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Abstract. We study the configurations of genus 2 curves on the Fano surfaces of
cubic threefolds. We establish a link between some involutive automorphisms acting on
such a surface S and genus 2 curves on S. We give a partial classification of the Fano sur-
faces according to the automorphism group generated by these involutions and determine
the configurations of their genus 2 curves. We study the Fano surface of the Klein cubic
threefold for which the 55 genus 2 curves generate a rank 25 = h1,1 index 2 subgroup of
the Néon-Severi group.

1. Introduction

Let S be a smooth surface which verifies the following Hypothesis:

HYPOTHESIS 1. The variety S is a smooth complex surface of general type. The
cotangent sheafΩS of S is generated by its spaceH 0(ΩS) of global sections and the irreg-
ularity q = dimH 0(ΩS) satisfies q > 3.

Let TS be the tangent sheaf, π : P(TS) → S be the projection and let

ψ : P(TS) → P(Ho(ΩS)
∗) = P

q−1

be the cotangent map of S defined by: π∗ψ∗O
Pq−1(1) = ΩS .

In [9] a curve C ↪→ S is called non-ample if there is a section

t : C → P(TS)

such that ψ(t (C)) is a point. The cotangent sheaf of S is ample (i.e. ψ∗OPq−1(1) is ample)
if and only if S does not contain non-ample curves [9]. In other words, the non-ample
curves are the obstruction for the cotangent sheaf to be ample. A natural example of a non-
ample curve is given by a smooth curveC ↪→ S of genus 1, where a section t : C → P(TS)

such that ψ(t (C)) is a point is given by the natural quotient:

ΩS ⊗ OC → ΩC .

A step further after the study of ampleness of ψ∗O
Pq−1(1) is the study of the very-

ampleness. In projective geometry, the simplest object after points are lines. An obstruction
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for invertible sheaf ψ∗OPq−1(1) to be very ample is that the surface contains a curve C for
which there is a section t : C → P(TS) such that ψ(t (C)) is a line. We say that such a
curve C satisfies property (∗). A natural example of such a curve is given by a smooth
curve C ↪→ S genus 2, where the section t : C → P(TS) is given by the natural quotient:

ΩS ⊗ OC → ΩC .

In the present paper, we classify the curves that satisfy property (∗) on Fano surfaces
and we focus our attention on the genus 2 curves.
By definition, a Fano surface parametrizes the lines of a smooth cubic threefold F ↪→ P4.
This scheme is a surface S that verifies Hypothesis 1 and has irregularity q = 5. By the
Tangent Bundle Theorem [4] 12.37, the image F ′ of the cotangent map ψ : P(TS) →
P(H 0(ΩS)

∗) of S is a hypersurface of P(H 0(ΩS)
∗) � P4 that is isomorphic to the original

cubic F . Moreover, when we identify F and F ′, the triple (P(TS), π,ψ) is the universal
family of lines on F .
By a generic point of the cubic threefold F goes 6 lines. For s a point of S the Fano surface
of lines on F , we denote by Ls the corresponding line on F and we denote by Cs the
incidence divisor:

Cs = {t/t �= s, Lt cutsLs} .
This divisor is smooth and has genus 11 for s generic.

Let D ↪→ S be a curve such that there is a section D → P(TS) mapped onto a line
by ψ (property (∗)). There exists a point t of S such that this line is Lt . As all the lines of
ψ∗π∗D goes through Lt , there exists a residual divisor R such that:

Ct = D + R .

THEOREM 2. A curveD on S that verifies property (∗) is a non-genus 1 irreducible
component of an incidence divisor Ct .

If an incidence divisor Ct is not irreducible, then it can split only in the following way:
a) Ct = E + R where E is an elliptic curve, R verifies property (∗) and has genus 7, it is
an irreducible fiber of a fibration of S and RE = 4.
b) Ct = E + R + E′ where E,E′ are two smooth curves of genus 1. The curve R verifies
property (∗) and has arithmetical genus 4.
c) Ct = D + R where D is a smooth genus 2 curve, the curve R has arithmetical genus 4,
D2 = −4, DR = 6 and R2 = −3. The curvesD and R satisfy property (∗).
d) If D �= D′ ↪→ S are two smooth curves of genus 2 on S, then CsD = 2 and:

DD′ ∈ {0, 1, 2} .
The involutive automorphisms of a Fano surface S can be classified into two type, say

I and II. We prove in [9] that there is a bijection between the set of elliptic curves E on S
and the set of involutions σE of type I, in such a way that:

(σEσE′ )EE
′ = 1 ,

where EE′ is the intersection number of E and E′. This formula and the full classification
of groups generated by involutions of type I, enable us to determine all the configurations
of genus 1 curves on Fano surfaces. We give here an analogous result for automorphisms
of type II and genus 2 curves:
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THEOREM 3. To each involution g of type II in Aut(S), there corresponds a curve
Dg of genus 2 on S.

