Avoiding Abelian Powers Cyclically

Jarkko Peltomäki

The Turku Collegium for Science and Medicine Department of Mathematics and Statistics University of Turku

28.9.2020

Joint work with Markus A. Whiteland

• Two words *u* and *v* are *abelian equivalent* if they are permutations of each other. For example, 0011 and 1001 are abelian equivalent, *aabc* and *baab* are not.

Preliminaries

- Two words *u* and *v* are *abelian equivalent* if they are permutations of each other. For example, 0011 and 1001 are abelian equivalent, *aabc* and *baab* are not.
- If $A = \{a_1, \ldots, a_k\}$ and $w \in A^*$, then $\psi(w) = (|w|_{a_1}, \ldots, |w|_{a_k})$ (the *Parikh vector of w*).

- Two words *u* and *v* are *abelian equivalent* if they are permutations of each other. For example, 0011 and 1001 are abelian equivalent, *aabc* and *baab* are not.
- If $A = \{a_1, \ldots, a_k\}$ and $w \in A^*$, then $\psi(w) = (|w|_{a_1}, \ldots, |w|_{a_k})$ (the *Parikh vector of w*).
- An abelian N-power is a word u₀u₁ · · · u_{N-1} if u₀, u₁, . . ., u_{N-1} are abelian equivalent. For example, 010 · 100 · 010 · 001 is an abelian 4-power.

- Two words *u* and *v* are *abelian equivalent* if they are permutations of each other. For example, 0011 and 1001 are abelian equivalent, *aabc* and *baab* are not.
- If $A = \{a_1, \ldots, a_k\}$ and $w \in A^*$, then $\psi(w) = (|w|_{a_1}, \ldots, |w|_{a_k})$ (the *Parikh vector of w*).
- An abelian N-power is a word u₀u₁ · · · u_{N-1} if u₀, u₁, . . ., u_{N-1} are abelian equivalent. For example, 010 · 100 · 010 · 001 is an abelian 4-power.
 - The common length $|u_0|$ is called the *period* of the abelian *N*-power.
 - The number *N* is the *exponent*.

- Two words *u* and *v* are *abelian equivalent* if they are permutations of each other. For example, 0011 and 1001 are abelian equivalent, *aabc* and *baab* are not.
- If $A = \{a_1, \ldots, a_k\}$ and $w \in A^*$, then $\psi(w) = (|w|_{a_1}, \ldots, |w|_{a_k})$ (the *Parikh vector of w*).
- An abelian N-power is a word u₀u₁ · · · u_{N-1} if u₀, u₁, . . ., u_{N-1} are abelian equivalent. For example, 010 · 100 · 010 · 001 is an abelian 4-power.
 - The common length $|u_0|$ is called the *period* of the abelian *N*-power.
 - The number *N* is the *exponent*.
- A word *w* (finite or infinite) *avoids abelian N-powers* if it contains no abelian *N*-power as a factor.

• Given an alphabet Σ of k letters, what is the least N such that there exists an infinite word over Σ avoiding abelian N-powers?

- Given an alphabet Σ of k letters, what is the least N such that there exists an infinite word over Σ avoiding abelian N-powers?
 - ▶ k = 2: 4 (Dekking 1979),
 - ▶ k = 3: 3 (Dekking 1979),
 - k = 4: 2 (Keränen 1992),
 - ...and many other results

- Given an alphabet Σ of k letters, what is the least N such that there exists an infinite word over Σ avoiding abelian N-powers?
 - ▶ k = 2: 4 (Dekking 1979),
 - ▶ k = 3: 3 (Dekking 1979),
 - k = 4: 2 (Keränen 1992),
 - ...and many other results
- Thus there exists a binary word of length *n* avoiding abelian 4-powers for all *n* etc.

• We have finite words avoiding abelian *N*-powers (for some *N*) for all lengths.

- We have finite words avoiding abelian *N*-powers (for some *N*) for all lengths.
- Can we make stronger assumptions?

- We have finite words avoiding abelian *N*-powers (for some *N*) for all lengths.
- Can we make stronger assumptions?
- Here we focus on stability under concatenation.

- We have finite words avoiding abelian *N*-powers (for some *N*) for all lengths.
- Can we make stronger assumptions?
- Here we focus on *stability under concatenation*.
- If we concatenate w with itself N times, the resulting word w^N contains at least the abelian power w^N of period |w|. This is unavoidable.

