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Dirichlet’s Theorem

Theorem [Dirichlet, 1855]

Let ↵ 2 R and N 2 N. There exists p
q 2 Q with q  N such that

����↵� p
q

���� <
1

qN

✓
 1

q2

◆
.

Corollary

If ↵ 2 R\Q, then there are infinitely many p
q 2 Q with

����↵� p
q

���� 
1
q2 .
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Number Theory

A complex number ↵ is called algebraic of degree d if ↵ is the
root of a polynomial with integer coefficients of degree d , and d
is the smallest degree for which such a polynomial exists.

p
2 is algebraic of degree 2 because it is solution of x2 � 2 = 0.
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Number Theory
A complex number ↵ is called algebraic of degree d if ↵ is the
root of a polynomial with integer coefficients of degree d , and d
is the smallest degree for which such a polynomial exists.

p
2 is algebraic of degree 2 because it is solution of x2 = 2.

If there is no such polynomial for any degree, then ↵ is called
transcendental.

For example,

1X

n=1

1
10n! = 0.110001000000000000000001000000 · · · , e and ⇡

are transcendental.
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Liouville’s Theorem

Theorem [Liouville,1836]
Let ↵ 2 R\Q be algebraic of degree d . Then there is a constant
C > 0 such that

C
qd <

����↵� p
q

���� for all
p
q
2 Q.

This implies a nice link between rational approximation and
degree of the algebraic number.
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Roth’s Theorem
Theorem [Liouville,1836]
Let ↵ 2 R\Q be algebraic of degree d . Then there is a constant
C > 0 such that

C
qd <

����↵� p
q

���� for all
p
q
2 Q.

On the opposite

Theorem [Roth,1955]
Let ↵ be a real number and ✏ > 0. If there are infinitely many
p
q 2 Q with ����↵� p

q

���� <
1

q2+✏

then ↵ is transcendental.
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Lagrange spectrum
In general we cannot improve the exponent 2...

Consider all real numbers L > 0 such that
����↵� p

q

���� <
1

Lq2

holds for infinitely many p
q 2 Q.

Definition

Given ↵ 2 R, L(↵) = sup L over all L that satisfy
���↵� p

q

��� < 1
Lq2 is

called the Lagrange number of ↵.

L = {L(↵) : ↵ 2 R\Q} is the Lagrange spectrum.

The Lagrange spectrum below 3 is
L<3 = {L(↵) 2 L : L(↵) < 3}.
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First value of the Lagrange spectrum

Theorem [Hurwitz,1891]

Let ↵ 2 R\Q. Then there are infinitely many rational numbers p
q

such that ����↵� p
q

���� <
1p
5q2

.

And in fact L
⇣

1+
p

5
2

⌘
=

p
5.

Thus 1+
p

5
2 is the most badly approximated quadratic number

and
p

5 is the first element of the Lagrange spectrum ...
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First value of the Lagrange spectrum

In fact L
⇣

1+
p

5
2

⌘
=

p
5.

Thus 1+
p

5
2 is the most badly approximated quadratic number

and
p

5 is the first element of the Lagrange spectrum ...

In fact all cousins of the golden ratio are badly approximated :
two real numbers ↵ and � are cousin if � = a↵+b

c↵+d where
a, b, c, d 2 Z and ad � bc = ±1.
Using homography transformations we find the same Lagrange
number : if two real numbers ↵ and � are cousin then
L(↵) = L(�).
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Second value of the Lagrange spectrum
If we exclude 1+

p
5

2 and all its cousins, then we find the second
Lagrange number :

Theorem [Markoff, 1880]

Let ↵ 2 R\Q which is neither 1+
p

5
2 nor a cousin of 1+

p
5

2 . Then
there are infinitely many rational numbers p

q such that
����↵� p

q

���� <
1p
8q2

.

