Accueil >
Domaines de Recherche: |
![]() |
![]() |
Le système de Vlasov-Poisson effectif pour les plasmas fortement magnétisés ![]() Auteur(s): Hauray M. (Article) Publié: Comptes Rendus Mathématique, vol. 354 p.771 - 777 (2016) Ref HAL: hal-01320635_v1 Ref Arxiv: 1511.00169 DOI: 10.1016/j.crma.2016.04.014 Ref. & Cit.: NASA ADS Exporter : BibTex | endNote Résumé: Nous étudions le régime du rayon de Larmor fini pour le système de Vlasov–Poisson. Le champ magnétique est supposé uniforme. Nous restreignons l'étude de ce problème non linéaire au cas bi-dimensionnel. Nous obtenons le modèle limite en appliquant les méthodes de gyro-moyenne (cf. [1] and [2]). Nous donnons l'expression explicite du champ d'advection effectif de l'équation de Vlasov, dans laquelle nous avons substitué le champ électrique auto-consistant, via la résolution de l'équation de Poisson moyennée à l'échelle cyclotronique. Nous mettons en évidence la structure hamiltonienne du modèle limite et présentons ses propriétés : conservations de la masse, de l'énergie cinétique, de l'énergie électrique, etc. |
![]() |
![]() |
Propagation of chaos for the Landau equation with moderately soft potentials ![]() Auteur(s): Fournier Nicolas, Hauray M. (Document sans référence bibliographique) 2015-01-08 Ref HAL: hal-01257022_v1 Ref Arxiv: 1501.01802 Ref. & Cit.: NASA ADS Exporter : BibTex | endNote Résumé: We consider the 3D Landau equation for moderately soft potentials ($\gamma\in(-2,0)$ with the usual notation) as well as a stochastic system of $N$ particles approximating it. We first establish some strong/weak stability estimates for the Landau equation, which are satisfying only when $\gamma \in [-1,0)$. We next prove, under some appropriate conditions on the initial data, the so-called propagation of molecular chaos, i.e. that the empirical measure of the particle system converges to the unique solution of the Landau equation. The main difficulty is the presence of a singularity in the equation. When $\gamma \in (-1,0)$, the strong-weak uniqueness estimate allows us to use a coupling argument and to obtain a rate of convergence. When $\gamma \in (-2,-1]$, we use the classical martingale method introduced by McKean. To control the singularity, we have to take advantage of the regularity provided by the entropy dissipation. Unfortunately, this dissipation is too weak for some (very rare) aligned configurations. We thus introduce a perturbed system with an additional noise, show the propagation of chaos for that perturbed system and finally prove that the additional noise is almost never used in the limit. |
![]() |
![]() |
Mean-field limit for collective behavior models with sharp sensitivity regions ![]() Auteur(s): Carrillo José A., Choi Young-Pil, Hauray M., Salem S. (Document sans référence bibliographique) 2015-10-08 Ref HAL: hal-01257019_v1 Ref Arxiv: 1510.02315 Ref. & Cit.: NASA ADS Exporter : BibTex | endNote Résumé: We rigorously show the mean-field limit for a large class of swarming individual based models with local sharp sensitivity regions. For instance, these models include nonlocal repulsive-attractive forces locally averaged over sharp vision cones and Cucker-Smale interactions with discontinuous communication weights. We construct global-in-time defined notion of solutions through a differential inclusion system corresponding to the particle descriptions. We estimate the error between the solutions to the differential inclusion system and weak solutions to the expected limiting kinetic equation by employing tools from optimal transport theory. Quantitative bounds on the expansion of the 1-Wasserstein distance along flows based on a weak-strong stability estimate are obtained. We also provide different examples of realistic sensitivity sets satisfying the assumptions of our main results. |
![]() |
![]() |
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D ![]() Auteur(s): Hauray M., Salem S. (Document sans référence bibliographique) 2015-11-13 Ref HAL: hal-01257016_v1 Ref Arxiv: 1510.06260 Ref. & Cit.: NASA ADS Exporter : BibTex | endNote Résumé: We consider a particle system in 1D, interacting via repulsive or attractive Coulomb forces. We prove the trajectorial propagation of molecular chaos towards a nonlinear SDE associated to the Vlasov-Poisson-Fokker-Planck equation. We obtain a quantitative estimate of convergence in expectation, with an optimal convergence rate of order $N^{-1/2}$. We also prove some exponential concentration inequalities of the associated empirical measures. A key argument is a weak-strong stability estimate on the (nonlinear) VPFP equation, that we are able to adapt for the particle system in some sense. Commentaires: 30 p, with respect to v1: some typos corrected and a more precise theorem of propagation of chaos |
![]() |
![]() |
Uniform contractivity in Wasserstein metric for the original 1D Kac's model ![]()
Auteur(s): Hauray M. (Article) Publié: Journal Of Statistical Physics, vol. p. (2016) Ref HAL: hal-01256859_v1 Ref Arxiv: 1512.01986 Ref. & Cit.: NASA ADS Exporter : BibTex | endNote Résumé: We study here a very popular 1D jump model introduced by Kac: it consists of $N$ velocities encountering random binary collisions at which they randomly exchange energy. We show the uniform (in $N$) exponential contractivity of the dynamics in a non-standard Monge-Kantorovich-Wasserstein: precisely the MKW metric of order 2 on the energy. The result is optimal in the sense that for each $N$, the contractivity constant is equal to the $L^2$ spectral gap of the generator associated to Kac's dynamic. As a corollary, we get an uniform but non optimal contractivity in the MKW metric of order $4$. We use a simple coupling that works better that the parallel one. The estimates are simple and new (to the best of our knowledge). Commentaires: 5 pages |