- We have finite words avoiding abelian *N*-powers (for some *N*) for all lengths.
- Can we make stronger assumptions?
- Here we focus on *stability under concatenation*.
- If we concatenate w with itself N times, the resulting word w^N contains at least the abelian power w^N of period |w|. This is unavoidable.
- But does it have to contain abelian N-powers with smaller period?

- We have finite words avoiding abelian *N*-powers (for some *N*) for all lengths.
- Can we make stronger assumptions?
- Here we focus on *stability under concatenation*.
- If we concatenate w with itself N times, the resulting word w^N contains at least the abelian power w^N of period |w|. This is unavoidable.
- But does it have to contain abelian N-powers with smaller period?
 - ► Maybe it does: 0010 avoids abelian 3-powers, but (0010)² = 00100010 contains the abelian 3-power 0³ of period 1.

A word w avoids abelian N-powers cyclically if each abelian N-power in the infinite word $www \cdots$ has period at least |w|.

• Could give many positive examples, but they are tedious to verify.

- Could give many positive examples, but they are tedious to verify.
- If w is fixed, by increasing N it is easier to satisfy the definition.

- Could give many positive examples, but they are tedious to verify.
- If w is fixed, by increasing N it is easier to satisfy the definition.
- But *w* does not avoid abelian *N*-powers cyclically for any *N* if *w^k* is conjugate to an abelian power with period less than |*w*|.

- Could give many positive examples, but they are tedious to verify.
- If w is fixed, by increasing N it is easier to satisfy the definition.
- But *w* does not avoid abelian *N*-powers cyclically for any *N* if *w^k* is conjugate to an abelian power with period less than |*w*|.
 - ► 0110 avoids abelian 3-powers, but (0110)^ω is an abelian ∞-power of period 2.

- Could give many positive examples, but they are tedious to verify.
- If w is fixed, by increasing N it is easier to satisfy the definition.
- But *w* does not avoid abelian *N*-powers cyclically for any *N* if *w^k* is conjugate to an abelian power with period less than |w|.
 - ► 0110 avoids abelian 3-powers, but (0110)^ω is an abelian ∞-power of period 2.
 - The converse holds (the bound is |w|).

Definition

A word w avoids N-powers circularly if all conjugates of w avoid N-powers.

Definition

A word w avoids N-powers circularly if all conjugates of w avoid N-powers.

- Our generalization is thus twofold:
 - power \rightarrow abelian power,
 - circular \rightarrow cyclical

Definition

A word w avoids N-powers circularly if all conjugates of w avoid N-powers.

- Our generalization is thus twofold:
 - power \rightarrow abelian power,
 - circular \rightarrow cyclical
 - ★ In circular avoidance w^2 is used in place of w^{ω} .

Main Results

Definition

Let $\mathcal{A}(k)$ be the least integer N such that for all n there exists a word of length n over a k-letter alphabet that avoids abelian N-powers cyclically.

Let $\mathcal{A}(k)$ be the least integer N such that for all n there exists a word of length n over a k-letter alphabet that avoids abelian N-powers cyclically.

Theorem (P.-Whiteland (2020))

We have $5 \leq \mathcal{A}(2) \leq 8$, $3 \leq \mathcal{A}(3) \leq 4$, $2 \leq \mathcal{A}(4) \leq 3$, $\mathcal{A}(k) = 2$ for $k \geq 5$.

Let $\mathcal{A}(k)$ be the least integer N such that for all n there exists a word of length n over a k-letter alphabet that avoids abelian N-powers cyclically.

Theorem (P.-Whiteland (2020))

We have $5 \leq \mathcal{A}(2) \leq 8$, $3 \leq \mathcal{A}(3) \leq 4$, $2 \leq \mathcal{A}(4) \leq 3$, $\mathcal{A}(k) = 2$ for $k \geq 5$.

Definition

Let $\mathcal{A}_{\infty}(k)$ be the least integer N such that there exist arbitrarily long words over a k-letter alphabet that avoid abelian N-powers cyclically.

Let $\mathcal{A}(k)$ be the least integer N such that for all n there exists a word of length n over a k-letter alphabet that avoids abelian N-powers cyclically.