Let G be one of the groups: Z/2Z, Dn, n ∈ {2, 3, 5, 6} (dihedral group of order 2n),
A5 (alternating group) and PSL2(F11). There exists a Fano surface S with the following
properties:
A) We can identify G to a sub-group of Aut(S). By this identification, each involution of
G has type II.
B) The numberN of genus 2 curves on S is as follows:

Group G Z/2Z D2 D3 D5 D6 A5 PSL2(F11)

N 1 3 3 5 7 15 55

These curves are smooth for S generic.
C) The intersection number of the genus 2 curvesDg ,Dh is given by the formula:

DgDh =




−4 if g = h

0 if o(gh) = 2 or 6
2 if o(gh) = 3
1 if o(gh) = 5

where o(f) is the order of the element f .
D) For G = D3 (resp. G = D5), let D be the sum of the 3 (resp. 5) genus 2 curves Dg

(g involution of G). The divisor D is a fiber of a fibration of S.
E) For G = A5, the 15 genus 2 curves generates a sub-lattice Λ of NS(S) of rank 15,
signature (1, 14) and discriminant 22436. For S generic, Λ has finite index inside NS(S).
There exist an infinite number of such surfaces with maximal Picard number h1,1 = 25.
F) ForG = PSL2(F11), S is the Fano surface of the Klein cubic

x1x
2
5 + x5x

2
3 + x3x

2
4 + x4x

2
2 + x2x

2
1 = 0 .

The sublattice Λ′ of the Néon-Severi group NS(S) generated by the 55 smooth genus 2
curves has rank 25 = h1,1 and discriminant 221110. The group NS(S) is generated by Λ′
and the class of an incidence divisor.

We want to mention that Edge in [6] was the first to give a classification of cubics
threefolds according to subgroups of PSL2(F11), in order to understand the geometry of a
genus 26 curve embedded in P4, with automorphism group PSL2(F11).

After proving the above classification Theorem, we discuss on its completeness. We
finish this paper by a conjecture about the existence of a surface of special type in P4 with a
particular configuration of 55 (−2)-curves. The conjecture comes naturally after studying
the configuration of the 55 genus 2 curves on the Fano surface of the Klein cubic.

The author wish to gratefully acknowledge its host researcher Prof. Miyaoka, and the
JSPS organization for providing the support of this work.
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2. Genus 2 curves on Fano surfaces

Let S be the Fano surface of lines on a smooth cubic threefold F ↪→ P4. We denote by
Ls the line on F that corresponds to a point s of S. Let Cs be the divisor that parametrizes
the lines going through Ls .

Let D ↪→ S be a curve such that there is a section D → P(TS) mapped onto a line by
the cotangent map ψ (property (∗)). There exists a point t of S such that this line is Lt . As
all the lines of ψ∗π∗D goes through Lt , there exists a residual divisor R such that:

Ct = D + R .

Let us prove Theorem 2. We first need to recall some well-known facts on the Fano surfaces,
the main reference used here is [3].
Let s be a point of S and r be a generic point of Cs . The plane X that contains the lines Ls
and Lr cuts the cubic F along the lines Ls,Lr and a third one denoted by Ljs(r) such that:

XF = Ls + Lr + Ljs(r) .

The rational map js : Cs → Cs extends to an automorphism of Cs . Moreover the quotient
Γs of Cs by js parametrizes the planes X that contain Ls and that cut F along three lines.
The scheme Γs is a plane quintic, and:

LEMMA 4 ([3], Lemma 2). The quotient js : Cs → Γs is ramified over the singular
points of Γs . These singular points are ordinary double points.

We need also the following facts:

LEMMA 5 ([4], Lemma 10.4, Proposition 10.3 formula 10.11). For a point s on S,
the incidence divisor Cs is ample, verifies C2

s = 5 and 3Cs is numerically equivalent to the
canonical divisor of S.
([9], Proposition 10, Theorem 13). Let s be a point of an elliptic curve E ↪→ S. There
exists an effective divisor R such that Cs = E + R. The curve R is a fiber of a fibration of
S onto E and satisfies RE = 4. Moreover, E2 = −3 and CtE = 1.

