X) be 
the Hodge (p, q)-cohomology space Hp,q(X) = Hq(X, Ωp), and hp,q = dimHp,q(X)
be the Hodge numbers of X, 0 ≤ p + q ≤ 2n = 4k + 2. The intersection of real 
(2k + 1)-dimensional chains in X defines an integer valued quadratic form Q on the 
integer cohomology H2k+1(X, Z), and yields an embedding of H2k+1(X, Z) as an integer 
lattice in the dual space of H2k+1,0(X) + H2k,1(X) + ... + Hk+1,k(X). The quotient 
compact complex torus:

J(X) =
(
H2k+1,0(X) + H2k,1(X) + ... + Hk+1,k(X)

)∗
/H2k+1(X,Z)

is the Griffiths intermediate Jacobian of the n-fold X, see [7, p. 123]. By the Riemann–
Hodge bilinear relations, the quadratic form Q is definite on any space Hp,n−p(X), and 
has opposite signs on Hp,n−p(X) and Hp′,n−p′(X) if and only if p − p′ odd. Moreover 
m(Q) takes integral values on H2k+1(X, Z). We call the pair (J(X), Q) the polarized 
Griffiths intermediate Jacobian.

The quadratic form Q gives the polarized torus (J(X), Q) a structure of a polarized 
Abelian variety if and only if p has the same parity for all non-zero spaces Hp,n−p(X)
[7, p. 123].
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2.2. Griffiths formulas

The Hodge structure on the middle cohomology of a smooth cubic sevenfold can 
be computed by the following Griffiths formulas, which we shall use below in order to 
determine the representation of the action of the symmetry group PSL2(F19) on the 
middle cohomology of the Adler cubic sevenfold.

Let X = (f(x) = 0) be a smooth hypersurface of degree m ≥ 2 in the complex 
projective space Pn+1(x), (x) = (x1, ..., xn+2). Let S =

⊕
d≥0 Sd be the graded polyno-

mial ring S = C[x1, ..., xn+2], with Sd being the space of polynomials of degree d. Let 
I =

⊕
Id ⊂ S be the graded ideal generated by the n + 2 partials ∂f

∂xj
, j = 1, ..., n + 2, 

with Id = I ∩ Sd.
Let R = S/I =

⊕
Rd be the graded Jacobian ring of X (or the Jacobian ring of 

the polynomial f(x)), with graded components Rd = Sd/Id. Then for p + q = n, the 
primitive cohomology space Hp,q

prim(X) is isomorphic to the graded piece Rm(q+1)−n−2, 
where Rd = 0 for d < 0 [7, p. 169]. For odd n = 2k + 1 all the middle cohomology of X
are primitive, and in this case

Hp,q(X) ∼= Rm(q+1)−n−2, p + q = 2k + 1 = dimX, m = degX.

In particular, for a smooth cubic sevenfold X = (f(x) = 0) ⊂ P
8 one has

H7−q,q(X) = R3(q+1)−9, 0 ≤ q ≤ 7,

which yields

H7,0(X) = R−6 = 0, H6,1(X) = R−3 = 0,

H5,2(X) = R0 ∼= C, H4,3(X) = R3 ∼= C84.

2.3. Character table of PSL2(F19)

In Proposition 8 below, we shall use the known description of the irreducible rep-
resentations of the automorphism group PSL2(F19) ⊂ Aut(X), which we state here in 
brief:

By [8], the group PSL2(F19) has 12 conjugacy classes:

1, {w1}, {w2}, {x},
{
x2},{x3},{x4}, {y},{y2},{y3},{y4},{y5}

where x has order 9, y has order 10, w1 =
( 1 1

0 1

)
, w2 = w2

1 (we observe that w2
1, w

3
1 ∈ {w2}, 

w2
2, w

3
2 ∈ {w1}). Correspondingly, the 12 irreducible representations of PSL2(F19) are

T1,W9,W 9,W
1
18,W

2
18,W

3
18,W

4
18,W

1
20,W

2
20,W

3
20,W

4
20,W19
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1 w1 w2 x x2 x3 x4 y y2 y3 y4 y5

1 1 1 1 1 1 1 1 1 1 1 1 1
W9 9 ν ν̄ 0 0 0 0 1 −1 1 −1 1
W 9 9 ν̄ ν 0 0 0 0 1 −1 1 −1 1
W 1

