Institut de Mathématiques de Marseille, UMR 7373




Rechercher


Accueil >

18 mai 2017: 2 événements

Séminaire

  • Agenda ERC IChaos

    Du 1er février au 31 mai - Stage à l'I2M (ERC IChaos) dans le cadre de sa thèse - Bourse HSE Moscou

    Dmitry ZUBOV

    Résumé : Les mesures finiment additives sur les foliations invariantes de diffeomorphismes hyperboliques"

    Lieu : Institut de Mathématiques - Marseille

    Exporter cet événement

En savoir plus : Agenda ERC IChaos

  • Séminaire Singularités

    Jeudi 18 mai 14:00-15:00 - Ann LEMAHIEU - Laboratoire J-A Dieudonné, Université de Nice

    La conjecture d’holomorphie pour des singularités nondégénérées de surface

    Résumé : La conjecture d’holomorphie, due à Jan Denef, prédit que la fonction zêta d’Igusa associée à une hypersurface et un caractère est holomorphe sur C si l’ordre du caractère ne divise l’ordre d’aucune valeur propre de la monodromie locale de l’hypersurface.
    Dans cet exposé nous étudions cette conjecture dans le contexte des singularités de surface qui sont nondégénérées pour leur polyèdre de Newton.
    Les parties réelles d’un ensemble de candidats pôles de la fonction zêta d’Igusa sont alors liées aux facettes du polyèdre de Newton. Pour certaines facettes nous fournissons une valeur propre de monodromie relevante pour la conjecture d’holomorphie. Pour les autres facettes, nous montrons que le candidat pôle associé n’est pas un vrai pôle de la fonction zêta d’Igusa et complétons ainsi une preuve pour la conjecture d’holomorphie pour cette classe de singularités.

    JPEG - 22.8 ko
    Ann LEMAHIEU

    Lieu : FRUMAM - Aix-Marseille Université - Site St Charles
    3, place Victor Hugo - case 39
    13331 MARSEILLE Cedex 03

    Exporter cet événement
    Document(s) associé(s) :

    En savoir plus : Séminaire Singularités

  • 18 mai 2017: 2 événements

    groupe de travail