Extremal Square-Free Words and Variations

Lucas Mol

💃 THE UNIVERSITY OF WINNIPEG

Including joint work with Narad Rampersad and Jeffrey Shallit

One World Combinatorics on Words Seminar June 29, 2020

SQUARES AND OVERLAPS

► A square is a word of the form *xx*, where *x* is a nonempty word.

Examples: murmur, hotshots

- An overlap is a word of the form axaxa, where a is a letter and x is a (possibly empty) word.
 - Example: alfalfa
- A word is square-free (overlap-free) if it contains no squares (overlaps) as factors.
 - ► The word apple is not square-free, but it is overlap-free.
 - ► The word banana is not overlap-free.
 - The word clementine is square-free.

THE ORIGIN OF COMBINATORICS ON WORDS

There are arbitrarily long square-free ternary words.

 There are arbitrarily long overlap-free binary words.

Axel Thue (1863-1922)

EXTENSIONS OF A WORD

- Let *w* be a word over a fixed alphabet Σ .
- An *extension* of *w* is a word of the form $w_1 a w_2$, where $a \in \Sigma$, and $w = w_1 w_2$.
 - ► Note that w₁ and w₂ could be empty!
- Some extensions of the English word pans are:

- Question: Given a square-free word w over a fixed alphabet, can we extend w to a longer square-free word? Are there square-free words that can't be extended?
 - One could replace "square-free" with any property of interest.

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

abcabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

aabcabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

babcabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

cabcabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

cab cab acbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

aabcabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

abbcabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

acbcabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

acbcabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

abacabacbcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

abac abac bcabcbabcabacbcabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

abb cabacb cabcb abcabacb cabc

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

 $\verb+abccabacbcabcbabcabacbcabc$

- A square-free word w is called *extremal* if every extension of w contains a square.
- Introduced by Grytczuk, Kordulewski, and Niewiadomski (2020).
- Over the binary alphabet {a,b}, only the words aba and bab are extremal square-free.
- Over the ternary alphabet {a, b, c}, the following is a shortest extremal square-free word:

abcabacbcabcbabcabacbcabc

Plan

EXTREMAL SQUARE-FREE WORDS

EXTREMAL OVERLAP-FREE WORDS

Extremal β -free words

1 None	31 None
2 None	32 None
3 None	33 None
4 None	34 None
5 None	35 None
6 None	36 None
7 None	37 None
8 None	38 None
9 None	39 None
10 None	40 None
11 None	41 01021012021020121021201021012021020121021
12 None	42 None
13 None	43 None
14 None	44 None
15 None	45 None
16 None	46 None
17 None	47 None
18 None	48 010212012102010212012101202120121020102120121020
19 None	49 None
20 None	50 01021201021012021020121012021201021012021020121020
21 None	51 None
22 None	52 None
23 None	53 None
24 None	54 None
25 0120102120121012010212012	55 None
26 None	56 None
27 None	57 None
28 None	58 None
29 None	59 None
30 None	60 None

Theorem (GKN 2020): There are arbitrarily long extremal square-free ternary words.

Theorem (GKN 2020): There are arbitrarily long extremal square-free ternary words.

Square-Free Lemma (GKN 2020): Let $f : \Sigma^* \to \Delta^*$ be a morphism, and let $u \in \Sigma^*$ be a square-free word. Then the word f(u) is square-free if all of the following are satisfied:

- 1. For every factor v of u of length at most 3, the word f(v) is square-free.
- 2. For every $a, b, c \in \Sigma$:
 - If f(a) is a factor of f(b), then a = b.
 - If f(a)f(b) = pf(c)s for some words p, s ∈ Δ*, then p = ε or s = ε.
 - If f(a) = A'A", f(b) = B'B", and f(c) = A'B", then c = a or c = b.

BUILDING BLOCKS

A square-free word is *nearly extremal* if it has at most two square-free extensions; one left extension, and one right extension.

Lemma: If *u* and *v* are nearly extremal square-free words over $\{a, b, c\}$, and *uv* is square-free, then *uv* is nearly extremal square-free.

Proof: It suffices to show that adding a letter between u and v produces a square.

• Write u = u'x and v = yv', where $x, y \in \{a, b, c\}$.

и		V	
u'	X	у	<i>v</i> ′

- Since *uv* is square-free, we must have *x* ≠ *y*, and *uy* must be the unique square-free right extension of *u*.
- Let $z \neq x, y$ be the other letter then *uz* contains a square.