18 18 −1 −1 0 0 0 0 b1 b2 b3 b4 2
W 2

18 18 −1 −1 0 0 0 0 b2 b4 b6 b8 −2
W 3

18 18 −1 −1 0 0 0 0 b3 b6 b9 b12 2
W 4

18 18 −1 −1 0 0 0 0 b4 b8 b12 b16 −2
W 1

20 20 1 1 a1 a2 a3 a4 0 0 0 0 0
W 2

20 20 1 1 a2 a4 a6 a8 0 0 0 0 0
W 3

20 20 1 1 a3 a6 a9 a12 0 0 0 0 0
W 4

20 20 1 1 a4 a8 a12 a16 0 0 0 0 0
W19 19 0 0 1 1 1 1 −1 −1 −1 −1 −1

Fig. 2.1. Character table of PSL2(F19).

where the notations are uniquely defined by the character table of PSL2(F19) below for 
which ak = 2 cos( 2kπ

9 ), bk = −2 cos(kπ5 ) and ν = −1+i
√

19
2 (see Fig. 2.1). Note that the 

representation W9 is described otherwise in Section 1.

2.4. Periods of the Adler cubic

Let X ⊂ P
8 = P(W9) be the Adler cubic sevenfold:

{
f19 = x2

1x6 + x2
6x2 + x2

2x7 + x2
7x4 + x2

4x5 + x2
5x8 + x2

8x9 + x2
9x3 + x2

3x1

− 2(x1x7x8 + x2x3x5 + x4x6x9) = 0
}
,

and let Hp,q = Hp,q(X) be the Hodge cohomology spaces of X.

Proposition 8. The representation of the group PSL2(F19) on the 84-dimensional space 
H4,3(X)∗ of the Adler cubic X is:

H4,3(X)∗ = W 9 ⊕W 1
18 ⊕W 3

18 ⊕W19 ⊕W 3
20.

The group PSL2(F19) acts trivially on the one-dimensional space H5,2(X)∗.

Remark 9. Let a group G act on a vector space V on the left. Then the group G acts on 
the right on the dual space V ∗: for 	 ∈ V ∗ and g ∈ G, 	 · g = 	 ◦ g. Since the traces of the 
action of g on V and on V ∗ are equal, the two representations V and V ∗ are isomorphic. 
The representation V ∗ should not be confused with the dual representation of G defined 
such that the pairing between V and V ∗ is G-invariant (see [9]).
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Proof of Proposition 8. In order to decompose the representation of PSL2(F19) ⊂
Aut(X) on the dual cohomology space H4,3∗, we shall use the identification as rep-
resentation space

H4,3(X) ∼= R3 = S3/I3 = Sym3W9/I3

between H4,3(X) and the graded component of degree 3 in the quotient polynomial ring 
S = C[x1, ..., x9] by the Jacobian ideal I spanned by the 9 partials of f19, see above.

The space P8 containing the Adler cubic X is the projectivization of the represen-
tation space W9 = (S1)∗. We have S3 = Sym3(W ∗

9 ) ∼= Sym3(W9). Let us decompose 
Sym3W9 into irreducible representations of PSL2(F19). The character of the third sym-
metric power of a representation V is:

χSym3V (g) = 1
6
(
χV (g)3 + 3χV

(
g2)χV (g) + 2χV

(
g3)),

see [14]. Therefore the traces of the action of the elements 1, w1, w2 etc. on Sym3W9 are

v = t(165, 3 − ν, 3 − ν̄, 0, 0, 3, 0, 0, 0, 0, 0, 5).

Using the character table of PSL2(F19), we obtain:

Sym3W9 = T1 ⊕W 9 ⊕W 1
18 ⊕W 3

18 ⊕W 1
20 ⊕W 2

20 ⊕
(
W 3

20
)⊕2 ⊕W 4

20 ⊕W19.

The graded component I2 of the Jacobian ideal I of X is generated by the 9 derivatives 
df19
dxk

, k = 1, . . . , 9. The space I2 is a representation of PSL2(F19). The action of w1 on xj

is the multiplication by ξj
2 , where ξ = e2iπ/19, see Section 1. The action of w1 on I2 is 

then easy to compute. By example, since

df19

dx1
= 2x1x6 + x2

3 − 2x7x8,

we get w1 · df19
dx1

= ξ−1 df19
dx1

. By looking at the character table, we obtain that the repre-
sentation I2 is W 9. Therefore I3 = W9 ⊗W 9. Using the fact that for two representations 
V1, V2, their characters satisfy the relation χV1⊗V2 = χV1χV2 , we obtain:

I3 = W9 ⊗W 9 = T1 ⊕W 1
20 ⊕W 2

20 ⊕W 3
20 ⊕W 4

20.