Let us suppose that the quintic Γs decomposes as Γs = L + U where L is a line. As
LU = 4, the component of Cs over L is smooth and ramified over 4 points: it has genus 1.
Conversely, suppose that Ct = E + R where E is an elliptic curve. Then ER = E(Cs −
E) = 4 and js restricted to E is a degree 2 morphism ramified above 4 points of L. Hence,
the image L of E by js is a rational curve that cuts the image of R into 4 points. Thus L is
a line.
Now, we proved in [9] that an incidence divisor Ct can have at most 2 smooth genus 1
irreducible components. Hence there is at most 2 lines that are components of the divisor
Γs . The case a) and b) of Theorem 2 occur (see [9]).

Suppose now that the quintic Γt splits as Γt = Q + T with Q an irreducible quadric.
Then the irreducible component D of Ct over Q is branched over 6 points of Q, thus this
is a smooth curve of genus 2.

Let us recall that the Albanese map S → Alb(S) is an embedding. We consider S as a
subvariety of Alb(S).
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LEMMA 6. Let D be a smooth curve of genus 2 on S, let Lt ↪→ F be the image by
ψ of the section obtained by the quotient ΩS ⊗ OD → ΩD and let J (D) be the Jacobian
of D. Consider the natural map : J (D) ↪→ Alb(S) . The tangent space

T J (D) ↪→ TAlb(S) = H 0(ΩS)
∗

is the subjacent space to the line Lt ↪→ P(H 0(ΩS)
∗) = P4, i.e. H 0(Lt ,OLt (1))

∗ =
T J (D).

Proof. This is consequence of the definition of the cotangent map and the fact that
the section D → P(TS) given by the surjection

ΩS ⊗ OD → ΩD

is mapped onto the line Lt by the cotangent map ψ : P(TS) → F . �
Let us suppose that the quintic Γt decomposes as Γt = Q+Q′ +L withQ,Q′ irreducible
quadrics and L a line. Then there exist 2 smooth curves of genus 2 D,D′ and an elliptic
curve E such that:

Ct = D +D′ + E

Let ϑ : S → Alb(S) be an Albanese morphism of S. By the previous Lemma, the 2 curves
ϑ(D), ϑ(D′) are contained on the same abelian surface J (D) = J (D′) ↪→ Alb(S). Let B
be the quotient of A by the smallest abelian variety containing J (D) and E in Alb(S). The
morphism S → Alb(S) → B contracts the ample divisor Ct onto a point and its image
generates B of dimension> 0: it is impossible.
Thus if Γt is reducible: Γt = Q + T with Q a smooth quadric, the other component T is
an irreducible cubic.

Let R be the residual divisor of D in the incidence divisor: Ct = D + R. We have:

5 = C2
t = D2 + R2 + 2DR .

We know that DR = 6 because the quadric Q and the cubic T such that Γt = Q + T cut
each others in 6 points, thus:

D2 + R2 = −7 .

Moreover,R2 = (Ct −D)2 = D2 − 2CtD + 5. Thus 2D2 − 2CtD + 5 = −7 and

D2 − CtD = −6

The divisor 3Ct is linearly equivalent to a canonical divisor of S, thusD2 +3CtD = 2, and
we obtain CtD = 2 and D2 = −4 and then CtR = 3, R2 = −3, R has genus 4.

Let D′ �= D be a second smooth curve of genus 2. As DCs = 2, we obtain D′(D +
R) = 2. The intersection numbersD′R and DD′ are positive, hence 0 ≤ DD′ ≤ 2.

3. Link between genus 2 curves and automorphisms, the Klein cubic

3.1. Involutive automorphisms and genus 2 curves on Fano surfaces
Let t be a point of S. We can suppose that the corresponding line Lt on the cubic is

given by x1 = x2 = x3 = 0, then this cubic has equation:

{C + 2x4Q1 + 2x5Q2 + x2
4x1 + 2x4x5	+ x2

5x3 = 0}
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where C,Q1,Q2, 	 are forms in the variables x1, x2, x3. Let Γ t be the scheme that
parametrizes the planes containing Lt and such that their intersection with F is 3 lines.
This scheme Γt is the quintic given by the equation:

(x1x3 − 	2)C −Q2
1x3 + 2Q1Q2	−Q2

2x1 = 0

on the plane P(x1 : x2 : x3) (see [3], equation (6)).

DEFINITION 7. An automorphism conjugated to the involutive automorphism:

f : x → (x1 : x2 : x3 : −x4 : −x5)

in PGL5(C) is called a harmonic inversion of lines and planes.