BUILDING BLOCKS

Fact: The word

 ${\it N}=$ abacbabcabacbcabcabacabcbabcabacbcabcb

is nearly extremal square-free.

- For every permutation π of the set {a, b, c}, let N_π denote the word obtained from N by applying π.
- Let $N_{\tilde{\pi}}$ denote the reversal of the word N_{π} .
- In this way, the word N gives rise to twelve distinct nearly extremal square-free words:

$$\begin{split} & N_{()}, N_{(ab)}, N_{(ac)}, N_{(bc)}, N_{(abc)}, N_{(abc)} \\ & N_{()}, N_{(\tilde{ab})}, N_{(\tilde{ac})}, N_{(\tilde{bc})}, N_{(\tilde{abc})}, N_{(\tilde{abc})} \end{split}$$

A USEFUL DIGRAPH

► Fact: The words $N_{()}N_{(bc)}$ and $N_{()}N_{(ab)}$ are square-free, and hence nearly extremal square-free.

A USEFUL DIGRAPH

- ► Fact: The words $N_{()}N_{(bc)}$ and $N_{()}N_{(ab)}$ are square-free, and hence nearly extremal square-free.
- We are led to the following digraph *D*, that has an arc from π to ρ whenever $N_{\pi}N_{\rho}$ is square-free.

A USEFUL DIGRAPH

- ► Fact: The words $N_{()}N_{(bc)}$ and $N_{()}N_{(ab)}$ are square-free, and hence nearly extremal square-free.
- We are led to the following digraph *D*, that has an arc from π to ρ whenever $N_{\pi}N_{\rho}$ is square-free.

LONG NEARLY EXTREMAL SQUARE-FREE WORDS

► Let $f : V(D)^* \to \{a, b, c\}^*$ be the morphism defined by $f(\pi) = N_{\pi}$ for all $\pi \in V(D)$.

• Lemma: If w is a square-free walk in D, then f(w) is square-free.

► Finally, there are two short words P and S that will serve as "bookends".

P = cbacbcabacbabcabacbcabcbacbc

S = acabcacbabcabacbcabcbacabacbcabcb

Specifically, the following hold:

- The word PN() has exactly one square-free extension, and it is on the right.
- The word N₍₎S has exactly one square-free extension, and it is on the left.
- Lemma: If w is a square-free walk in D starting and ending at (), then Pf(w)S is square-free.
 - ► From the properties of *P*, *N*, and *S*, it follows that *Pf*(*w*)*S* is extremal square-free.
- So there are arbitrarily long extremal square-free ternary words!

Question: Are there extremal square-free ternary words of every sufficiently large length?

Theorem (MR 2020+): There is an extremal square-free ternary word of length *n* if and only if *n* is in the set

 $\mathcal{A} = \{25, 41, 48, 50, 63, 71, 72, 77, 79, 81, 83, 84, 85\} \cup \{m: m \ge 87\}.$

IS ANYONE ELSE CRAVING MCNUGGETS?

- ► Chicken McNuggets come in packs of 6, 9, and 20.
- ► Oh, you want exactly 16? Too bad.
- But it is not hard to prove that the largest number that cannot be purchased is 43.
- ► This is a particular instance of the *Frobenius Problem*.

All we really need is the following lemma:

► McNugget Lemma: Let p and q be relatively prime positive integers. For every integer n ≥ (p − 1)(q − 1), there exist nonnegative integers a and b such that

$$n = ap + bq$$
.

TWEAKING THE CONSTRUCTION

► We replace the word *N* with a set of two nearly extremal square-free words *Q* and *R*:

 ${\it Q}={\it abacbabcacbacabacbcacbacabcbabcabacbcabcb}$

- ► We extend the Square-Free Lemma to substitutions.
- Since |Q| = 41 and |R| = 52, the McNugget Lemma guarantees that there is a nearly extremal square-free word of every length n ≥ 40 · 51 = 2040.
- ► Finally, we find bookends *P* and *S*, both of length 49:

 ${\it P} = {\it a} bacbcabcbacabacbcabcbabcacbcabcbacbacbcabcbcabcbacbcabcbbacbcabcbacbcabcbacbcabcbacbcabcbacbcabcbbacbcabcbbacb$

- ${m S}=$ acabacbabcacbacabcbacbcabacbabcacbacabcbabcacbaca
- So there is an extremal square-free word of every length n ≥ 2040 + 2 ⋅ 49 = 2138.