Since

H4,3(X)∗ ∼= (S3/I3)∗ ∼= Sym3W9/I3

then

H4,3(X)∗ = W 9 ⊕W 1
18 ⊕W 3

18 ⊕W19 ⊕W 3
20.
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The action of the simple group PSL2(F19) ⊂ Aut(X) on H5,2(X)∗ ∼= R∗
0
∼= C is 

trivial. �
Let V be a representation of a finite group G and let W be an irreducible represen-

tation of G with character χW . We know that there exist a uniquely determined integer 
a ≥ 0 and a representation V ′ of G such that W is not a sub-representation of V ′ and 
V is (isomorphic to) W⊕a ⊕ V ′. By [9, formula (2.31), p. 23], the linear endomorphism

ψW = dimW

|G|
∑
g∈G

χW (g)g : V → V

is the projection of V onto the factor consisting of the sum of all copies of W appearing 
in V i.e. is the projection onto W⊕a. For the trivial representation T , χT = 1 and ψT is 
the projection of V onto the invariant space V G.

Recall that an endomorphism h of a torus Y acts on the tangent space TY of Y by a 
linear endomorphism dh called the analytic representation of h. The kernel of the map 
End(Y ) → End(TY ), h → dh is the group of translations (see [5]); in the following we 
will work with endomorphisms up to translation.

Suppose that for some irreducible representations W1, . . . , Wk the sum

χW1(g) + . . . + χWk
(g)

is an integer for every g. Then the endomorphism

h =
∑
g∈G

(
χW1(g) + . . . + χWk

(g)
)
g ∈ End

(
J(X)

)
is well defined and its analytic representation is

dh =
∑
g∈G

(
χW1(g) + . . . + χWk

(g)
)
dg ∈ End

(
TJ(X)

)
.

The tangent space of the image of h (translated to 0) is the image of dh.

Corollary 10. The torus J(X) has the structure of an Abelian variety and is isogenous 
to:

E ×A9 ×A36 ×A19 ×A20

where Ak is a k-dimensional Abelian subvariety of JGX and E ⊂ JGX an elliptic curve. 
The group PSL2(F19) acts nontrivially on each factors A9, A36, A19, A20.

Proof. The character of the trivial representation is χ0 = 1. Let χ1, χ2, χ3, χ4 be respec-
tively the characters of the representations W9 ⊕W 9, W 1

18 ⊕W 2
18 ⊕W 3

18 ⊕W 4
18, W19 and 
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W 1
20 ⊕W 2

20 ⊕W 3
20 ⊕W 4

20. By the character table, the numbers χk(g), g ∈ PSL2(F19) are 
integers, therefore we can define

qk =
∑

g∈PSL2(F19)

χk(g)g

for k = 0, . . . , 4. The analytic representation of qk is a multiple of the projection onto 
the subspace (H5,2)∗, W9, ... of TJ(X). The images of qk, k = 0, · · · , 4, are therefore 
respectively 1, 9, 36, 19, 20-dimensional sub-tori of J(X), stable by the action of the group 
ring Z[PSL2(F19)] and denoted respectively by E, A9, . . . , A20.

The image of the endomorphism q1 + . . . + q4 (resp. q0) is a sub-torus whose tan-
gent space is H4,3(X)∗ (resp. H5,2(X)∗), therefore H7(X, Z) ∩H4,3(X)∗ is a lattice in 
H4,3(X)∗ (resp. H7(X, Z) ∩H5,2(X)∗ is a lattice in H5,2(X)∗).

Let Q be the Hodge–Riemann form on the tangent space (H5,2⊕H4,3)∗. It is positive 
definite on H5,2(X)∗, negative definite on H4,3(X)∗, the space H4,3(X)∗ is orthogonal 
to H5,2(X)∗ with respect to Q and Q takes integral values on H7(X, Z) ⊂ (H5,2⊕H4,3)∗
(see [7, 114]).