The harmonic inversion f acts on the cubic if and only if Q1 = Q2 = 0. In that case, a
plane model of Γt is

Γt = {(x1x3 − 	2)C = 0}
and the cubic has equation:

F2 = {C + x2
4x1 + 2x4x5	+ x2

5x3 = 0} .
If the conic Q = {x1x3 − 	2 = 0} is smooth, the divisor Ct , which is the double cover of
Γ t branched over the singularities of Γ t , splits as follows:

Ct = D + R

with D a smooth curve of genus 2. If this conic Q is not smooth, then Cs splits as follows:

Cs = E + E′ + R

with E and E′ two elliptic curves. Note that in the last case, we can suppose 	 = 0 and
we see immediately that two other automorphisms act on the cubic threefold. The divisor
E + E′ has also genus 2. We proved:

COROLLARY 8. To each harmonic inversion acting on the cubic threefold F , there
corresponds a curve of arithmetical genus 2 on the Fano surface of F . Such a curve is
smooth or sum of 2 elliptic curves.

Let g be an harmonic inversion acting on F . It acts also on S and H 0(ΩS).

LEMMA 9. The trace of the action of g on H 0(ΩS) is equal to 1.

Proof. We can suppose that the cubic is:

F2 = {C + x2
4x1 + 2x4x5	+ x2

5x3 = 0}
and that g : x → (x1 : x2 : x3 : −x4 : −x5). By the Tangent Bundle Theorem [4],
Theorem 12.37, we can consider the homogeneous coordinates x1, . . . , x5 as a basis of
H 0(ΩS). Thus, we see that the action of g on S has trace 1 or −1.
The line x1 = x2 = x3 = 0 lies in the cubic and correspond to a fixed point t of f . The
action of f on the tangent space T St = H 0(Lt ,O(1)) ↪→ H 0(ΩS)

∗ is thus the identity or
the multiplication by −1. As t is an isolated fixed point, it is the multiplication by −1 and
the action of g on H 0(ΩS) has trace 1. �
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REMARK 10. A) As a genus 2 curve has self-intersection number −4, there is a
finite number of such curves on a Fano surface.
B) It is equivalent to consider couples (Γ,M) where Γ is a plane quintic andM is an odd
theta characteristic of Γ or to consider couples (S, t) where S a Fano surface and t a point
on S (for these facts, see by example [5], Theorem 4.1).
The moduli space of Fano surfaces with a smooth genus 2 curve is thus equal to the moduli
of reducible plane quintics Γt = Q + C, (Q smooth quadric, C irreducible cubic), plus a
theta characteristic.
The moduli space of Q � P1 plus 6 points p1, . . . , p6 has dimension 3. We can suppose
that Q is the quadric {x2 + y2 + z2 = 0} inside P2. The cubics through p1, . . . , p6 form a
3 dimensional linear system. Thus the moduli space of Fano surfaces that contains a genus
2 curve is 6 dimensional.
C) Given a reducible quintic curveQ+C (with only simple singularities andQ smooth of
degree 2,C irreducible), there are 32 choices ([7], Corollary 2.7) of odd theta characteristics
giving non-isomorphic Fano surfaces containing a point t such that Γt � Q+ C. For only
one of these Fano surfaces, the genus 2 curve corresponds to an order 2 automorphism,
namely the Fano surface of the cubic:

F2 = {C + x2
4x1 + 2x2x4x5 + x2

5x3 = 0} .
D) As a genus 2 curve is a cover of P1 branched over 6 points, any genus 2 curve can be
embedded inside a Fano surface, in ∞3 ways.
E) We have not found a geometric interpretation of the action of an harmonic inversion
on a Fano surface. That explains perhaps why we do not know if our classification of group
generated by harmonic inversions acting on smooth cubic threefolds is complete or not.

3.2. Partial classification of configurations of genus 2 curves, the Fano surface of the
Klein cubic threefold.

Let G be a group generated by order 2 elements acting (faithfully) on a 5 dimensional
space V such that the trace of an order 2 element is equal to 1 (as in Lemma 9).
We say that a Fano surface S (resp. the cubic threefold F corresponding to S) has type G
if G acts on S and the representation of G on H 0(ΩS) is isomorphic to the one on V .

