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Ternary square free words

Let Σn = {0,1,2, . . . ,n − 1}. Consider an infinite square-free word

w = a0a1a2a3a4a5 · · ·

where the ai ∈ Σ3. The Pansiot encoding of w is the sequence

π(w) = b0b1b2b3b4b5 · · ·

where

bi =

{
0, ai = ai+2
1, otherwise
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Ternary square free words

For example, consider vtm, the fixed point of (012,02,1).

vtm = 0
↑

1
12021012102012021020121 · · ·

The Pansiot encoding is in red:
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Ternary square free words

For example, consider vtm, the fixed point of (012,02,1).

vtm =
1
0
↑
12
↑
021012102012021020121 · · ·

The Pansiot encoding is in red:
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Ternary square free words

For example, consider vtm, the fixed point of (012,02,1).

vtm =
1
0

1
1
↑
20
↑
21012102012021020121 · · ·

The Pansiot encoding is in red:
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Ternary square free words

For example, consider vtm, the fixed point of (012,02,1).

vtm =
1
0

1
1

0
2
↑
02
↑
1012102012021020121 · · ·

The Pansiot encoding is in red:

Pansiot encodings One World 4 / 46



Ternary square free words

For example, consider vtm, the fixed point of (012,02,1).

vtm =
1
0

1
1

0
2

1
0
↑
21
↑
012102012021020121 · · ·

The Pansiot encoding is in red:

Pansiot encodings One World 4 / 46



Ternary square free words

For example, consider vtm, the fixed point of (012,02,1).

vtm =
1
0

1
1

0
2

1
0

1
2
↑
10
↑
12102012021020121 · · ·

The Pansiot encoding is in red:
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Ternary square free words

For example, consider vtm, the fixed point of (012,02,1).

vtm =
1
0

1
1

0
2

1
0

1
2

0
1
↑
01
↑
2102012021020121 · · ·

The Pansiot encoding is in red:
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Ternary square free words

For example, consider vtm, the fixed point of (012,02,1).
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The Pansiot encoding is in red:
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Ternary square free words

A ternary square-free word can be recovered from its Pansiot encoding
and its first two letters:

vtm =
1
0

1
1

0
2
↑

1
0

1
2

0
1
···

012102012021020121 · · ·

The 1 of the Pansiot encoding shows that the indicated digit is not a 0.
It cannot be a 1, or we get the square 11. Therefore it is a 2.
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Ternary square free words

A ternary square-free word can be recovered from its Pansiot encoding
and its first two letters:

vtm =
1
0

1
1

0
2

1
0
↑

1
2

0
1
···

012102012021020121 · · ·

The 1 of the Pansiot encoding shows that the indicated digit is not a 1.
It cannot be a 2, or we get the square 22. Therefore, it is a 0.
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Ternary square free words

A ternary square-free word can be recovered from its Pansiot encoding
and its first two letters:

vtm =
1
0

1
1

0
2

1
0
↑

1
2

0
1
···

012102012021020121 · · ·

The 1 of the Pansiot encoding shows that the indicated digit is not a
1.It cannot be a 2, or we get the square 22. Therefore, it is a 0.
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Ternary square free words
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Ternary square free words

A ternary square-free word can be recovered from its Pansiot encoding
and its first two letters:

vtm =
1
0

1
1

0
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0
1
···

012102012021020121 · · ·

The 0 of the Pansiot encoding shows that the indicated digit is a 2.
Extra text for spacing.
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Ternary square free words

Definition
A word of the form xyx , xy 6= ε is a k power, where k = |xyx |/|xy |. An
r+ power is a k power, some k > r . Define the repetitive threshold
function to be

RT(n) = sup{r : every infinite word over Σn contains an r + power}.
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Dejean’s conjecture

Theorem (Dejean’s conjecture)
The repetitive threshold function is given by

RT(n) =


2, n = 2
7/4, n = 3
7/5, n = 4
n/(n − 1), n ≥ 5

This was established via the work of many people, notably Carpi, who
resolved all but finitely many cases.
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Dejean’s conjecture

Fix n ≥ 2, and let w be a threshold word over Σn. Thus

w = a0a1a2a3a4a5 · · ·

where the ai ∈ Σn, and w contains no r+ powers, where r =RT(n).
The situation we saw with squarefree ternary words generalizes:
Suppose ua is a factor of w, where |u| = n− 1, and a ∈ Σn. Because u
doesn’t contain any r+ power, the letters of u must be distinct. Further,
either a is the first letter of u, or a does not occur in u.
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Dejean’s conjecture

The Pansiot encoding of w is the sequence

π(w) = b0b1b2b3b4b5 · · ·

where

bi =

{
0, ai = ai+n−1
1, otherwise

Word w can be recovered from its Pansiot encoding and its prefix of
length n − 1.
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Dejean’s conjecture