Theorem (P.-Whiteland (2020))

We have $5 \leq \mathcal{A}(2) \leq 8$, $3 \leq \mathcal{A}(3) \leq 4$, $2 \leq \mathcal{A}(4) \leq 3$, $\mathcal{A}(k) = 2$ for $k \geq 5$.

Definition

Let $\mathcal{A}_{\infty}(k)$ be the least integer N such that there exist arbitrarily long words over a k-letter alphabet that avoid abelian N-powers cyclically.

Theorem (P.-Whiteland (2020))

We have
$$\mathcal{A}_{\infty}(2)=$$
 4, $\mathcal{A}_{\infty}(3)=$ 3, and $\mathcal{A}_{\infty}(4)=$ 2.

Jarkko Peltomäki

• We will first sketch the proof showing $A_{\infty}(2) = 4$ and $A_{\infty}(3) = 3$.

• We will first sketch the proof showing $\mathcal{A}_{\infty}(2) = 4$ and $\mathcal{A}_{\infty}(3) = 3$.

Definition

A substitution $\sigma: A^* \to A^*$ preserves abelian N-powers if the following is satisfied for all words $w \in A^*$: if $\sigma(w)$ contains an abelian N-power $u_0 \cdots u_{N-1}$, then w contains an abelian N-power $v_0 \cdots v_{N-1}$ such that $\sigma(v_0 \cdots v_{N-1})$ is a conjugate of $u_0 \cdots u_{N-1}$. • We will first sketch the proof showing $\mathcal{A}_{\infty}(2) = 4$ and $\mathcal{A}_{\infty}(3) = 3$.

Definition

A substitution $\sigma: A^* \to A^*$ preserves abelian N-powers if the following is satisfied for all words $w \in A^*$: if $\sigma(w)$ contains an abelian N-power $u_0 \cdots u_{N-1}$, then w contains an abelian N-power $v_0 \cdots v_{N-1}$ such that $\sigma(v_0 \cdots v_{N-1})$ is a conjugate of $u_0 \cdots u_{N-1}$.

• More plainly: abelian *N*-powers decode to abelian *N*-powers up to a cyclic shift.

• We will first sketch the proof showing $\mathcal{A}_{\infty}(2) = 4$ and $\mathcal{A}_{\infty}(3) = 3$.

Definition

A substitution $\sigma: A^* \to A^*$ preserves abelian N-powers if the following is satisfied for all words $w \in A^*$: if $\sigma(w)$ contains an abelian N-power $u_0 \cdots u_{N-1}$, then w contains an abelian N-power $v_0 \cdots v_{N-1}$ such that $\sigma(v_0 \cdots v_{N-1})$ is a conjugate of $u_0 \cdots u_{N-1}$.

- More plainly: abelian *N*-powers decode to abelian *N*-powers up to a cyclic shift.
- This is stronger than the notion of an abelian *N*-free substitution (we will return to this).

Values $\mathcal{A}_{\infty}(k)$

Lemma

Let $\sigma: A^* \to A^*$ be a substitution that preserves abelian N-powers and is prolongable on the letter 0. Then the sequence $(\sigma^n(0))_n$ is a sequence of words avoiding abelian N-powers cyclically.

Values
$$\mathcal{A}_\infty(k)$$

Lemma

Let $\sigma: A^* \to A^*$ be a substitution that preserves abelian N-powers and is prolongable on the letter 0. Then the sequence $(\sigma^n(0))_n$ is a sequence of words avoiding abelian N-powers cyclically.

Proof.

Let $z_n = \sigma^n(0)$ and $\mathbf{z}_n = z_n^{\omega}$ so that $\mathbf{z}_n = \sigma(\mathbf{z}_{n-1})$ for all n. Say there exists a least n such that z_n does not cyclically avoid abelian N-powers. Since $z_0 = 0$, we have $n \ge 1$.

Thus \mathbf{z}_n contains an abelian *N*-power $u_0 \cdots u_{N-1}$ with period *m*, $m < |\mathbf{z}_n|$. Since σ preserves abelian *N*-powers, \mathbf{z}_{n-1} contains an abelian *N*-power $v_0 \cdots v_{N-1}$ such that $|\sigma(v_0)| = m < |\mathbf{z}_n|$.