For the groups Dn, n ∈ {2, 3, 5, 6}, A5 and PSL2(F11), we take the unique 5 di-
mensional representation such that the elements have the following trace according to their
order:

order 2 3 5 6 11
trace 1 −1 0 1 1/2(1 + i

√
11)

The aim of this paragraph is to prove the two following theorems:

THEOREM 11. A) The number N of curves of genus 2 on a Fano surface of type
G is given by the following table:

Group G Z/2Z D2 D3 D5 D6 A5 PSL2(F11)

N 1 3 3 5 7 15 55
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For S generic these genus 2 curves are smooth.
B) The 3 genus 2 curves of a surface of type D2 are disjoint.
C) A surface S of type D3 contains 3 curves D1,D2,D3 of genus 2, such that DiDj = 2
if i �= j .
There exists a fibration γ : S → E onto an elliptic curve such thatD1 +D2 +D3 is a fiber
of γ .
D) A surface S of type D5 contains 5 curvesD1, . . . ,D5 of genus 2, such thatDiDj = 1
if i �= j .
There exists a fibration γ : S → E onto an elliptic curve such thatD1 + · · · +D5 is a fiber
of γ .
E) Let S be a surface of type D6. There exists a fibration γ : S → E onto an elliptic curve
and genus 2 curves D1, . . . ,D7 such that F1 = D1 +D2 +D3 and F2 = D4 +D5 +D6
are 2 fibers of γ and D7 is contained inside a third fiber. By C), the fibers F1 and F2
corresponds to the 2 subgroups D3 of D6.
F) A Fano surface S of type A5 contains 15 smooth curves of genus 2. They generates a
sub-latticeΛ of NS(S) of rank 15, signature (1, 14) and discriminant 22436. For S generic
Λ has finite index inside NS(S). There exist an infinite number of surfaces of type A5 with
maximal Picard number h1,1 = 25.

REMARK 12. In [10], we give Fano surfaces of type of some groups (by example
the symmetric group Σ5), but the genus 2 curves we obtain in that way are sum of elliptic
curves, and we are interested by smooth genus 2 curves.

The Klein cubic threefold:

FKl = {x1x
2
5 + x5x

2
3 + x3x

2
4 + x4x

2
2 + x2x

2
1 = 0}

is the only one cubic of type PSL2(F11) and this group is its full automorphism group [1].
It contains 55 involutions. Let SKl be the Fano surface of lines of FKl . To each involution
g of PSL2(F11), we denote by Dg ↪→ SKl the corresponding curve of arithmetical genus
2 on S (see Corollary 8).

THEOREM 13. The 55 genus 2 curves Dg are smooth. Their configuration is as
follows:

(3.1) DgDh =




−4 if g = h

0 if o(gh) = 2 or 6
2 if o(gh) = 3
1 if o(gh) = 5

where we denote by o(g) the order of an automorphism g .
The sublattice Λ′ of the Néon-Severi group NS(SKl) generated by the 55 genus 2 curves
has rank 25 = h1,1(SKl) and discriminant 221110.
The group NS(SKl) is generated by Λ′ and the class of an incidence divisor.

Let us prove Theorems 11 and 13.
Let Dg ,Dh be 2 genus 2 curves on a Fano surface S corresponding (Corollary 8) to

involutions g , h and let n be the order of gh.
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LEMMA 14. Suppose that n ∈ {2, 3, 5, 6} and S has type Dn. The intersection
numberDhDg is independent of the Fano surface of type Dn.

Proof. The family V of cubics forms Feq ∈ P(H 0(P4,O(3))) such that the cubic
{Feq = 0} is smooth is open.
The group Dn acts naturally onH 0(P4,O(3)), the third symmetric power ofH 0(P4,O(1)).
For a cubic F of type Dn, there is a cubic form Feq in V such that F = {Feq = 0} and
there exists a character χ : Dn → C∗ such that Feq ◦ g = χ(g)Feq . For n ∈ {2, 3, 5, 6},
the smoothness condition on F implies that χ is trivial (we used a computer).
Therefore, the family Vn of cubic of type Dn is an open set of a projective space. Now it
suffice to consider a smooth curve inside Vn between two points. That gives a flat family
of smooth cubic threefolds and of Fano surfaces. On each Fano surfaces we get two genus
2 curves and the two families of genus 2 curves are flat (see [8], III, 9.7). The intersection
number of the genus 2 curves is therefore constant. �
Let S be a Fano surface of type D5 and let Dg andDh be as in the previous lemma.

LEMMA 15. We have: DgDh = 1.

Proof. Let S0 be the Fano surface of the cubic F0 = {x3
1 + · · · + x3

5 = 0}. Let σ be
an element of the permutation groupΣ5 ; σ acts on C5 by x → (xσ1, . . . , xσ5) and acts on
F by taking the projectivisation.
The involutions g = (1, 3)(4, 5) and h = (1, 2)(3, 5) have trace 1, their product is an order
five element with trace equal to 0. In [9], we prove that the corresponding genus 2 curves
are D = E1 + E2 and D′ = E′

1 + E′
2 with E1, E2, E

′
1, E

′
2 elliptic curves on S0 such that

DD′ = 1. We now apply Lemma 14 to S of type D5. �
Let SKl be the Fano surface of the Klein cubic. Let x, y, z,w be elements of {0, 1, 2} and
let Λx,y,z,w be the lattice generated by 55 generators Lg with intersection numbers:

LgLh =




−4 if g = h

x if o(gh) = 2
y if o(gh) = 3
z if o(gh) = 5
w if o(gh) = 6

.