Thus
p

8 is the second value of the Lagrange spectrum and in
fact L(1 +

p
2) =

p
8 is the second badly approximated

quadratic number.
We could find the third value of the Lagrange spectrum which isp

221
5 and so on ...
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Link with continued fractions
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Link with continued fractions

1+
p

5
2 = [1, 1, · · · , 1, · · · ] ; 1 +

p
2 = [2, 2, · · · , 2, · · · ] ;

[1, 2, · · · , 1, 2, · · · ].
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Theorem [Markoff, 1880]
Let M =
{1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, · · · }
be the sequence of Markoff numbers. The Lagrange spectrum

below 3 is given by L<3 =

⇢p
9m2�4

m : m 2 M
�
.
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Markoff’s Theorem

Theorem [Markoff, 1880]
Let M =
{1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, · · · }
be the sequence of Markoff numbers. The Lagrange spectrum
below 3 is given by

L<3 =

(p
9m2 � 4

m
: m 2 M

)
.

And to define the sequence of Markoff numbers, we consider
the solutions of the following Diophantine equation :

x2 + y2 + z2 = 3xyz with x , y , z 2 N⇤.
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First triples

The triplets (1,1,1) and (1,1,2) are solutions of the equation

x2 + y2 + z2 = 3xyz with x , y , z 2 N⇤.

The triple (1,2,5) is a solution with non repeated values.
In fact, if we note the maximal value in the middle of the triples,
we find a recursive rule in order to generate new solutions :
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Markoff tree

The recursive rule gives birth to an infinite tree
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Frobenius’ conjecture
All the Markov numbers appear in the Markoff tree.

The Frobenius’ conjecture asserts that :

Conjecture [Frobenius,1913]
Each Markoff number is the maximum of a unique Markoff
triple in the Markoff tree.
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Left branch of the Markoff tree
Consider the Fibonacci numbers Fn, with F0 = 0,F1 = 1, and
the recurrence Fn+1 = Fn + Fn�1 (n � 1).
The first values are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, · · · and F2n+1
with n � 1 are in the left branch of the Markoff tree :
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Right branch of the Markoff tree
Consider the Pell numbers Pn, with P0 = 0,P1 = 1, and the
recurrence Pn+1 = 2Pn + Pn�1 (n � 1).
The first values are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985 · · · and
P2n+1 with n � 1 are in the right branch of the Markoff tree :
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Fibonacci and Pell numbers
The Frobenius’ conjecture asserts that each Markoff number
is the maximum of a unique Markoff triple in the Markoff tree !

It is not easy to prove that the sets {F2n+1 : n � 1} and
{P2n+1 : n � 1} are distinct except for the value 5 (see the
paper in 2009 of Y. Bugeaud, C. Reutenauer, S. Siksek).

Laurent Vuillon Frobenius’ Conjecture on Markoff Numbers 22/39



Approximations of real numbers Diophantine equation Tree of Markoff triples Combinatorics on words

Palindrome
Definition
A word w is a finite sequence of letters w1w2 · · ·wn on a finite
alphabet ⌃.
The set of all finite words on the alphabet ⌃ is denoted by ⌃⇤.

w = aabb is a word on the alphabet ⌃ = {a, b}.

Definitions
A prefix of a word w = w1w2 · · ·wn with wi 2 ⌃ is a word
p = w1w2 · · ·wj where j  n.
The reversal of a word w = w1w2 · · ·wn with wi 2 ⌃ is the word
ew = wnwn�1 · · ·w1.
A word w is a palindrome if it is equal to its reversal (that is
w = ew).

w = aba is a palindrome on the alphabet ⌃ = {a, b}.
p = ab is a prefix of w .

Laurent Vuillon Frobenius’ Conjecture on Markoff Numbers 23/39



Approximations of real numbers Diophantine equation Tree of Markoff triples Combinatorics on words

Palindromic closure

Definition [de Luca, 1997]
The palindromic closure of a word x on the alphabet ⌃ = {a, b}
is the shortest palindrome having x as a prefix, it exists and is
unique, it is denoted by x (+).

For example, if x = a, then x (+) = a because x is a palindrome.
If x = ab, then x (+) = aba.