By the minimality of n, $|v_0| \ge |z_{n-1}|$. Hence v_0 has a conjugate z' of z_{n-1} as a factor. Therefore $m = |\sigma(v_0)| \ge |\sigma(z')| = |\sigma(z_{n-1})| = |z_n|$.

• It thus suffices to find suitable substitutions.

- It thus suffices to find suitable substitutions.
- Dekking (1979) shows that $\sigma_1: 0 \mapsto 011, 1 \mapsto 0001$ and $\sigma_2: 0 \mapsto 0012, 1 \mapsto 112, 2 \mapsto 022$ respectively preserve abelian 4-powers and 3-powers.

- It thus suffices to find suitable substitutions.
- Dekking (1979) shows that $\sigma_1: 0 \mapsto 011, 1 \mapsto 0001$ and $\sigma_2: 0 \mapsto 0012, 1 \mapsto 112, 2 \mapsto 022$ respectively preserve abelian 4-powers and 3-powers.
- Hence $\mathcal{A}_{\infty}(2) = 4$ and $\mathcal{A}_{\infty}(3) = 3$.

- It thus suffices to find suitable substitutions.
- Dekking (1979) shows that $\sigma_1: 0 \mapsto 011, 1 \mapsto 0001$ and $\sigma_2: 0 \mapsto 0012, 1 \mapsto 112, 2 \mapsto 022$ respectively preserve abelian 4-powers and 3-powers.

• Hence
$$\mathcal{A}_{\infty}(2) = 4$$
 and $\mathcal{A}_{\infty}(3) = 3$.

• There is no known substitution over a 4-letter alphabet that preserves abelian 2-powers.

- It thus suffices to find suitable substitutions.
- Dekking (1979) shows that $\sigma_1: 0 \mapsto 011, 1 \mapsto 0001$ and $\sigma_2: 0 \mapsto 0012, 1 \mapsto 112, 2 \mapsto 022$ respectively preserve abelian 4-powers and 3-powers.

• Hence
$$\mathcal{A}_{\infty}(2) = 4$$
 and $\mathcal{A}_{\infty}(3) = 3$.

- There is no known substitution over a 4-letter alphabet that preserves abelian 2-powers.
- Thus we need something more.

Values $\mathcal{A}_{\infty}(k)$

Definition

A substitution $\sigma: A^* \to A^*$ is abelian *N*-free if $\sigma(w)$ is abelian *N*-free for all abelian *N*-free words w in A^* .

Values $\mathcal{A}_{\infty}(k)$

Definition

A substitution $\sigma: A^* \to A^*$ is abelian *N*-free if $\sigma(w)$ is abelian *N*-free for all abelian *N*-free words w in A^* .

• A substitution preserving abelian *N*-powers is abelian *N*-free, but the converse is not true.

Values $\mathcal{A}_{\infty}(k)$

Definition

A substitution $\sigma: A^* \to A^*$ is abelian *N*-free if $\sigma(w)$ is abelian *N*-free for all abelian *N*-free words w in A^* .

- A substitution preserving abelian *N*-powers is abelian *N*-free, but the converse is not true.
- We can prove the following.

Proposition (P.-Whiteland (2020))

Let $\sigma: A^* \to A^*$ be an abelian N-free substitution, and assume that $w \in A^*$ avoids abelian N-powers cyclically. If N > 2, then $\sigma(w)$ avoids abelian N-powers cyclically. If N = 2 and $|w| \ge 2$, then $\sigma(w)$ avoids abelian 2-powers cyclically.

• Now Keränen (1992) provides us a 85-uniform substitution σ_3 (not displayed) on a 4-letter alphabet that is abelian 2-free.

- Now Keränen (1992) provides us a 85-uniform substitution σ_3 (not displayed) on a 4-letter alphabet that is abelian 2-free.
- By iterating σ_3 on 01, we see that $\mathcal{A}_{\infty}(4) = 2$.

Useful Lemma

Lemma

If w^{ω} contains an abelian N-power of period m with $\frac{1}{2}|w| \le m < |w|$, then it contains an abelian N-power with period |w| - m.

Useful Lemma

Lemma

If w^{ω} contains an abelian N-power of period m with $\frac{1}{2}|w| \le m < |w|$, then it contains an abelian N-power with period |w| - m.