Let us define the quadratic form Q′ on (H5,2 ⊕ H4,3)∗ by Q′ = −Q on H4,3(X)∗
and Q′ = Q on H5,2(X)∗. This Q′ is a definite quadratic form such that Q′ takes 
integral values on the lattice Λ ⊂ H5,2(X)∗ generated by H7(X, Z) ∩ H4,3(X)∗ and 
H7(X, Z) ∩H5,2(X)∗. We thus see that J ′ = (H5,2⊕H4,3)∗/Λ is an Abelian variety, and 
since J(X) is isogenous to J ′, J(X) is also an Abelian variety. �
3. On the Adler–Klein pencil of cubics

Here we study the Adler–Klein pencil of cubics Xλ = {fλ = 0},

fλ = x2
1x6 + x2

6x2 + x2
2x7 + x2

7x4 + x2
4x5 + x2

5x8 + x2
8x9 + x2

9x3 + x2
3x1

+ λ(x1x7x8 + x2x3x5 + x4x6x9),

where X−2 is the Adler cubic, X0 is the Klein cubic. Since X−2 and X0 are smooth, the 
general member of the pencil is smooth.

The automorphism group of Xλ contains the group

H = Z/9Z � Z/19Z

whose law is defined multiplicatively by:

(a, b)(c, d) =
(
a + c, 4c · b + d

)
.

Remark. The group H is a subgroup of PSL2(F19): it is the stabilizer of a point in the 
projective line P1(F19) for the action of the simple group PSL2(F19). Since P1(F19) has 
20 points, there are therefore 20 such subgroups in PSL2(F19).
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Let us study the representation of H on the tangent space of the intermediate Jacobian 
of Xλ. Let be a = (1, 0) and b = (0, 1) ∈ H. Let us denote by Cg the conjugacy class of 
an element g ∈ H. The conjugacy classes of the group H are the 11 classes: Cb, Cb2 and 
Cak , k = 0, · · · , 8. Let μ be a 9th-primitive root of unity. The group Z/9Z is the quotient 
of H by Z/19Z, thus the irreducible one-dimensional representation

χk :

∣∣∣∣∣ Z/9Z → C
∗

a → μka , k ∈ {0, . . . , 8}

induces an irreducible representation Vk of H. Let V9, V 9 be the restrictions of the 
representations W9,W 9 to H ⊂ PSL2(F19). As 171 = 12+. . .+12+92+92 is equal to the 
order of H, the representations V0, . . . , V8, V9, V 9 are the 11 irreducible non-isomorphic 
representations of H (see [12]). Using the character table of H, we obtain:

Proposition 11. The restrictions of the representations W 3
18, W19, W20 of PSL2(F19) to 

H ⊂ PSL2(F19) are decomposed as follows:

W 3
18 = V9 + V 9

W19 = V0 + V9 + V 9

W20 = V3 + V6 + V9 + V 9.

Let Xλ be a smooth cubic in the Klein–Adler pencil and let JXλ be the Griffiths 
intermediate Jacobian of Xλ.

Corollary 12. The representation of H on the tangent space to the Griffiths intermediate 
Jacobian of Xλ is:

TJXλ = V0 + H4,3(X)∗ = 2V0 + V3 + V6 + 4V9 + 5V 9.

There exist subtori A2, B2, B81 of JXλ of dimension respectively 2, 2 , 81, such that B2
and B81 are Abelian varieties and such that there is an isogeny of complex tori

JXλ → A2 ×B2 ×B81.

Proof. For the Adler cubic XAd, the representation of PSL2(F19) on H4,3(XAd) is

H4,3(XAd) = W 9 ⊕W 1
18 ⊕W 3

18 ⊕W19 ⊕W 3
20.

From Proposition 11, we know the representation of H on each of the factors of H4,3. 
Since H acts also on each Xλ, the representation of H on H4,3(Xλ) is the same for all 
cubics Xλ in the pencil, and we have:

R3 = S3V9/I3 = V0 + V3 + V6 + 4V9 + 5V 9.
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Thus TJXλ = (V0)⊕2 ⊕ V83. The image of the endomorphism 
∑

g∈G g is therefore a 
2-dimensional torus A2. By considering the quotient map JXλ → JXλ/A2, we see that 
V83 ∩H7(Xλ, Z) is a lattice. There is moreover on it a positive definite integral valued 
form (the restriction of the Hodge–Riemann form), therefore V83 is the tangent space 
of a 83-dimensional Abelian subvariety A83 of JXλ. By using the same arguments as 
in Section 2, we see that A83 is isogenous to a product B2 × B81 of two Abelian sub-
varieties. �
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