It is known that x (+) = x 0y ex 0 where x = x 0y with y the longest
palindrome suffix of x . A suffix of a word w = w1w2 · · ·wn with
wi 2 ⌃ is a word s = wjwj+1 · · ·wn where j � 1.
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Iterated palindromic closure

Definition [de Luca, 1997]
We consider the iterated palindromic closure, denoted by
Pal(d), is defined recursively by
Pal(d1d2 · · · dn) = (Pal(d1d2 · · · dn�1)dn)(+), di 2 ⌃, with the
initial condition Pal(✏) = ✏, where ✏ denotes the empty word.
The word d is called the directive word of Pal(d).

For example Pal(aba) = abaaba; indeed
Pal(a) = a and
Pal(ab) = (Pal(a)b)(+) = (ab)(+) = aba and then
Pal(aba) = (Pal(ab)a)(+) = (abaa)(+) = abaaba = a ba aba.
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Thue-Morse substitution and the main theorem

We also use the Thue-Morse substitution, denoted by
✓ = (ab, ba) that maps the letter a to ab and the letter b to ba.

Theorem[C. Reutenauer, LV, 2017]
For each word v 2 {a, b}⇤, the number |Pal � ✓ � Pal(av)|+ 2 is
a Markoff number 6= 1, 2.
The mapping defined in this way from {a, b}⇤ into the set of
Markoff numbers different from 1, 2 is surjective. Injectivity of
this mapping is equivalent to the Frobenius’ conjecture.

The Markoff number m = 5 is given by v = ✏ ; indeed
Pal(a) = a, thus ✓ � Pal(a) = ab and then
Pal � ✓ � Pal(a) = Pal(ab) = aba, which is of length 3.
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Thue-Morse substitution and the main theorem

We also use the Thue-Morse substitution, denoted by
✓ = (ab, ba) that maps the letter a to ab and the letter b to ba.

Theorem[C. Reutenauer, LV, 2017]
For each word v 2 {a, b}⇤, the number |Pal � ✓ � Pal(av)|+ 2 is
a Markoff number 6= 1, 2.

The Markoff number m = 13 is given by v = a ; indeed
Pal(aa) = aa, thus ✓ � Pal(aa) = abab and then
Pal � ✓ � Pal(aa) = Pal(abab) = a ba aba baaba, which is of
length 11.
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Thue-Morse substitution and the main theorem

We also use the Thue-Morse substitution, denoted by
✓ = (ab, ba) that maps the letter a to ab and the letter b to ba.

Theorem[C. Reutenauer, LV, 2017]
For each word v 2 {a, b}⇤, the number |Pal � ✓ � Pal(av)|+ 2 is
a Markoff number 6= 1, 2.

The Markoff number m = 29 is given by v = b indeed
Pal(ab) = aba, thus ✓ � Pal(aba) = abbaab and then
Pal � ✓ � Pal(ab) = Pal(abbaab) =
a ba ba ababa ababa baababaababa, which is of length 27.
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Christoffel words
The Markoff number m = 13 is given by v = a and
Pal � ✓ � Pal(aa) = a ba aba baaba.
The word a Pal � ✓ � Pal(av)b is a Christoffel word :

Definition
A Christoffel word coding of a discrete segment from (0, 0) to
(i , j) where i and j are co-prime (i.e. gcd(i , j) = 1).

For v = a we compute C = a abaababaaba b
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More on Christoffel words
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Computation of Markoff numbers

Theorem[C. Reutenauer, LV, 2017]
Consider d = ✓ � Pal(av) with v 2 {a, b}⇤. We write
d = d1d2 · · · d|d | with di 2 {a, b}. We let L0 = L1 = 1 and
L2 = L1 + L0 = 2. For j � 3 we define recursively the Lj :

Lj =

8
<

:

Lj�1 if dj = dj�1,
Lj�1 + Lj�2 if dj 6= dj�1 6= dj�2,
Lj�1 + Lj�2 + Lj�3 if dj 6= dj�1 = dj�2.