Proof.

Assume WLOG that $m > \frac{1}{2}|w|$ and w^{ω} begins with an abelian *N*-power $u_0 \cdots u_{N-1}$ of period *m*. By induction on *N*: if w^{ω} begins with an abelian *N*-power of period *m*, then w^{N-1} ends with an abelian *N*-power $s_{N-1} \cdots s_0$ of period |w| - m.

Case N = 2. As $\frac{1}{2}|w| < m < |w|$, we have $|u_0| < |w| < |u_0 u_1|$. We may write $w = u_0 s_0$ and $u_1 = s_0 p$, where s_0 is the length |w| - m suffix of w and p is a prefix of w. Notice that |p| < m, so we have $u_0 = ps_1$ with $|s_1| = |s_0|$. We have

$$0 = \psi(u_0) - \psi(u_1) = \psi(ps_1) - \psi(s_0p) = \psi(s_1) - \psi(s_0).$$

Thus s_1 is abelian equivalent to s_0 , and w ends with the abelian 2-power s_1s_0 .

Jarkko Peltomäki

Proof (Continued).

Let N > 2. Proceed as before and find that w ends with the abelian 2-power s_1s_0 of period |w| - m. Conjugate w^{ω} to the right by $|u_0|$ to obtain z^{ω} that begins with the abelian (N - 1)-power $u_1 \cdots u_{N-1}$. By the induction hypothesis, z^{N-2} ends with the abelian power $s_{N-1} \cdots s_1$ of period |w| - m. To conclude, we notice that $w^{N-1} = u_0 z^{N-2} s_0$. The claim follows.

Values $\mathcal{A}(k)$

Lemma

If $w \in A^*$ avoids abelian N-powers, then w#, $\# \notin A$, avoids abelian N-powers cyclically.

If $w \in A^*$ avoids abelian N-powers, then w#, $\# \notin A$, avoids abelian N-powers cyclically.

Proof.

Set $\mathbf{w} = (w\#)^{\omega}$, and assume for a contradiction that an abelian *N*-power $u_0 \cdots u_{N-1}$ such that $|u_0| < |w\#|$ occurs in \mathbf{w} . By the previous lemma, we may assume that $|u_0| \le \frac{1}{2}|w\#|$. Thus $|u_0u_1| \le |w\#|$ and # can occur in u_0u_1 at most once. Thus # does not occur in u_0 , and so $u_0 \cdots u_{N-1}$ must be a factor of w. This contradicts the assumption that w avoids abelian *N*-powers.

Values $\mathcal{A}(k)$

Theorem

We have $3 \leq A(3) \leq 4$, $2 \leq A(4) \leq 3$, and A(k) = 2 for $k \geq 5$.

Theorem

We have $3 \leq \mathcal{A}(3) \leq 4$, $2 \leq \mathcal{A}(4) \leq 3$, and $\mathcal{A}(k) = 2$ for $k \geq 5$.

Proof.

Every ternary word of length 8 contains an abelian 2-power, so $\mathcal{A}(3) \geq 3$. There exists a binary word w of length n that avoids abelian 4-powers for all n (Dekking). By the previous lemma, the ternary word w# avoids abelian 4-powers cyclically. Thus $\mathcal{A}(3) \leq 4$. In the other cases, use results of Dekking and Keränen.

- The previous argument does not work in the binary case.
- An explicit construction is needed.

• Let $\sigma: 0 \mapsto 0001, 1 \mapsto 101$ (by Dekking, the fixed point is abelian 4-free).

- Let $\sigma: 0 \mapsto 0001, 1 \mapsto 101$ (by Dekking, the fixed point is abelian 4-free).
- Let w be a prefix of the fixed point $\sigma^{\omega}(0)$ of length n.

- Let $\sigma: 0 \mapsto 0001, 1 \mapsto 101$ (by Dekking, the fixed point is abelian 4-free).
- Let w be a prefix of the fixed point $\sigma^{\omega}(0)$ of length n.
- Let \overline{w} be the complement-reversal of w.

- Let $\sigma: 0 \mapsto 0001, 1 \mapsto 101$ (by Dekking, the fixed point is abelian 4-free).
- Let w be a prefix of the fixed point $\sigma^{\omega}(0)$ of length n.
- Let \overline{w} be the complement-reversal of w.
- Set $f = \overline{w} \diamond w$ with $\diamond \in \{0, 1\}$.

