Institut de Mathématiques de Marseille, UMR 7373


Accueil >

22 février 2017: 3 événements


  • Agenda ERC IChaos

    Du 1er février 2017 au 31 mai 2017 - Stage à l'I2M (ERC IChaos) dans le cadre de sa thèse - Bourse HSE Moscou

    Dmitry ZUBOV

    Résumé : Les mesures finiment additives sur les foliations invariantes de diffeomorphismes hyperboliques"

    Lieu : Institut de Mathématiques - Marseille

    Exporter cet événement

En savoir plus : Agenda ERC IChaos

  • Agenda ERC IChaos

    Du 16 au 25 février 2017 - Pavel NIKITIN

    Participation at the thematic quarter (IHP)

    En savoir plus : Agenda ERC IChaos

  • Séminaire Représentations des Groupes Réductifs (RGR)

    Mercredi 22 février 2017 14:00-15:00 - Dmitry GOUREVITCH - Weizmann Institut, Rehovot, Israel

    Distributions on p-adic groups, finite under the action of the Bernstein center

    Résumé : For a real reductive group G, the center z(U(g)) of the universal enveloping algebra of the Lie algebra g of G acts on the space of distributions on G. This action proved to be very useful.
    Over non-Archimedean local fields, one can replace this action by the action of the Bernstein center z of G, i.e. the center of the category of smooth representations. However, this action is not well studied. In my talk I will provide some tools to work with this action and discuss the following results.
    1) The wave-front set of any z-finite distribution on G over any point x∈G lies inside the nilpotent cone of $T^∗_xG≅g$.
    2) Let $H_1,H_2$⊂G be symmetric subgroups. Consider the space J of $H_1×H_2$-invariant distributions on G. We prove that the z-finite distributions in J form a dense subspace. In fact we prove this result in wider generality, where the groups H_i are spherical groups of certain type and the invariance condition is replaced by semi-invariance. Further we apply those results to density and regularity of spherical characters.
    The first result can be viewed as a version of Howe’s expansion of characters. The second result can be viewed as a spherical space analog of a classical theorem on density of characters of admissible representations. It can also be viewed as a spectral version of Bernstein’s localization principle.
    In the Archimedean case, the first result is well-known and the second remains open.
    I will also describe an application of these results to the non-vanishing of certain spherical Bessel functions.

    JPEG - 8.1 ko

    Lieu : Salle des séminaires 304-306 (3ème étage) - Institut de Mathématiques de Marseille (UMR 7373)
    Site Sud
    Campus de Luminy, Case 907
    13288 MARSEILLE Cedex 9

    Exporter cet événement
    Document(s) associé(s) :

    En savoir plus : Séminaire Représentations des Groupes Réductifs (RGR)

  • 22 février 2017: 1 événement

    Manifestation scientifique