Pansiot encodings allowed Dejean’s conjecture to be resolved via
constructions on binary alphabets, rather than by working on Σn.
In published work on Dejean’s conjecture, to recover information about
k powers in w from the Pansiot encoding, group theory is used.
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Kernel repetitions

vtm =
1
0

1
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0

1
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1
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0

1
2

1
1

0
0

1
2

1
0

0
121 · · ·

Long repeated factors in w correspond to long repeated factors in the
Pansiot encoding.
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Kernel repetitions
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The reverse is not true. Extra text here for vertical spacing and or
justification.
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The reverse is not true. The factor in w is only repeated up to a
permutation (switching 0 and 2).
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Kernel repetitions

Consider a length n − 1 factor u of w, u = a0a1 · · · an−2 where the ai
are distinct letters of Σn. Let an−1 be the unique letter in
Σn − {a0,a1, . . . ,an−2}. Consider the correspondence

u
ϕ→
(

0 1 · · · (n − 2) (n − 1)
a0 a1 · · · an−2 an−1

)
which matches words and permutations.
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Kernel repetitions

Let ui be the length n − 1 factor at index i in w. As before, let bi be the
i th letter of π(w), the Pansiot encoding of w. Then

ϕ(ui+1) = σ(bi)ϕ(ui),

where

σ(0) =

(
0 1 · · · (n − 3) (n − 2) (n − 1)
1 2 · · · (n − 2) 1 (n − 1)

)
and

σ(1) =

(
0 1 · · · (n − 3) (n − 2) (n − 1)
1 2 · · · (n − 2) (n − 1) 1

)
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Kernel repetitions

In our example where n = 3 and w = vtm = 012021012 · · · , we have
u0 = 01, u3 = 02. Also π(w) = 110110 · · · , and

σ(0) =

(
0 1 2
1 0 2

)
= (0 1);σ(1) =

(
0 1 2
1 2 0

)
= (0 1 2)

and

ϕ(u0) =

(
0 1 2
0 1 2

)
= ();ϕ(u3) =

(
0 1 2
0 2 1

)
= (1 2)

Thus σ(0)σ(1)σ(1)ϕ(u0) = (0,1)(0,1,2)(0,1,2)() = (1 2) = u3.
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Kernel repetitions

Let σ be the antimorphism on Σ2 generated by σ(0), σ(1). If bm is the
prefix of π(w) of length m, then

ϕ(um) = σ(bm)ϕ(u0).

A power xyx in w, of period |xy | and length xyx corresponds to a
power π(xyx) in π(w), of period |xy | and length |xyx | − (n − 1). If
|x | ≥ n − 1, then σ(π(xy)) must be the identity permutation. We call
π(xyx) a kernel repetition in π(w) (since π(xy) is in the kernel of ϕ).
Dejean’s conjecture was solved by constructing binary sequences
avoiding short repetitions (with |x | < n − 1) and kernel repetitions.
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Graphs

If power xyx in w has period p and length m, then π(xyx) has period p
and length m − (n − 1). If |x | ≥ n − 1, then σ(π(xy)) = (), the identity
element of the permutation group Sn.
For fixed n, rather than working in Sn, we can consider the Cayley
graph of Sn with generators σ(0) and σ(1).
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Graphs

()
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Figure: σ(0)σ(1)σ(1)() = (1 2)
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Graphs

If power xyx in w has period p and length m, then π(xyx) has period p
and length m − (n − 1). If |x | ≥ n − 1, σ(π(xy)) labels a closed walk in
the Cayley graph. This Cayley graph is well-known to us under an
alias; it is isomorphic to the De Bruijn graph of length 2 factors of w.
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Graphs

01
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1

0

0

1

1

11

0

1

Figure: De Bruijn graph (with Pansiot encoding edge labels)
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Graphs

Parsing Pansiot encodings

One verifies that the Pansiot encoding of an infinite threshold word w
cannot contain 00 or 1111 as a factor. It follows a final segment of
π(w) has the form π(w) = f (v) where

f (1) = 01
f (2) = 011
f (3) = 0111
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Graphs

Parsing Pansiot encodings (continued)

We consider again the alphabet Σ3. We form a graph G on the vertices
of the previous graph: For each α ∈ S = {1,2,3}, and for each vertex
xy , introduce an edge from xy to zw , labeled by α, exactly when zw is
the endpoint of the walk in the previous graph labeled by f (α) starting
at xy . Thus U ∈ S∗ labels a closed walk on G, exactly when f (U)
labels a closed walk on on the previous graph.
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Graphs

Parsing Pansiot encodings (continued)

01 21

20

1012

02
3

2

1

3

3

2

1

2

1

Figure: Graph G
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Circular words

Thue studied finite, right-infinite, doubly-infinite, and circular words
avoiding powers. The last two types of words are more structurally
uniform than the first two, since there are no ends where
‘unsustainable’ behaviours can take place. Thue characterized the
overlap-free circular binary words.
A lot of work has been done on ‘linear’ words avoiding patterns. Many
questions are open regarding circular words.
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Circular words

Once an infinite word avoiding some pattern exists, finite linear words
of every length obviously exist. The situation is different for circular
words. For example, no circular binary overlap free word of length 5
exists.
The following conjecture appears to be due to R. Jamie Simpson:

Theorem
There are ternary circular square free words of length n for every n
except n = 5,7,9,10,14 and 17.