- Let $\sigma: 0 \mapsto 0001, 1 \mapsto 101$ (by Dekking, the fixed point is abelian 4-free).
- Let w be a prefix of the fixed point $\sigma^{\omega}(0)$ of length n.
- Let \overline{w} be the complement-reversal of w.
- Set $f = \overline{w} \diamond w$ with $\diamond \in \{0, 1\}$.

Proposition

The word f avoids abelian 8-powers cyclically.

- Let $\sigma: 0 \mapsto 0001, 1 \mapsto 101$ (by Dekking, the fixed point is abelian 4-free).
- Let w be a prefix of the fixed point $\sigma^{\omega}(0)$ of length n.
- Let \overline{w} be the complement-reversal of w.
- Set $f = \overline{w} \diamond w$ with $\diamond \in \{0, 1\}$.

Proposition

The word f avoids abelian 8-powers cyclically.

 This handles odd lengths. For even lengths, remove ◊ and complement the final letter of w if |w| is even.

• Let
$$\mathbf{F} = f^{\omega}$$
.

If **F** contains an abelian 8-power of period m, then $m > \frac{1}{2}|w|$.

Jarkko Peltomäki

Avoiding Abelian Powers Cyclically 19 / 25

Proof.

Say **F** contains abelian 8-power $u_0 \cdots u_7$. Say $m \le \frac{1}{2}|w|$. Some u_i must "cross over" the end or middle of f; otherwise w contains an abelian 4-power.

Proof.

Say **F** contains abelian 8-power $u_0 \cdots u_7$. Say $m \le \frac{1}{2}|w|$. Some u_i must "cross over" the end or middle of f; otherwise w contains an abelian 4-power.

Say $1 \le i \le 6$, so that u_{i-1} and u_{i+1} exist. Since $m \le \frac{1}{2}|w|$, both u_{i-1} and u_{i+1} fit inside w and \overline{w} .

Proof.

Say **F** contains abelian 8-power $u_0 \cdots u_7$. Say $m \le \frac{1}{2}|w|$. Some u_i must "cross over" the end or middle of f; otherwise w contains an abelian 4-power.

Say $1 \le i \le 6$, so that u_{i-1} and u_{i+1} exist. Since $m \le \frac{1}{2}|w|$, both u_{i-1} and u_{i+1} fit inside w and \overline{w} .

If *m* is large, then u_{i-1} and u_{i+1} cannot be abelian equivalent since the frequency of 0's in *w* is greater than that of 1's. \not

Proof.

Say **F** contains abelian 8-power $u_0 \cdots u_7$. Say $m \le \frac{1}{2}|w|$. Some u_i must "cross over" the end or middle of f; otherwise w contains an abelian 4-power.

Say $1 \le i \le 6$, so that u_{i-1} and u_{i+1} exist. Since $m \le \frac{1}{2}|w|$, both u_{i-1} and u_{i+1} fit inside w and \overline{w} .

If *m* is large, then u_{i-1} and u_{i+1} cannot be abelian equivalent since the frequency of 0's in *w* is greater than that of 1's. \pounds If *m* is short, then abelian 4-power fits into *w* or \overline{w} (we need the help of computer here).

Jarkko Peltomäki

Lemma

If **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m and $m > \frac{1}{2}|w|$, then all u_i 's "cross over".

Lemma

If **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m and $m > \frac{1}{2}|w|$, then all u_i 's "cross over".

Proof. Say some u_i does not "cross over". Then u_{i+1} does as $m > \frac{1}{2}|w|$. F:

Lemma

If **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m and $m > \frac{1}{2}|w|$, then all u_i 's "cross over".

Proof. Say some u_i does not "cross over". Then u_{i+1} does as $m > \frac{1}{2}|w|$. **F**: u_i u_{i+1} Write $u_{i+1} = \alpha\beta$ according to the "cross over" point. **F**: u_i u_{i+1} **F**: $u_i = \alpha\beta$ according to the "cross over" point.

Lemma

If **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m and $m > \frac{1}{2}|w|$, then all u_i 's "cross over".