Then the Markoff number mv is given by

mv = 1 +

|d |X

j=0

Lj .
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Computation of Markoff numbers

Consider dv = ✓ � Pal(av) with v 2 {a, b}⇤.

Lj =

8
<

:

Lj�1 if dj = dj�1,
Lj�1 + Lj�2 if dj 6= dj�1 6= dj�2,
Lj�1 + Lj�2 + Lj�3 if dj 6= dj�1 = dj�2.

d✏ = ✓(a) = ab and then d✏ = a b
1 1 2 and thus

m✏ = 1 + (1 + 1 + 2) = 5.
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Computation of Markoff numbers

Consider dv = ✓ � Pal(av) with v 2 {a, b}⇤.

Lj =

8
<

:

Lj�1 if dj = dj�1,
Lj�1 + Lj�2 if dj 6= dj�1 6= dj�2,
Lj�1 + Lj�2 + Lj�3 if dj 6= dj�1 = dj�2.

d✏ = ✓(a) = ab and then d✏ = a b
1 1 2 and thus

m✏ = 1 + (1 + 1 + 2) = 5.

da = ✓(aa) = abab and then da = a b a b
1 1 2 3 5

and thus ma = 1 + (1 + 1 + 2 + 3 + 5) = 13.
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Computation of Markoff numbers

Lj =

8
<

:

Lj�1 if dj = dj�1,
Lj�1 + Lj�2 if dj 6= dj�1 6= dj�2,
Lj�1 + Lj�2 + Lj�3 if dj 6= dj�1 = dj�2.

d✏ = ✓(a) = ab and then d✏ = a b
1 1 2 and thus

m✏ = 1 + (1 + 1 + 2) = 5.

da = ✓(aa) = abab and then da = a b a b
1 1 2 3 5

and thus ma = 1 + (1 + 1 + 2 + 3 + 5) = 13.
daa = ✓(aaa) = ababab and then
daa = a b a b a b

1 1 2 3 5 8 13 and thus

maa = 1 + (1 + 1 + 2 + 3 + 5 + 8 + 13) = 34.

The directive words daa···a compute the Markoff numbers that
are Fibonacci numbers...
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Computation of Markoff numbers

Consider dv = ✓ � Pal(av) with v 2 {a, b}⇤.

Lj =

8
<

:

Lj�1 if dj = dj�1,
Lj�1 + Lj�2 if dj 6= dj�1 6= dj�2,
Lj�1 + Lj�2 + Lj�3 if dj 6= dj�1 = dj�2.

db = ✓(aba) = abbaab and then
db = a b b a a b

1 1 2 2 5 5 12 and thus

maa = 1 + (1 + 1 + 2 + 2 + 5 + 5 + 12) = 29.

The directive words dbk compute the Markoff numbers that are
Pell numbers...
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Computation of Markoff numbers
Consider dv = ✓ � Pal(av) with v 2 {a, b}⇤.

Lj =

8
<

:

Lj�1 if dj = dj�1,
Lj�1 + Lj�2 if dj 6= dj�1 6= dj�2,
Lj�1 + Lj�2 + Lj�3 if dj 6= dj�1 = dj�2.

db = ✓(aba) = abbaab and then
db = a b b a a b

1 1 2 2 5 5 12 and thus

maa = 1 + (1 + 1 + 2 + 2 + 5 + 5 + 12) = 29.

The directive words dbk compute the Markoff numbers that are
Pell numbers...

dab = ✓(aabaa) = ababbaabab and then
dab = a b a b b a a b a b

1 1 2 3 5 5 13 13 31 44 75
mab = 194.
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Conclusion

We are able to compute all the Markoff numbers by Iterated
palindromic closures.

How to prove that the words Pal � ✓ � Pal(av) have two by two
distinct lengths ?

What are the properties of the Li ’s ?

How to use discrete geometry and Christoffel words in order to
prove the Frobenius’ conjecture ?
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