SUMMARY: EXTREMAL SQUARE-FREE WORDS

- ► There are extremal square-free ternary words of every length n ≥ 87.
- One can also show that the number of extremal square-free ternary words of length *n* grows exponentially in *n*.

SUMMARY: EXTREMAL SQUARE-FREE WORDS

- ► There are extremal square-free ternary words of every length n ≥ 87.
- One can also show that the number of extremal square-free ternary words of length *n* grows exponentially in *n*.
- Conjecture (GKN 2020): Let Σ be a fixed alphabet of size at least 4. Then there are no extremal square-free words over Σ.
 - i.e., over every alphabet of size at least 4, every square-free word can be extended to a longer square-free word!

EXTREMAL OVERLAP-FREE WORDS

Extremal β -free words

EXTREMAL OVERLAP-FREE WORDS

- ► An overlap-free word *w* is called *extremal* if every extension of *w* contains an overlap.
- Are there arbitrarily long extremal overlap-free binary words?
- If so, are there extremal overlap-free binary words of every sufficiently large length?

EXTREMAL OVERLAP-FREE WORDS

- ► An overlap-free word *w* is called *extremal* if every extension of *w* contains an overlap.
- Are there arbitrarily long extremal overlap-free binary words?
- If so, are there extremal overlap-free binary words of every sufficiently large length?
- Theorem (MRS 2020+): There is an extremal overlap-free binary word of length n if and only if n is in the set

$$\mathcal{N} := \{10, 12\} \cup \{2k : k \ge 10\} \\ \cup \left\{2^k + 1 : k \ge 5\right\} \cup \left\{3 \cdot 2^k + 1 : k \ge 3\right\}.$$

PRELIMINARIES

► Let $\mu : \Sigma_2^* \to \Sigma_2^*$ denote the Thue-Morse morphism, defined by

 $\mu(0) = 01$ $\mu(1) = 10$

- We call $\mu^{\omega}(0)$ the Thue-Morse word.
- Lemma: Let w ∈ Σ₂^{*} be an overlap-free word of length at least 10, and write w = w₁w₂ with |w₁|, |w₂| ≥ 5. Then for every letter a ∈ Σ₂, the extension w₁aw₂ contains an overlap.
- Proof: It suffices to check the lemma statement for every overlap-free word of length exactly 10.

Theorem (MRS 2020+): There is an extremal overlap-free binary word of length n if and only if n is in the set

$$\mathcal{N} := \{ 10, 12 \} \cup \{ 2k : k \ge 10 \}$$
$$\cup \{ 2^k + 1 : k \ge 5 \} \cup \{ 3 \cdot 2^k + 1 : k \ge 3 \}.$$

- Definition: A word $w \in \Sigma_2^*$ is called *earmarked* if all of the following conditions are satisfied:
 - 1. w is overlap-free;
 - 2. the length 4 prefix of w is in {0010, 1101}; and
 - 3. the length 4 suffix of *w* is 0100.

- ► Definition: A word $w \in \Sigma_2^*$ is called *earmarked* if all of the following conditions are satisfied:
 - 1. w is overlap-free;
 - 2. the length 4 prefix of w is in {0010, 1101}; and
 - 3. the length 4 suffix of *w* is 0100.
- Consider the following earmarked word:

u = 0010**u**'0100

- Definition: A word w ∈ Σ₂^{*} is called *earmarked* if all of the following conditions are satisfied:
 - 1. w is overlap-free;
 - 2. the length 4 prefix of w is in {0010, 1101}; and
 - 3. the length 4 suffix of *w* is 0100.
- Consider the following earmarked word:

Let v = µ(u), and let w be the word obtained from v by complementing the first and last letters.

$$\mathbf{v} = \mu(\mathbf{u}) = 01011001\mu(\mathbf{u}')01100101$$

 $\mathbf{w} = 11011001\mu(\mathbf{u}')01100100$

- Definition: A word w ∈ Σ₂^{*} is called *earmarked* if all of the following conditions are satisfied:
 - 1. w is overlap-free;
 - 2. the length 4 prefix of w is in {0010, 1101}; and
 - 3. the length 4 suffix of *w* is 0100.
- Consider the following earmarked word:

• Let $v = \mu(u)$, and let w be the word obtained from v by complementing the first and last letters.

$$v = \mu(u) = 01011001\mu(u')01100101$$

 $w = 11011001\mu(u')01100100$

- Definition: A word w ∈ Σ₂^{*} is called *earmarked* if all of the following conditions are satisfied:
 - 1. w is overlap-free;
 - 2. the length 4 prefix of w is in {0010, 1101}; and
 - 3. the length 4 suffix of *w* is 0100.
- Consider the following earmarked word:

• Let $v = \mu(u)$, and let w be the word obtained from v by complementing the first and last letters.

$$v = \mu(u) = 01011001\mu(u')01100101$$

 $w = 11011001\mu(u')01100100$

- Definition: A word w ∈ Σ₂^{*} is called *earmarked* if all of the following conditions are satisfied:
 - 1. w is overlap-free;
 - 2. the length 4 prefix of w is in {0010, 1101}; and
 - 3. the length 4 suffix of *w* is 0100.
- Consider the following earmarked word:

• Let $v = \mu(u)$, and let w be the word obtained from v by complementing the first and last letters.

$$v = \mu(u) = 01011001\mu(u')01100101$$

 $w = 11011001\mu(u')01100100$

- Definition: A word w ∈ Σ₂^{*} is called *earmarked* if all of the following conditions are satisfied:
 - 1. w is overlap-free;
 - 2. the length 4 prefix of w is in {0010, 1101}; and
 - 3. the length 4 suffix of *w* is 0100.
- Consider the following earmarked word:

• Let $v = \mu(u)$, and let w be the word obtained from v by complementing the first and last letters.

$$v = \mu(u) = 01011001\mu(u')01100101$$

 $w = 11011001\mu(u')01100100$

- Definition: A word w ∈ Σ₂^{*} is called *earmarked* if all of the following conditions are satisfied:
 - 1. w is overlap-free;
 - 2. the length 4 prefix of w is in {0010, 1101}; and
 - 3. the length 4 suffix of *w* is 0100.
- Consider the following earmarked word:

• Let $v = \mu(u)$, and let w be the word obtained from v by complementing the first and last letters.

$$v = \mu(u) = 01011001\mu(u')01100101$$

 $w = 11011001\mu(u')01100100$

- ► So from every earmarked word of length *n*, we can find an earmarked word of length 2*n* that is extremal overlap-free.
- This suggests an inductive approach, but we still need to find earmarked words of odd length to get things started.
- ► For this, we use Walnut.
- Walnut is a free software program (written by Hamoon Mousavi) that can prove or disprove certain statements, written in first-order logic, about automatic sequences.
- Walnut is available at:

https://github.com/hamousavi/Walnut

Lemma: Let $n \ge 10$ be an integer satisfying $n \not\equiv 0 \pmod{4}$. Then there is an earmarked word of length *n*.

Proof: We ask Walnut:

For which *n* does the Thue-Morse word contain a factor *u* of length *n* − 4 such that the word *u*0100 is earmarked?

Corollary: If *n* is even, then there is an extremal overlap-free binary word of length *n* if and only if $n \in \{10, 12\}$ or $n \ge 20$.

Theorem (MRS 2020+): There is an extremal overlap-free binary word of length n if and only if n is in the set

$$\mathcal{N} := \{10, 12\} \cup \{2k : k \ge 10\} \\ \cup \left\{2^k + 1 : k \ge 5\right\} \cup \left\{3 \cdot 2^k + 1 : k \ge 3\right\}.$$

OVERLAP-FREE BINARY SQUARES

- Define $A = \{00, 11, 010010, 101101\}$ and $A = \bigcup_{k \ge 0} \mu^k(A)$.
- Theorem (Shelton and Soni, 1985): The overlap-free binary squares are the conjugates of the words in A.
- ► Hence, every overlap-free binary square has length 2^k or 3 · 2^k for some k.
- Claim: Let *u* be an extremal overlap-free binary word of odd length. Then *u* = *vva* or *u* = *avv* for a word *v* ∈ Σ₂^{*} and a letter *a* ∈ Σ₂.

SUMMARY: EXTREMAL OVERLAP-FREE WORDS

Theorem (MRS 2020+): There is an extremal overlap-free binary word of length n if and only if n is in the set

$$\mathcal{N} := \{10, 12\} \cup \{2k : k \ge 10\} \\ \cup \left\{2^k + 1 : k \ge 5\right\} \cup \left\{3 \cdot 2^k + 1 : k \ge 3\right\}.$$

SUMMARY: EXTREMAL OVERLAP-FREE WORDS

Theorem (MRS 2020+): There is an extremal overlap-free binary word of length *n* if and only if *n* is in the set

$$\mathcal{N} := \{10, 12\} \cup \{2k : k \ge 10\} \\ \cup \left\{2^k + 1 : k \ge 5\right\} \cup \left\{3 \cdot 2^k + 1 : k \ge 3\right\}.$$

Some Questions:

- Can the extremal overlap-free binary words themselves be characterized?
- Are there extremal overlap-free words over any larger alphabets?
- Are there extremal cube-free words over the binary alphabet? What about fractional powers between two and three?