Proof. Say some u_i does not "cross over". Then u_{i+1} does as $m > \frac{1}{2}|w|$. F: Write $u_{i+1} = \alpha\beta$ according to the "cross over" point. F: u_i u_i u_{i+1} α β

If $|\beta| \ge |\alpha|$, then $\beta = \overline{\alpha}z$.

Lemma

If **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m and $m > \frac{1}{2}|w|$, then all u_i 's "cross over".

Proof. Say some u_i does not "cross over". Then u_{i+1} does as $m > \frac{1}{2}|w|$. **F**: u_i u_{i+1} Write $u_{i+1} = \alpha\beta$ according to the "cross over" point. **F**: u_i u_{i+1} **F**: $u_i \qquad u_{i+1}$ $\alpha \qquad \beta$

 $|\mathsf{f}|\beta| \geq |\alpha|, \text{ then } \beta = \overline{\alpha}z. \text{ Thus } \Delta(u_i) = \Delta(u_{i+1}) = \Delta(z) \ (\Delta(x) = |x|_0 - |x|_1).$

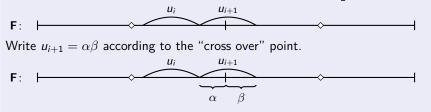
Jarkko Peltomäki

Lemma

If **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m and $m > \frac{1}{2}|w|$, then all u_i 's "cross over".

Proof.

Say some u_i does not "cross over". Then u_{i+1} does as $m > \frac{1}{2}|w|$.



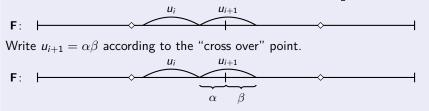
If $|\beta| \ge |\alpha|$, then $\beta = \overline{\alpha}z$. Thus $\Delta(u_i) = \Delta(u_{i+1}) = \Delta(z)$ $(\Delta(x) = |x|_0 - |x|_1)$. Frequency: $\Delta(u_0) > K$ where K can be taken large with computer verification (recall $m > \frac{1}{2}|w|$).

Lemma

If **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m and $m > \frac{1}{2}|w|$, then all u_i 's "cross over".

Proof.

Say some u_i does not "cross over". Then u_{i+1} does as $m > \frac{1}{2}|w|$.



If $|\beta| \ge |\alpha|$, then $\beta = \overline{\alpha}z$. Thus $\Delta(u_i) = \Delta(u_{i+1}) = \Delta(z)$ ($\Delta(x) = |x|_0 - |x|_1$). Frequency: $\Delta(u_0) > K$ where K can be taken large with computer verification (recall $m > \frac{1}{2}|w|$). Thus $\Delta(z) > K$, but $\Delta(z)$ is bounded above since z is a factor of \overline{w} .

Lemma

If **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m and $m > \frac{1}{2}|w|$, then all u_i 's "cross over".

Proof. Say some u_i does not "cross over". Then u_{i+1} does as $m > \frac{1}{2}|w|$. F: u_i u_{i+1} Write $u_{i+1} = \alpha\beta$ according to the "cross over" point. F: u_i u_{i+1} F: u_i u_{i+1} α β

If $|\beta| \ge |\alpha|$, then $\beta = \overline{\alpha}z$. Thus $\Delta(u_i) = \Delta(u_{i+1}) = \Delta(z)$ ($\Delta(x) = |x|_0 - |x|_1$). Frequency: $\Delta(u_0) > K$ where K can be taken large with computer verification (recall $m > \frac{1}{2}|w|$). Thus $\Delta(z) > K$, but $\Delta(z)$ is bounded above since z is a factor of \overline{w} . If Thus $|\beta| < |\alpha|$ and u_{i+2} is a factor of \overline{w} . Then u_i and u_{i+2} cannot be abelian equivalent.

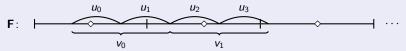
Lemma

The word **F** does not contain abelian 8-powers of period m such that $m \leq |w|$.

The word **F** does not contain abelian 8-powers of period m such that $m \leq |w|$.

Proof.

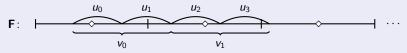
Say **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m such that $m \le |w|$. By previous results, we may assume $m > \frac{1}{2}|w|$. Moreover, each u_i "cross over". Set $v_i = u_{2i}u_{2i+1}$. Thus **F** contains the abelian 4-power $v_0 \cdots v_3$.



