--------------------
- ON SARNAK'S CONJECTURE AND VEECH'S QUESTION FOR INTERVAL EXCHANGES hal link

Auteur(s): Ferenczi Sébastien, Mauduit C.

(Document sans référence bibliographique) 2014-00-00


Ref HAL: hal-01263088_v1
Exporter : BibTex | endNote
Résumé:

Using a criterion due to Bourgain [10] and the generalization of the self-dual induction defined in [18], for each primitive permutation we build a large family of k-interval exchanges satisfying Sarnak's conjecture, and, for at least one permutation in each Rauzy class, smaller families for which we have weak mixing, which implies a prime number theorem, and simplicity in the sense of Veech.



Commentaires: Accepté pour publication dans Journal d'Analyse Mathématique