By Theorem 2 and Lemma 14, the lattice generated by the 55 genus 2 curves on SKl is
isomorphic to one of the lattices Λx,y,z,w. The lattices Λ0,2,1,0 and Λ0,0,0,2 are the only
ones of rank less or equal to 25 = h1,1(S). By Lemma 15, the latticeΛ0,0,0,2 cannot be the
lattice generated by the 55 genus 2 curves on SKl .
The lattice Λ0,2,1,0 has rank 25, discriminant 221110, signature (1, 24). In [11], we com-
puted a basis of NS(SKl): it has rank 25 and discriminant 1110. The lattice Λ0,1,2,0 has
thus index 2 in NS(SKl) and, as we know that CsDg = 2, we can check that the incidence
divisor Cs is not in this lattice.

By Lemma 14:

COROLLARY 16. The formula 3.1 giving the intersection number of genus 2 curves
on SKl holds also for the Fano surfaces of type Dn, n ∈ {2, 3, 5, 6} and A5.
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Proof. The groups Dn, n ∈ {2, 3, 5, 6} are subgroups of A5 and PSL2(F11). �
Let S be a Fano surface of type D3. Let us prove that:

LEMMA 17. There exists a fibration γ : S → E with E an elliptic curve such that
D1 +D2 +D3 is a fiber of γ .

Proof. We have: (D1 +D2 +D3)
2 = 0.

The dihedral group D3 acts on H 0(ΩS) by two copies of a representation of degree 2 plus
the trivial representation of degree 1 (see also the next paragraph).
Let g be an involution of D3. We know its action on H 0(ΩS)

∗, in particular, we know the
eigenspace T (g) with eigenvalues −1. By Lemma 6, T (g) is the tangent space of a genus
2 curve. We can check that the sub-space W of H 0(ΩS)

∗ generated by the tangent space
coming from the 3 genus 2 curves has dimension 4.
The space W is the tangent space of a 4 dimensional variety B inside the Albanese variety
of S. Thus there exist a fibration q : Alb(S) → E whereE is an elliptic curve. The 3 genus
2 curves are contracted by the composition of the Albanese map and q . �
The similar assertions D) and E) of Theorem 11 relative to the fibrations of surfaces of type
D5 and D6 are proved in the same way.

LEMMA 18. For S generic of type G = Z/2Z or Dn, n ∈ {2, 3, 5, 6}, the genus 2
curvesDg are smooth.

Proof. It is enough to check that the conic Q defined in paragraph 3.1 is smooth if the
cubic of type G is generic (we give the equation of such cubic in the next
paragraph). �
Let us prove part F) of Theorem 11. Let S be a Fano surface of type A5. By Corollary
16, we know the intersection numbers of the 15 genus 2 curves Dg corresponding to the
15 involutions of A5. The lattice Λ generated by these 15 curves has signature (1, 14) and
discriminant 22436.

LEMMA 19. The genus 2 curvesDg on a Fano surface S of type A5 and PSL2(F11)

are smooth.

Proof. In [9], we proved that the elliptic curves E on a Fano surface S correspond
bijectively with automorphisms σE ∈ Aut(S) such that the trace of σE acting on H 0(Ω) is
−3 (involutions of type I). We classified all automorphism groups generated by involutions
of type I.
Moreover, by [9], Theorem 13, for 2 elliptic curves E �= E′ on S, we have (σEσE′ )2 = 1
if and only if EE′ = 1 i.e. if and only if E + E′ is a genus 2 curve on S. In that case, the
trace of the involution σEσE′ on H 0(Ω) is 1 (involution of type II).
Suppose that one genus 2 curve on a Fano surface of type A5 is the sum of 2 elliptic curves.
By transitivity, the 15 genus 2 curves are also sum of genus 2 curves and A5 (group gener-
ated by automorphisms of type II), is an automorphism sub-group of the group generated
by involutions of type I.
By the classification of automorphism groups generated by involutions of type I ([9], The-
orem 26), A5 is a subgroup of the symmetric groupΣ5 or of the reflection groupG(3, 3, 5)
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acting on C5. Thus it must exists elements a, b of Σ5 or G(3, 3, 5) such that:

a2 = b3 = (ab)5 = 1

(relations defining the alternating group of degree 5) and T r(a) = 1, T r(b) = −1. But it
is easy to check that no such elements exist inΣ5 nor inG(3, 3, 5). Therefore the 15 genus
2 curves on a Fano surface of type A5 are smooth.
As an involution in PSL2(F11) in contained inside a group A5, the 55 genus 2 curves on
SKl are smooth. �
Let a, b be the generators a, b of A5 such that:

a2 = b3 = (ab)5 = 1 ,

with a the diagonal matrix with diagonal elements −1,−1, 1, 1, 1 and:

b =




− 1
2 − 1

2
1
2 − 1

2 0
1
2 0 1

2 0 − 1
2

− 1
2

1
2

1
2

1
2 0

1
2 0 1

2 0 1
2

0 0 −2 −2 −1


 .

A cubic threefold of type A5 has equation:

a(x3
4 + x4(x

2
1 − x2

2 + x2
3)+ x3(−x2

2 + 3x2
4 + x2

5)+ 2x2
3x5

+2x1x2(x3 + x4 + x5)+ 2x3x4x5)+ b(−x3
3 + x3(x

2
1 − x2

2 − x2
4)+x4(x

2
1 − 3x2

3 − x2
5 )− 2x2

4x5 + 2x1x2(x3 + x4 + x5)− 2x3x4x5) = 0 .

Let t be the point on S corresponding to the line {x3 = x4 = x5 = 0}. The Quintic Γt is
Γt = Q+ C for C the cubic:

a(x3
4 + x4x

2
3 + x3(3x2

4 + x2
5)+ 2x2

3x5 + 2x3x4x5)

+b(−x3
3 − x3x

2
4 − x4(3x2

3 + x2
5)− 2x2

4x5 − 2x3x4x5) = 0 .

This define a pencil of elliptic curves and by Remark 10, the cubics of type A5 form a 1
dimensional family of cubics.
Let Alb(S) be the Albanese variety of S. By the symmetries of A5 acting on Alb(S),
this Abelian variety is isogenous to E5 for some elliptic curve E. If E has no complex
multiplication, then the Picard number of Alb(S) is 15, otherwise it is 25. By [12], the
Picard number of a Fano surface S and of its Albanese variety Alb(S) are equal. Thus the
Picard number of S is 15 or 25. As the curve E varies, the case E with CM occurs.

REMARK 20. The number of elliptic curves on a Fano surface is bounded by 30 and
the Fano surface of the Fermat cubic threefold is the only one to contain 30 elliptic curves.
It is tempting to think that 55 is the bound for the number of smooth genus 2 curves on a
Fano surface and that SKl is the only one to reach this bound.

3.3. Construction of Fano surfaces of a given type, on the completeness of the groups
classification.

In order to get a classification of automorphism groups of Fano surfaces generated by
involutions g, h, . . . , it is natural to study their products i.e. to look at the dihedral group
generated by two elements g, h. In [11], we prove that the order of Aut(S) is prime to 7
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and that an automorphism σ of S preserve a 5 dimensional principally polarized Abelian
variety. That implies ([2], Proposition 13.2.5 and Theorem 13.2.8) that the Euler number
of the order n of σ is less or equal to 10, therefore:

n ∈ {2, . . . , 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 22, 24, 30} .
Hence, it is wise to study representations of dihedral group of order 2n with n in the above
set, such that the order 2 elements have trace equal to 1. Our method is a case by case check;
we have results for the cubic threefold of type Dn with n ∈ {2, 3, 4, 5, 6, 8, 11, 12, 16, 20,
22, 24}.

The V k
n
, 0 < k < n representation of the dihedral group of order 2n (generated by

a, b such that an = b2 = 1, bab = a−1) is given by the matrices:

a =
(

cos 2kπ
n

− sin 2kπ
n

sin 2kπ
n

cos 2kπ
n

)
, b =

(
1 0
0 −1

)
.

There is also the trivial representation T , the linear representation L : a → 1, b → −1,
and if n is even, the representations L1 : a → −1, b → 1 and L2 : a → −1, b → −1.
The representation V k

n
is faithful if and only if k is prime to n; it is irreducible if and only

if k �= n
2 . The representations V k

n
and Vn−k

n
are equivalent.

� A surface of type Z/2Z is the Fano surface of the cubic threefold F2 given in
paragraph 3.1.

� The group D2 is given by the representation L+L1 +L2 + 2T . An invariant cubic
F4 has equation:

F4 = {(ax2
1 + bx2

2 + cx2
3)x4 + (dx2

1 + ex2
2 + f x2

3)x5 + gx3
4 + hx3

5 + kx1x2x3 = 0}
where a, . . . , k are constants.