The word **F** does not contain abelian 8-powers of period m such that $m \leq |w|$.

Proof.

Say **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m such that $m \le |w|$. By previous results, we may assume $m > \frac{1}{2}|w|$. Moreover, each u_i "cross over". Set $v_i = u_{2i}u_{2i+1}$. Thus **F** contains the abelian 4-power $v_0 \cdots v_3$.

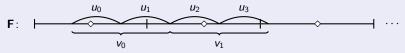


Now $M := |f| - |v_i| = 2(|w| - m) + 1 > 0$, so by a previous lemma, **F** contains an abelian 4-power $s_4 \cdots s_0$ of period M.

The word **F** does not contain abelian 8-powers of period m such that $m \leq |w|$.

Proof.

Say **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m such that $m \le |w|$. By previous results, we may assume $m > \frac{1}{2}|w|$. Moreover, each u_i "cross over". Set $v_i = u_{2i}u_{2i+1}$. Thus **F** contains the abelian 4-power $v_0 \cdots v_3$.



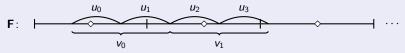
Now $M := |f| - |v_i| = 2(|w| - m) + 1 > 0$, so by a previous lemma, **F** contains an abelian 4-power $s_4 \cdots s_0$ of period M. In fact $s_4 \cdots s_0$ ends where $v_0 \cdots v_3$ begins (inspect the proof).

Jarkko Peltomäki

The word **F** does not contain abelian 8-powers of period m such that $m \leq |w|$.

Proof.

Say **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m such that $m \le |w|$. By previous results, we may assume $m > \frac{1}{2}|w|$. Moreover, each u_i "cross over". Set $v_i = u_{2i}u_{2i+1}$. Thus **F** contains the abelian 4-power $v_0 \cdots v_3$.

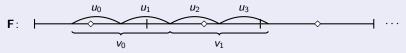


Now $M := |f| - |v_i| = 2(|w| - m) + 1 > 0$, so by a previous lemma, **F** contains an abelian 4-power $s_4 \cdots s_0$ of period M. In fact $s_4 \cdots s_0$ ends where $v_0 \cdots v_3$ begins (inspect the proof). The relative positions where v_i start and end differ by M.

The word **F** does not contain abelian 8-powers of period m such that $m \leq |w|$.

Proof.

Say **F** contains an abelian 8-power $u_0 \cdots u_7$ of period m such that $m \le |w|$. By previous results, we may assume $m > \frac{1}{2}|w|$. Moreover, each u_i "cross over". Set $v_i = u_{2i}u_{2i+1}$. Thus **F** contains the abelian 4-power $v_0 \cdots v_3$.



Now $M := |f| - |v_i| = 2(|w| - m) + 1 > 0$, so by a previous lemma, **F** contains an abelian 4-power $s_4 \cdots s_0$ of period M. In fact $s_4 \cdots s_0$ ends where $v_0 \cdots v_3$ begins (inspect the proof). The relative positions where v_i start and end differ by M. Since all u_i 's "cross over", we see that $s_4 \cdots s_0$ is a factor of \overline{w} . \pounds • We have thus excluded periods $m \le |w|$. As "long" periods imply "short" periods by a previous lemma, we are done: $\mathcal{A}(2) \le 8$.

- We have thus excluded periods $m \le |w|$. As "long" periods imply "short" periods by a previous lemma, we are done: $\mathcal{A}(2) \le 8$.
- Since there is no binary word of length 8 avoiding abelian 4-powers cyclically, we have $\mathcal{A}(2) \geq 5$.

Conjecture

 ${\cal A}(2)=5,\;{\cal A}(3)=3,\;{\cal A}(4)=2$

• Verified up to length 150.

Conjecture

If $n \neq 8$, then there exists a binary word of length n avoiding abelian 4-powers cyclically.

Thank you for your attention!

J. Peltomäki, M. A. Whiteland Avoiding abelian powers cyclically Adv. in Appl. Math. (to appear) (2020), arXiv:2006.06307

J. Peltomäki, M. A. Whiteland All Growth Rates of Abelian Exponents Are Attained by Infinite Binary Words Proceedings of MFCS 2020 (2020)