--------------------
- Ergodic currents dual to a real tree arxiv link

Auteur(s): Coulbois T., Hilion A.

(Document sans référence bibliographique) 2014-05-22


Ref HAL: hal-01066575_v1
Ref Arxiv: 1302.3766
Ref. & Cit.: NASA ADS
Exporter : BibTex | endNote
Résumé:

Let $T$ be an $\R$-tree in the boundary of Outer space with dense orbits. When the free group $\FN$ acts freely on $T$, we prove that the number of projective classes of ergodic currents dual to $T$ is bounded above by $3N-5$. We combine Rips induction and splitting induction to define unfolding induction for such an $\R$-tree $T$. Given a current $\mu$ dual to $T$, the unfolding induction produces a sequence of approximations converging towards $\mu$. We also give a unique ergodicity criterion.



Commentaires: 14 pages, minor corrections from previous version