EXTREMAL OVERLAP-FREE WORDS

Extremal β -free words

FRACTIONAL POWERS

- Let $w = w_1 w_2 \cdots w_n$ be a word.
- We say that *w* has period p > 0 if $w_{i+p} = w_i$ for all $1 \le i \le n-p$.
 - E.g., the word alfalfa has periods 3, 6, and 7.
- The exponent of w is its length divided by its minimal period.
 - ► E.g., the word alfalfa has exponent 7/3.

β -FREE WORDS

- Let r > 1 be a real number.
- ► We say that *w* is *r*-free if it contains no factor of exponent greater than or equal to *r*.
 - ► Note: Square-free words are 2-free words.
- ► We say that w is r⁺-free it it contains no factor of exponent strictly greater than r.
 - ► Note: Overlap-free words are 2⁺-free words.
- ► Henceforth, we let β be a member of the "extended real numbers", denoted ℝ_{ext}, consisting of all real numbers together with all real numbers with a plus.

Extremal β -free words

- A β-free word w is called *extremal* if every extension of w contains a factor of exponent at least β.
- Question: Over a fixed alphabet, for which β are there arbitrarily long extremal β-free words?
- Let's start with the binary alphabet.
- We have already seen that there are arbitrarily long extremal 2⁺-free binary words.

(lpha,eta)-extremal words

- We noticed that in some of the extremal overlap-free words that we constructed, every extension actually contained not just an overlap, but a very short overlap.
- In fact, we found an infinite family of overlap-free words for which every extension contains a factor of exponent at least 7/3.

Definition: Let *w* be a word over a fixed alphabet Σ , and let $\alpha, \beta \in \mathbb{R}_{ext}$ satisfy $1 < \alpha \leq \beta$. We say that *w* is (α, β) -*extremal* if *w* is α -free, and every extension of *w* contains a factor of exponent at least β .

Claim: Suppose that *w* is (α, β) -extremal, and that $\alpha \leq \gamma \leq \beta$. Then *w* is extremal γ -free. Theorem (MRS 2020+): Let $\beta \in \mathbb{R}_{ext}$ satisfy $2 < \beta \leq 8/3$. Then there are arbitrarily long extremal β -free binary words. Proof: We show that all of the following hold.

- 1. There are arbitrarily long $(2^+, 7/3)$ -extremal binary words.
- 2. There are arbitrarily long $(7/3^+, 17/7)$ -extremal binary words.
- 3. There are arbitrarily long $(17/7^+, 5/2)$ -extremal binary words.
- 4. There are arbitrarily long $(5/2^+, 18/7)$ -extremal binary words.
- 5. There are arbitrarily long $(18/7^+, 8/3)$ -extremal binary words.
- For parts 2-5, we go back to the "building blocks" and "bookends" idea.

For example, we find some short binary words that are 7/3⁺-free for which every internal extension contains a factor of exponent at least 17/7.

• Define
$$f: \Sigma_3^* \to \Sigma_2^*$$
 by

f(0) = 001011001101100100110100110110010011 f(1) = 00101100110110010011011001001011f(2) = 001011001101100100100110110010011.

- ► Define "bookends" *r* = 1100110010011 and *s* = 001001.
- ► Claim: Let $u \in \Sigma_3^*$ be a square-free word of length at least 3, and write u = avb, where $a, b \in \Sigma_3$. Then

rf(v)s

is $(7/3^+, 17/7)$ -extremal.

A VAGUE GUESS

- What if $\beta \ge 8/3^+$?
- What about larger alphabets?

A VAGUE GUESS

- What if $\beta \ge 8/3^+$?
- What about larger alphabets?
- Let $B_n = \{\beta \in \mathbb{R}_{ext}: \text{ there are arbitrarily long extremal } \beta \text{-free words over } \Sigma_n\}.$

CONCLUSION: OUR MOST BURNING QUESTIONS

- Are there any extremal square-free words over a four letter alphabet?
- Are there any extremal overlap-free words over the ternary alphabet?
- Are there any extremal 8/3⁺-free words over the binary alphabet?
- Are there arbitrarily long extremal RT(n)⁺-free words over n letters?

Thank you!