This was solved in 2002, using an approach which has become typical
in combinatorics on words: It was shown that such words exist for
every n ≥ 180, and then a computer search establishes the result.
In 2010, Shur gave a computer-free proof of this result, relying on a
variation of Pansiot encoding.
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Circular words

Given a word w = u1u2 · · · um, um ∈ Σn, the circular word [w ] is the set
of conjugates of w . It is natural to think of [w ] as consisting of the
letters of w arranged in a circle or ‘necklace’. Equivalently, we may
consider the indices i of the letters of a circular word [u] = [u1u2 · · · un]
to belong to Zn, the integers modulo n. Thus un+1 = u1, for example.
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Circular words
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Figure: Circular word [012021]
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Circular words

The Pansiot encoding of 202101 is 011011 = f (22). In the circular
word, u0u1 = 01 = u6u7, so that we have σ(011011) = (). Put another
way, 011011 gives a closed walk on our De Bruijn graph, and 22 labels
a closed walk on G. Parsing Pansiot encodings by f means we deal
with words only 1/3 as long.
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Circular words

Theorem (Shur 2010)

If w labels a closed walk on G, then [f (w)] is the Pansiot encoding of a
square-free circular word if

[w ] has no factor 11, 222, 223, 322, or 333
[w ] has no factor UxyU with Uxy a closed walk,
|U| ≥ 2,x , y ∈ {1,2,3} .

This is not quite if and only if: for example, word 0102 has Pansiot
encoding 0101= f (11)
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Circular words

Call a word w over Σn level if |w |i − |w |j ∈ {−1,0,1} for i , j ∈ Σn. Call
a word w over Σ2 an FS word if the only square factors of w are 00, 11
and 0101.
Jesse Johnson used Shur’s approach to prove these results in his MSc
thesis:

Theorem (Johnson, 2020)
There are level ternary circular square free words of length n for every
n except n = 5,7,9,10,14 and 17.

Theorem (Johnson, 2020)
There are circular FS words of every length.
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Circular words

Remark
Level words are useful when we care about the length of constructed
words: If w ∈ Σkn

n is level, then for any morphism g, word g(w) has
length k |g|. Level words can be used analogously to k-uniform
morphisms, where the image of word u has length k |u|.
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Undirected powers

Call xyz an undirected k power if z ∈ {x , xR}, and |xyx |/|xy | = k .
Thus reenter is an undirected 7/5 power, and so is stalest .
If we required instead that z was an anagram of x , we would have an
Abelian power, in the sense used by Cassaigne & C. (1999). One can
also see undirected powers as a common generalization of gapped
repeats and gapped palindromes.

Pansiot encodings One World 32 / 46



Undirected powers

The undirected repetition threshold function is defined to be

URT (k) = inf{r : undirected r -powers are avoidable on k letters.}

Theorem (Mol &C., 2019)
For k = 4,5, . . . ,21, we have

URT (k) =
k − 1
k − 2

.
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Undirected powers

Avoiding gapped palindromes xyxR where |x | > 1 is rather easy; for
example (123)ω contains no such gapped palindrome. We will
therefore focus on the issue of constructing words over Σk avoiding
ordinary (k − 1)/(k − 2)+ powers.
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Undirected powers

Dejean’s conjecture revisited

Suppose w is a word of Σω
k that avoids r+ powers for some fixed r .

Consider first the case of Dejean’s conjecture, where we are interested
in r = k/(k − 1). In this case, factors of w of length k − 1 must contain
k − 1 distinct letters; otherwise w contains a power of exponent at least
(k − 1)/(k − 2) > k/(k − 1).
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Undirected powers

Dejean’s conjecture revisited (continued)

Suppose that pa1a2 · · · ak is a prefix of w, where the ai ∈ Σk . The
letters of {a2,a3 · · · ak} must be distinct. It follows that ak is one of the
two letters in Σk − {a2,a3, . . . ,ak−1}. Of these two letters, the one
occurring closest to the end of pa1a2 · · · ak−1 is a1 (because the letters
of {a1,a2 · · · ak−1} must be distinct).
The Pansiot encoding may be constructed by scanning prefixes of w,
starting with the length k prefix: When we scan pa1a2 · · · ak , we afix 0
to the Pansiot encoding if ak equals the letter of Σk −{a2,a3, . . . ,ak−1}
closest to the end of pa1a2 · · · ak−1; we afix 1 if ak equals the letter of
Σk − {a2,a3, . . . ,ak−1} second closest to the end.
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Undirected powers