� The representation D3 is given by 2V 1
3 + T . A cubic threefold of type D3 has

equation:

x3
5 + (x2

1x5 + x2
2x5)+ (x2

3x5 + x2
4x5)+ a(x3

1 − 3x2
2x1)+ b(x3

3 − 3x2
4x3)+ c(x1x3x5

+x2x4x5)+ d(x2
3x1 − x2

4x1 − 2x2x3x4)+ e(x2
1x3 − x2

2x3 − 2x1x1x4) .

Let us denote by D
′
3 the dihedral group of order 6 such that an element of order 2 (resp. 3)

has trace equals to 1 (resp 2). Its representation is V 1
2

+ L + 2U . A cubic threefold F of

type D′
3 has equation:

ax3
4 +bx3

5 + (x2
1 +x2

2)(ux4 +vx5)+ c(x3
1 −3x2

2x1)+dx2
5x4 + ex2

4x5 +f x2
3x5 +gx2

3x4 = 0

The involutions x → (x1,±x2,±x3, x4, x5) act on F . This gives a genus 2 curve on the
Fano surface that is sum of two elliptic curves: this is not interesting.
There is a third representation of the dihedral group of order 6 such that the trace of the
order 2 elements is 1, but it is not faithfull.

� The representation D5 is given by V 1
5 + V 2

5 + T . A cubic threefold of type D5 has
equation:

x3
5 + c(x2

1x5 + x2
2x5)+ d(x2

3x5 + x2
4x5)+ a(x2

1x3 − x2
2x3

+2x1x2x4)+ b(−x2
3x1 + x2

4x1 + 2x2x3x4) = 0 .
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� The representation D6 is given by V 1
6 + V 2

6 + T . A cubic threefold of type D6 has
equation:

ax3
5 +b(x2

1x5 +x2
2x5)+c(x2

3x5 +x2
4x5)+d(x3

3 −3x2
4x3)+e(x2

1x3 −x2
2x3 +2x1x2x4) = 0 .

The dihedral group of order 12 contain the dihedral group of order 6. For this last group,
the only interesting representation is D3 (such that the trace of an order 3 element equals
−1). With that point in mind, we can check that the only interesting representation of the
dihedral group of order 12 is D6.

� There is another 5 dimensional representation of the alternating group of degree 5
such that the trace of an order 2 element is 1, but the trace of an order 3 element is 2 as for
D

′
3 and that implies that the corresponding genus 2 are sum of 2 elliptic curves: this is not

interesting.
� Let us now prove the following

PROPOSITION 21. There do not exist a Fano surface of type the dihedral group of
order 2n with n ∈ {4, 8, 12, 16, 20, 24}.

Proof. Let a, b be generators of the dihedral group of order 8 such that a4 = 1, b2 =
1, bab = a3. We are looking for representations such that the trace of the order 2 elements
b, ab, a2b, a3b is 1. For the traces of a and a2, the possibilities are T r(a) = −1, T r(a2) =
1 or T r(a) = 3, T r(a2) = 1 or T r(a) = 1, T r(a2) = −3. In each cases, we computed the
spaces Vχ of cubics such that Feq ◦ g = χ(g)Feq for character χ . That gives no smooth
cubic threefolds.
The dihedral groups of order 16, 24, 32, 40, 48 contain the dihedral group of order 8, thus
they cannot be type of a cubic. �
3.4. A conjecture

The lattice Λ0,0,0,2 of the proof of Theorem 13 has rank 21, discriminant 11.222 and
signature (1, 20). It is remarkable that this lattice has the right signature to be the Néon-
Severi group of a surface.
There is a natural representation of the group PSL2(F11) on C5 (for which the Klein cubic
generates the space invariant cubics). On the other hand classification of surfaces not of
general type in P4 = P(C5) is an old unsolved problem.
The author’s opinion is that we should consider the lattice 1

2Λ0,0,2,0 of rank 21 given by the
generators {Lg , g involution} and the relations:

LgLh =



−2 if g = h

1 if o(gh) = 6
0 otherwise

as the lattice generated by a configuration of 55 lines on a surface S? in P4. That surface
S? ↪→ P4 is expected as the (may be non-complete) intersection of invariants of the group
PSL2(F11) acting on P4, in such a way that PSL2(F11) acts on it.
On a surface of general type, the lattice generated by (-2)-curves is negative definite. As
the lattice 1

2Λ0,0,2,0 is generated by (-2)-curves and has signature (1, 20), the surface S?

can not be of general type.
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