A Pansiot-like encoding

Now consider the case r = (k − 1)/(k − 2), as in the undirected
powers problem. In this case, factors of w of length k − 2 must contain
k − 2 distinct letters; otherwise w contains a power of exponent at least
(k − 2)/(k − 3) > (k − 1)/(k − 2).
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Undirected powers

A Pansiot-like encoding (continued)

Suppose that pa1a2 · · · ak−1 is a prefix of w, where the ai ∈ Σk . The
letters of {a2,a3 · · · ak−1} must be distinct. It follows that ak−1 is one of
the three letters in Σk − {a2,a3, . . . ,ak−2}. Of these three letters, the
one occurring closest to the end of pa1a2 · · · ak−2 is a1 (because the
letters of {a1,a2 · · · ak−2} must be distinct).
A Pansiot-like encoding b may be constructed by scanning prefixes of
w, starting with the length k − 1 prefix: When we scan pa1a2 · · · ak−1,
we afix 0 to the Pansiot encoding if ak−1 equals the letter of
Σk − {a2,a3, . . . ,ak−2} closest to the end of pa1a2 · · · ak−2; we afix 1 if
ak equals the letter of Σk − {a2,a3, . . . ,ak−2} second closest to the
end; we afix 2 if ak equals the letter of Σk − {a2,a3, . . . ,ak−2} third
closest to the end.
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Undirected powers

A Pansiot-like encoding (continued)

There are some technical issues at the very start, where the question
of ‘second closest’ versus ‘third closest’ is undefined. One can either
introduce a tie-breaking convention, or alter the encoding, to start with
the first prefix of w containing all letters of Σk .
Let the encoding be

b = b0b1b2b3 · · ·
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Undirected powers

Consider a prefix P = pa1a2 · · · ak−1 of w, where the ai are distinct
letters of Σk . Consider the correspondence

P
ϕ→
(

0 1 2 3 · · · (k − 2) (k − 1)
r3 r2 a1 a2 · · · ak−3 ak−2

)
where r3 is the letter of Σk − {a2,a3, . . . ,ak−2} third closest to the end
of pa1a2 · · · ak , and r2 is the letter of Σk − {a2,a3, . . . ,ak−2} second
closest to the end of pa1a2 · · · ak .
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Undirected powers

Let ui be the prefix of w of length i + k − 1. Then

ϕ(ui+1) = σ(bi)ϕ(ui),

where

σ(0) =

(
0 1 2 3 · · · (k − 3) (k − 2)
0 1 3 4 · · · (k − 2) 2

)
,

σ(1) =

(
0 1 2 3 · · · (k − 3) (k − 2)
0 2 3 4 · · · (k − 2) 1

)
and

σ(0) =

(
0 1 2 3 · · · (k − 3) (k − 2)
1 2 3 4 · · · (k − 2) 0

)
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Undirected powers

Let σ be the antimorphism on Σ3 generated by σ(0),σ(1), σ(2). If bm is
the prefix of π(w) of length m, then

ϕ(um) = σ(bm)ϕ(u0).

We are again led to avoiding short repetitions and kernel repetitions.
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Pros and cons of Pansiot encodings

Pansiot encodings are unnecessary!

The constructions in the solutions to Dejean’s conjecture use binary
fixed points of D0Ls. These are Pansiot encodings, and are decoded
into words of Σω

n . From a formal point of view, the words witnessing the
correctness of Dejean’s conjecture are thus transductions of D0L
sequences.

Theorem (Dekking, 1994 (Theorem 7.9.1 in Allouche & Shallit))

The transduction of an HD0L sequence is an HD0L sequence.

Thus witnesses to Dejean’s Conjecture can be given directly by
HD0Ls.
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Pros and cons of Pansiot encodings

Points in favour of Pansiot encodings

Attacking threshold problems via encodings unifies questions
involving multiple alphabets.
Carpi’s contribution involved group theory in an important way,
implying that the group viewpoint is necessary.
In the case of squarefree words, encodings (and the parsing
function f ) reduce the depth of searches by 1/3.
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Pros and cons of Pansiot encodings

Some open problems

1 Recast Carpi’s group-theoretic work via De Bruijn graphs. Does
this give further insight?

2 Prove that URT (k) = k−1
k−2 for all k ≥ 4.

3 Generalize classical pattern avoidance results to circular words.
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Pros and cons of Pansiot encodings

Thank you!
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